/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Adam Rak */ #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "util/u_blitter.h" #include "util/u_double_list.h" #include "util/u_transfer.h" #include "util/u_surface.h" #include "util/u_pack_color.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_framebuffer.h" #include "r600_resource.h" #include "r600_shader.h" #include "r600_pipe.h" #include "r600_formats.h" #include "compute_memory_pool.h" #include "evergreen_compute.h" #include "evergreen_compute_internal.h" #include /** * Creates a new pool */ struct compute_memory_pool* compute_memory_pool_new( struct r600_screen * rscreen) { struct compute_memory_pool* pool = (struct compute_memory_pool*) CALLOC(sizeof(struct compute_memory_pool), 1); COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n"); pool->screen = rscreen; return pool; } static void compute_memory_pool_init(struct compute_memory_pool * pool, unsigned initial_size_in_dw) { COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n", initial_size_in_dw); pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4); pool->next_id = 1; pool->size_in_dw = initial_size_in_dw; pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen, pool->size_in_dw * 4); } /** * Frees all stuff in the pool and the pool struct itself too */ void compute_memory_pool_delete(struct compute_memory_pool* pool) { COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n"); free(pool->shadow); if (pool->bo) { pool->screen->b.b.resource_destroy((struct pipe_screen *) pool->screen, (struct pipe_resource *)pool->bo); } free(pool); } /** * Searches for an empty space in the pool, return with the pointer to the * allocatable space in the pool, returns -1 on failure. */ int64_t compute_memory_prealloc_chunk( struct compute_memory_pool* pool, int64_t size_in_dw) { struct compute_memory_item *item; int last_end = 0; assert(size_in_dw <= pool->size_in_dw); COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n", size_in_dw); for (item = pool->item_list; item; item = item->next) { if (item->start_in_dw > -1) { if (item->start_in_dw-last_end > size_in_dw) { return last_end; } last_end = item->start_in_dw + item->size_in_dw; last_end += (1024 - last_end % 1024); } } if (pool->size_in_dw - last_end < size_in_dw) { return -1; } return last_end; } /** * Search for the chunk where we can link our new chunk after it. */ struct compute_memory_item* compute_memory_postalloc_chunk( struct compute_memory_pool* pool, int64_t start_in_dw) { struct compute_memory_item* item; COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n", start_in_dw); /* Check if we can insert it in the front of the list */ if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) { return NULL; } for (item = pool->item_list; item; item = item->next) { if (item->next) { if (item->start_in_dw < start_in_dw && item->next->start_in_dw > start_in_dw) { return item; } } else { /* end of chain */ assert(item->start_in_dw < start_in_dw); return item; } } assert(0 && "unreachable"); return NULL; } /** * Reallocates pool, conserves data */ void compute_memory_grow_pool(struct compute_memory_pool* pool, struct pipe_context * pipe, int new_size_in_dw) { COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() " "new_size_in_dw = %d (%d bytes)\n", new_size_in_dw, new_size_in_dw * 4); assert(new_size_in_dw >= pool->size_in_dw); if (!pool->bo) { compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16)); } else { new_size_in_dw += 1024 - (new_size_in_dw % 1024); COMPUTE_DBG(pool->screen, " Aligned size = %d (%d bytes)\n", new_size_in_dw, new_size_in_dw * 4); compute_memory_shadow(pool, pipe, 1); pool->shadow = realloc(pool->shadow, new_size_in_dw*4); pool->size_in_dw = new_size_in_dw; pool->screen->b.b.resource_destroy( (struct pipe_screen *)pool->screen, (struct pipe_resource *)pool->bo); pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram( pool->screen, pool->size_in_dw * 4); compute_memory_shadow(pool, pipe, 0); } } /** * Copy pool from device to host, or host to device. */ void compute_memory_shadow(struct compute_memory_pool* pool, struct pipe_context * pipe, int device_to_host) { struct compute_memory_item chunk; COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n", device_to_host); chunk.id = 0; chunk.start_in_dw = 0; chunk.size_in_dw = pool->size_in_dw; chunk.prev = chunk.next = NULL; compute_memory_transfer(pool, pipe, device_to_host, &chunk, pool->shadow, 0, pool->size_in_dw*4); } /** * Allocates pending allocations in the pool */ void compute_memory_finalize_pending(struct compute_memory_pool* pool, struct pipe_context * pipe) { struct compute_memory_item *pending_list = NULL, *end_p = NULL; struct compute_memory_item *item, *next; int64_t allocated = 0; int64_t unallocated = 0; int64_t start_in_dw = 0; COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n"); for (item = pool->item_list; item; item = item->next) { COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i " "(%i bytes)\n",item->start_in_dw, item->id, item->size_in_dw, item->size_in_dw * 4); } /* Search through the list of memory items in the pool */ for (item = pool->item_list; item; item = next) { next = item->next; /* Check if the item is pending. */ if (item->start_in_dw == -1) { /* It is pending, so add it to the pending_list... */ if (end_p) { end_p->next = item; } else { pending_list = item; } /* ... and then remove it from the item list. */ if (item->prev) { item->prev->next = next; } else { pool->item_list = next; } if (next) { next->prev = item->prev; } /* This sequence makes the item be at the end of the list */ item->prev = end_p; item->next = NULL; end_p = item; /* Update the amount of space we will need to allocate. */ unallocated += item->size_in_dw+1024; } else { /* The item is not pendng, so update the amount of space * that has already been allocated. */ allocated += item->size_in_dw; } } /* If we require more space than the size of the pool, then grow the * pool. * * XXX: I'm pretty sure this won't work. Imagine this scenario: * * Offset Item Size * 0 A 50 * 200 B 50 * 400 C 50 * * Total size = 450 * Allocated size = 150 * Pending Item D Size = 200 * * In this case, there are 300 units of free space in the pool, but * they aren't contiguous, so it will be impossible to allocate Item D. */ if (pool->size_in_dw < allocated+unallocated) { compute_memory_grow_pool(pool, pipe, allocated+unallocated); } /* Loop through all the pending items, allocate space for them and * add them back to the item_list. */ for (item = pending_list; item; item = next) { next = item->next; /* Search for free space in the pool for this item. */ while ((start_in_dw=compute_memory_prealloc_chunk(pool, item->size_in_dw)) == -1) { int64_t need = item->size_in_dw+2048 - (pool->size_in_dw - allocated); need += 1024 - (need % 1024); if (need > 0) { compute_memory_grow_pool(pool, pipe, pool->size_in_dw + need); } else { need = pool->size_in_dw / 10; need += 1024 - (need % 1024); compute_memory_grow_pool(pool, pipe, pool->size_in_dw + need); } } COMPUTE_DBG(pool->screen, " + Found space for Item %p id = %u " "start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n", item, item->id, start_in_dw, start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4); item->start_in_dw = start_in_dw; item->next = NULL; item->prev = NULL; if (pool->item_list) { struct compute_memory_item *pos; pos = compute_memory_postalloc_chunk(pool, start_in_dw); if (pos) { item->prev = pos; item->next = pos->next; pos->next = item; if (item->next) { item->next->prev = item; } } else { /* Add item to the front of the list */ item->next = pool->item_list; item->prev = pool->item_list->prev; pool->item_list->prev = item; pool->item_list = item; } } else { pool->item_list = item; } allocated += item->size_in_dw; } } void compute_memory_free(struct compute_memory_pool* pool, int64_t id) { struct compute_memory_item *item, *next; COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id); for (item = pool->item_list; item; item = next) { next = item->next; if (item->id == id) { if (item->prev) { item->prev->next = item->next; } else { pool->item_list = item->next; } if (item->next) { item->next->prev = item->prev; } free(item); return; } } fprintf(stderr, "Internal error, invalid id %"PRIi64" " "for compute_memory_free\n", id); assert(0 && "error"); } /** * Creates pending allocations */ struct compute_memory_item* compute_memory_alloc( struct compute_memory_pool* pool, int64_t size_in_dw) { struct compute_memory_item *new_item = NULL, *last_item = NULL; COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n", size_in_dw, 4 * size_in_dw); new_item = (struct compute_memory_item *) CALLOC(sizeof(struct compute_memory_item), 1); new_item->size_in_dw = size_in_dw; new_item->start_in_dw = -1; /* mark pending */ new_item->id = pool->next_id++; new_item->pool = pool; if (pool->item_list) { for (last_item = pool->item_list; last_item->next; last_item = last_item->next); last_item->next = new_item; new_item->prev = last_item; } else { pool->item_list = new_item; } COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n", new_item, new_item->id, new_item->size_in_dw, new_item->size_in_dw * 4); return new_item; } /** * Transfer data host<->device, offset and size is in bytes */ void compute_memory_transfer( struct compute_memory_pool* pool, struct pipe_context * pipe, int device_to_host, struct compute_memory_item* chunk, void* data, int offset_in_chunk, int size) { int64_t aligned_size = pool->size_in_dw; struct pipe_resource* gart = (struct pipe_resource*)pool->bo; int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk; struct pipe_transfer *xfer; uint32_t *map; assert(gart); COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, " "offset_in_chunk = %d, size = %d\n", device_to_host, offset_in_chunk, size); if (device_to_host) { map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ, &(struct pipe_box) { .width = aligned_size, .height = 1, .depth = 1 }, &xfer); assert(xfer); assert(map); memcpy(data, map + internal_offset, size); pipe->transfer_unmap(pipe, xfer); } else { map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE, &(struct pipe_box) { .width = aligned_size, .height = 1, .depth = 1 }, &xfer); assert(xfer); assert(map); memcpy(map + internal_offset, data, size); pipe->transfer_unmap(pipe, xfer); } } /** * Transfer data between chunk<->data, it is for VRAM<->GART transfers */ void compute_memory_transfer_direct( struct compute_memory_pool* pool, int chunk_to_data, struct compute_memory_item* chunk, struct r600_resource* data, int offset_in_chunk, int offset_in_data, int size) { ///TODO: DMA }