/* * Copyright 2008 Corbin Simpson * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "util/u_math.h" #include "util/u_pack_color.h" #include "r300_context.h" #include "r300_reg.h" /* r300_state: Functions used to intialize state context by translating * Gallium state objects into semi-native r300 state objects. * * XXX break this file up into pieces if it gets too big! */ /* Pack a float into a dword. */ static uint32_t pack_float_32(float f) { union { float f; uint32_t u; } u; u.f = f; return u.u; } static uint32_t translate_blend_function(int blend_func) { switch (blend_func) { case PIPE_BLEND_ADD: return R300_COMB_FCN_ADD_CLAMP; case PIPE_BLEND_SUBTRACT: return R300_COMB_FCN_SUB_CLAMP; case PIPE_BLEND_REVERSE_SUBTRACT: return R300_COMB_FCN_RSUB_CLAMP; case PIPE_BLEND_MIN: return R300_COMB_FCN_MIN; case PIPE_BLEND_MAX: return R300_COMB_FCN_MAX; default: /* XXX should be unreachable, handle this */ break; } return 0; } /* XXX we can also offer the D3D versions of some of these... */ static uint32_t translate_blend_factor(int blend_fact) { switch (blend_fact) { case PIPE_BLENDFACTOR_ONE: return R300_BLEND_GL_ONE; case PIPE_BLENDFACTOR_SRC_COLOR: return R300_BLEND_GL_SRC_COLOR; case PIPE_BLENDFACTOR_SRC_ALPHA: return R300_BLEND_GL_SRC_ALPHA; case PIPE_BLENDFACTOR_DST_ALPHA: return R300_BLEND_GL_DST_ALPHA; case PIPE_BLENDFACTOR_DST_COLOR: return R300_BLEND_GL_DST_COLOR; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: return R300_BLEND_GL_SRC_ALPHA_SATURATE; case PIPE_BLENDFACTOR_CONST_COLOR: return R300_BLEND_GL_CONST_COLOR; case PIPE_BLENDFACTOR_CONST_ALPHA: return R300_BLEND_GL_CONST_ALPHA; /* XXX WTF are these? case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: */ case PIPE_BLENDFACTOR_ZERO: return R300_BLEND_GL_ZERO; case PIPE_BLENDFACTOR_INV_SRC_COLOR: return R300_BLEND_GL_ONE_MINUS_SRC_COLOR; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: return R300_BLEND_GL_ONE_MINUS_SRC_ALPHA; case PIPE_BLENDFACTOR_INV_DST_ALPHA: return R300_BLEND_GL_ONE_MINUS_DST_ALPHA; case PIPE_BLENDFACTOR_INV_DST_COLOR: return R300_BLEND_GL_ONE_MINUS_DST_COLOR; case PIPE_BLENDFACTOR_INV_CONST_COLOR: return R300_BLEND_GL_ONE_MINUS_CONST_COLOR; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: return R300_BLEND_GL_ONE_MINUS_CONST_ALPHA; /* XXX see above case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: */ default: /* XXX the mythical 0x16 blend factor! */ break; } return 0; } /* Create a new blend state based on the CSO blend state. * * This encompasses alpha blending, logic/raster ops, and blend dithering. */ static void* r300_create_blend_state(struct pipe_context* pipe, const struct pipe_blend_state* state) { struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state); if (state->blend_enable) { /* XXX for now, always do separate alpha... * is it faster to do it with one reg? */ blend->blend_control = R300_ALPHA_BLEND_ENABLE | R300_SEPARATE_ALPHA_ENABLE | R300_READ_ENABLE | translate_blend_function(state->rgb_func) | (translate_blend_factor(state->rgb_src_factor) << R300_SRC_BLEND_SHIFT) | (translate_blend_factor(state->rgb_dst_factor) << R300_DST_BLEND_SHIFT); blend->alpha_blend_control = translate_blend_function(state->alpha_func) | (translate_blend_factor(state->alpha_src_factor) << R300_SRC_BLEND_SHIFT) | (translate_blend_factor(state->alpha_dst_factor) << R300_DST_BLEND_SHIFT); } /* PIPE_LOGICOP_* don't need to be translated, fortunately. */ /* XXX are logicops still allowed if blending's disabled? * Does Gallium take care of it for us? */ if (state->logicop_enable) { blend->rop = R300_RB3D_ROPCNTL_ROP_ENABLE | (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT; } if (state->dither) { blend->dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT | R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT; } return (void*)blend; } /* Bind blend state. */ static void r300_bind_blend_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); r300->blend_state = (struct r300_blend_state*)state; r300->dirty_state |= R300_NEW_BLEND; } /* Free blend state. */ static void r300_delete_blend_state(struct pipe_context* pipe, void* state) { FREE(state); } /* Set blend color. * Setup both R300 and R500 registers, figure out later which one to write. */ static void r300_set_blend_color(struct pipe_context* pipe, const struct pipe_blend_color* color) { struct r300_context* r300 = r300_context(pipe); uint32_t r, g, b, a; ubyte ur, ug, ub, ua; r = util_iround(color->color[0] * 1023.0f); g = util_iround(color->color[1] * 1023.0f); b = util_iround(color->color[2] * 1023.0f); a = util_iround(color->color[3] * 1023.0f); ur = float_to_ubyte(color->color[0]); ug = float_to_ubyte(color->color[1]); ub = float_to_ubyte(color->color[2]); ua = float_to_ubyte(color->color[3]); r300->blend_color_state->blend_color = (a << 24) | (r << 16) | (g << 8) | b; r300->blend_color_state->blend_color_red_alpha = ur | (ua << 16); r300->blend_color_state->blend_color_green_blue = ub | (ug << 16); r300->dirty_state |= R300_NEW_BLEND_COLOR; } static void r300_set_clip_state(struct pipe_context* pipe, const struct pipe_clip_state* state) { struct r300_context* r300 = r300_context(pipe); /* XXX Draw */ draw_flush(r300->draw); draw_set_clip_state(r300->draw, state); } static void r300_set_constant_buffer(struct pipe_context* pipe, uint shader, uint index, const struct pipe_constant_buffer* buffer) { /* XXX */ } static uint32_t translate_depth_stencil_function(int zs_func) { switch (zs_func) { case PIPE_FUNC_NEVER: return R300_ZS_NEVER; case PIPE_FUNC_LESS: return R300_ZS_LESS; case PIPE_FUNC_EQUAL: return R300_ZS_EQUAL; case PIPE_FUNC_LEQUAL: return R300_ZS_LEQUAL; case PIPE_FUNC_GREATER: return R300_ZS_GREATER; case PIPE_FUNC_NOTEQUAL: return R300_ZS_NOTEQUAL; case PIPE_FUNC_GEQUAL: return R300_ZS_GEQUAL; case PIPE_FUNC_ALWAYS: return R300_ZS_ALWAYS; default: /* XXX shouldn't be reachable */ break; } return 0; } static uint32_t translate_stencil_op(int s_op) { switch (s_op) { case PIPE_STENCIL_OP_KEEP: return R300_ZS_KEEP; case PIPE_STENCIL_OP_ZERO: return R300_ZS_ZERO; case PIPE_STENCIL_OP_REPLACE: return R300_ZS_REPLACE; case PIPE_STENCIL_OP_INCR: return R300_ZS_INCR; case PIPE_STENCIL_OP_DECR: return R300_ZS_DECR; case PIPE_STENCIL_OP_INCR_WRAP: return R300_ZS_INCR_WRAP; case PIPE_STENCIL_OP_DECR_WRAP: return R300_ZS_DECR_WRAP; case PIPE_STENCIL_OP_INVERT: return R300_ZS_INVERT; default: /* XXX shouldn't be reachable */ break; } return 0; } static uint32_t translate_alpha_function(int alpha_func) { switch (alpha_func) { case PIPE_FUNC_NEVER: return R300_FG_ALPHA_FUNC_NEVER; case PIPE_FUNC_LESS: return R300_FG_ALPHA_FUNC_LESS; case PIPE_FUNC_EQUAL: return R300_FG_ALPHA_FUNC_EQUAL; case PIPE_FUNC_LEQUAL: return R300_FG_ALPHA_FUNC_LE; case PIPE_FUNC_GREATER: return R300_FG_ALPHA_FUNC_GREATER; case PIPE_FUNC_NOTEQUAL: return R300_FG_ALPHA_FUNC_NOTEQUAL; case PIPE_FUNC_GEQUAL: return R300_FG_ALPHA_FUNC_GE; case PIPE_FUNC_ALWAYS: return R300_FG_ALPHA_FUNC_ALWAYS; default: /* XXX shouldn't be reachable */ break; } return 0; } /* Create a new depth, stencil, and alpha state based on the CSO dsa state. * * This contains the depth buffer, stencil buffer, alpha test, and such. * On the Radeon, depth and stencil buffer setup are intertwined, which is * the reason for some of the strange-looking assignments across registers. */ static void* r300_create_dsa_state(struct pipe_context* pipe, const struct pipe_depth_stencil_alpha_state* state) { struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state); /* Depth test setup. */ if (state->depth.enabled) { dsa->z_buffer_control |= R300_Z_ENABLE; if (state->depth.writemask) { dsa->z_buffer_control |= R300_Z_WRITE_ENABLE; } dsa->z_stencil_control |= (translate_depth_stencil_function(state->depth.func) << R300_Z_FUNC_SHIFT); } /* Stencil buffer setup. */ if (state->stencil[0].enabled) { dsa->z_buffer_control |= R300_STENCIL_ENABLE; dsa->z_stencil_control |= (translate_depth_stencil_function(state->stencil[0].func) << R300_S_FRONT_FUNC_SHIFT) | (translate_stencil_op(state->stencil[0].fail_op) << R300_S_FRONT_SFAIL_OP_SHIFT) | (translate_stencil_op(state->stencil[0].zpass_op) << R300_S_FRONT_ZPASS_OP_SHIFT) | (translate_stencil_op(state->stencil[0].zfail_op) << R300_S_FRONT_ZFAIL_OP_SHIFT); dsa->stencil_ref_mask = (state->stencil[0].ref_value) | (state->stencil[0].value_mask << R300_STENCILMASK_SHIFT) | (state->stencil[0].write_mask << R300_STENCILWRITEMASK_SHIFT); if (state->stencil[1].enabled) { dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK; dsa->z_stencil_control |= (translate_depth_stencil_function(state->stencil[1].func) << R300_S_BACK_FUNC_SHIFT) | (translate_stencil_op(state->stencil[1].fail_op) << R300_S_BACK_SFAIL_OP_SHIFT) | (translate_stencil_op(state->stencil[1].zpass_op) << R300_S_BACK_ZPASS_OP_SHIFT) | (translate_stencil_op(state->stencil[1].zfail_op) << R300_S_BACK_ZFAIL_OP_SHIFT); dsa->stencil_ref_bf = (state->stencil[1].ref_value) | (state->stencil[1].value_mask << R300_STENCILMASK_SHIFT) | (state->stencil[1].write_mask << R300_STENCILWRITEMASK_SHIFT); } } /* Alpha test setup. */ if (state->alpha.enabled) { dsa->alpha_function = translate_alpha_function(state->alpha.func) | R300_FG_ALPHA_FUNC_ENABLE; dsa->alpha_reference = CLAMP(state->alpha.ref * 1023.0f, 0, 1023); } else { dsa->z_buffer_top = R300_ZTOP_ENABLE; } return (void*)dsa; } /* Bind DSA state. */ static void r300_bind_dsa_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); r300->dsa_state = (struct r300_dsa_state*)state; r300->dirty_state |= R300_NEW_DSA; } /* Free DSA state. */ static void r300_delete_dsa_state(struct pipe_context* pipe, void* state) { FREE(state); } static void r300_set_edgeflags(struct pipe_context* pipe, const unsigned* bitfield) { /* XXX you know it's bad when i915 has this blank too */ } static void r300_set_framebuffer_state(struct pipe_context* pipe, const struct pipe_framebuffer_state* state) { struct r300_context* r300 = r300_context(pipe); draw_flush(r300->draw); r300->framebuffer_state = *state; /* XXX do we need to mark dirty state? */ } /* Create fragment shader state. */ static void* r300_create_fs_state(struct pipe_context* pipe, const struct pipe_shader_state* state) { struct r300_fs_state* fs = CALLOC_STRUCT(r300_fs_state); return (void*)fs; } /* Bind fragment shader state. */ static void r300_bind_fs_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); r300->fs_state = (struct r300_fs_state*)state; r300->dirty_state |= R300_NEW_FRAGMENT_SHADER; } /* Delect fragment shader state. */ static void r300_delete_fs_state(struct pipe_context* pipe, void* state) { FREE(state); } static void r300_set_polygon_stipple(struct pipe_context* pipe, const struct pipe_poly_stipple* state) { /* XXX */ } #if 0 struct pipe_rasterizer_state { unsigned flatshade:1; unsigned light_twoside:1; unsigned fill_cw:2; /**< PIPE_POLYGON_MODE_x */ unsigned fill_ccw:2; /**< PIPE_POLYGON_MODE_x */ unsigned scissor:1; unsigned poly_smooth:1; unsigned poly_stipple_enable:1; unsigned point_smooth:1; unsigned point_sprite:1; unsigned multisample:1; /* XXX maybe more ms state in future */ unsigned line_smooth:1; unsigned line_last_pixel:1; unsigned bypass_clipping:1; unsigned bypass_vs:1; /**< Skip the vertex shader. Note that the shader is still needed though, to indicate inputs/outputs */ unsigned origin_lower_left:1; /**< Is (0,0) the lower-left corner? */ unsigned flatshade_first:1; /**< take color attribute from the first vertex of a primitive */ unsigned gl_rasterization_rules:1; /**< enable tweaks for GL rasterization? */ ubyte sprite_coord_mode[PIPE_MAX_SHADER_OUTPUTS]; /**< PIPE_SPRITE_COORD_ */ }; #endif static INLINE int pack_float_16_6x(float f) { return ((int)(f * 6.0) & 0xffff); } /* Create a new rasterizer state based on the CSO rasterizer state. * * This is a very large chunk of state, and covers most of the graphics * backend (GB), geometry assembly (GA), and setup unit (SU) blocks. * * In a not entirely unironic sidenote, this state has nearly nothing to do * with the actual block on the Radeon called the rasterizer (RS). */ static void* r300_create_rs_state(struct pipe_context* pipe, const struct pipe_rasterizer_state* state) { struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state); /* XXX this is part of HW TCL */ /* XXX endian control */ rs->vap_control_status = R300_VAP_TCL_BYPASS; rs->point_size = pack_float_16_6x(state->point_size) | (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT); rs->line_control = pack_float_16_6x(state->line_width) | R300_GA_LINE_CNTL_END_TYPE_COMP; /* Radeons don't think in "CW/CCW", they think in "front/back". */ if (state->front_winding == PIPE_WINDING_CW) { rs->cull_mode = R300_FRONT_FACE_CW; if (state->offset_cw) { rs->polygon_offset_enable |= R300_FRONT_ENABLE; } if (state->offset_ccw) { rs->polygon_offset_enable |= R300_BACK_ENABLE; } } else { rs->cull_mode = R300_FRONT_FACE_CCW; if (state->offset_ccw) { rs->polygon_offset_enable |= R300_FRONT_ENABLE; } if (state->offset_cw) { rs->polygon_offset_enable |= R300_BACK_ENABLE; } } if (state->front_winding & state->cull_mode) { rs->cull_mode |= R300_CULL_FRONT; } if (~(state->front_winding) & state->cull_mode) { rs->cull_mode |= R300_CULL_BACK; } if (rs->polygon_offset_enable) { rs->depth_offset_front = rs->depth_offset_back = pack_float_32(state->offset_units); rs->depth_scale_front = rs->depth_scale_back = pack_float_32(state->offset_scale); } if (state->line_stipple_enable) { rs->line_stipple_config = R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE | (pack_float_32((float)state->line_stipple_factor) & R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK); /* XXX this might need to be scaled up */ rs->line_stipple_value = state->line_stipple_pattern; } return (void*)rs; } /* Bind rasterizer state. */ static void r300_bind_rs_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); r300->rs_state = (struct r300_rs_state*)state; r300->dirty_state |= R300_NEW_RASTERIZER; } /* Free rasterizer state. */ static void r300_delete_rs_state(struct pipe_context* pipe, void* state) { FREE(state); } static uint32_t translate_wrap(int wrap) { switch (wrap) { case PIPE_TEX_WRAP_REPEAT: return R300_TX_REPEAT; case PIPE_TEX_WRAP_CLAMP: return R300_TX_CLAMP; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return R300_TX_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return R300_TX_CLAMP_TO_BORDER; case PIPE_TEX_WRAP_MIRROR_REPEAT: return R300_TX_REPEAT | R300_TX_MIRRORED; case PIPE_TEX_WRAP_MIRROR_CLAMP: return R300_TX_CLAMP | R300_TX_MIRRORED; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return R300_TX_CLAMP_TO_EDGE | R300_TX_MIRRORED; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return R300_TX_CLAMP_TO_EDGE | R300_TX_MIRRORED; default: /* XXX handle this? */ return 0; } } static uint32_t translate_tex_filters(int min, int mag, int mip) { uint32_t retval = 0; switch (min) { case PIPE_TEX_FILTER_NEAREST: retval |= R300_TX_MIN_FILTER_NEAREST; case PIPE_TEX_FILTER_LINEAR: retval |= R300_TX_MIN_FILTER_LINEAR; case PIPE_TEX_FILTER_ANISO: retval |= R300_TX_MIN_FILTER_ANISO; default: /* XXX WTF?! */ break; } switch (mag) { case PIPE_TEX_FILTER_NEAREST: retval |= R300_TX_MAG_FILTER_NEAREST; case PIPE_TEX_FILTER_LINEAR: retval |= R300_TX_MAG_FILTER_LINEAR; case PIPE_TEX_FILTER_ANISO: retval |= R300_TX_MAG_FILTER_ANISO; default: /* XXX WTF?! */ break; } switch (mip) { case PIPE_TEX_MIPFILTER_NONE: retval |= R300_TX_MIN_FILTER_MIP_NONE; case PIPE_TEX_MIPFILTER_NEAREST: retval |= R300_TX_MIN_FILTER_MIP_NEAREST; case PIPE_TEX_MIPFILTER_LINEAR: retval |= R300_TX_MIN_FILTER_MIP_LINEAR; default: /* XXX WTF?! */ break; } return retval; } static uint32_t anisotropy(float max_aniso) { if (max_aniso >= 16.0f) { return R300_TX_MAX_ANISO_16_TO_1; } else if (max_aniso >= 8.0f) { return R300_TX_MAX_ANISO_8_TO_1; } else if (max_aniso >= 4.0f) { return R300_TX_MAX_ANISO_4_TO_1; } else if (max_aniso >= 2.0f) { return R300_TX_MAX_ANISO_2_TO_1; } else { return R300_TX_MAX_ANISO_1_TO_1; } } static void* r300_create_sampler_state(struct pipe_context* pipe, const struct pipe_sampler_state* state) { struct r300_context* r300 = r300_context(pipe); struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state); int lod_bias; sampler->filter0 |= (translate_wrap(state->wrap_s) << R300_TX_WRAP_S_SHIFT) | (translate_wrap(state->wrap_t) << R300_TX_WRAP_T_SHIFT) | (translate_wrap(state->wrap_r) << R300_TX_WRAP_R_SHIFT); sampler->filter0 |= translate_tex_filters(state->min_img_filter, state->mag_img_filter, state->min_mip_filter); lod_bias = CLAMP((int)(state->lod_bias * 32), -(1 << 9), (1 << 9) - 1); sampler->filter1 |= lod_bias << R300_LOD_BIAS_SHIFT; sampler->filter1 |= anisotropy(state->max_anisotropy); util_pack_color(state->border_color, PIPE_FORMAT_A8R8G8B8_UNORM, &sampler->border_color); /* R500-specific fixups and optimizations */ if (r300_screen(r300->context.screen)->caps->is_r500) { sampler->filter1 |= R500_BORDER_FIX; } return (void*)sampler; } static void r300_bind_sampler_states(struct pipe_context* pipe, unsigned count, void** states) { struct r300_context* r300 = r300_context(pipe); int i; if (count > 8) { return; } for (i = 0; i < count; i++) { if (r300->sampler_states[i] != states[i]) { r300->sampler_states[i] = (struct r300_sampler_state*)states[i]; r300->dirty_state |= (R300_NEW_SAMPLER << i); } } r300->sampler_count = count; } static void r300_delete_sampler_state(struct pipe_context* pipe, void* state) { FREE(state); } static void r300_set_sampler_textures(struct pipe_context* pipe, unsigned count, struct pipe_texture** texture) { struct r300_context* r300 = r300_context(pipe); int i; /* XXX magic num */ if (count > 8) { return; } for (i = 0; i < count; i++) { if (r300->textures[i] != (struct r300_texture*)texture[i]) { pipe_texture_reference((struct pipe_texture**)&r300->textures[i], texture[i]); /* XXX NEW_TEXTURE instead? */ r300->dirty_state |= (R300_NEW_SAMPLER << i); } } for (i = count; i < 8; i++) { /* XXX also state change? */ pipe_texture_reference((struct pipe_texture**)&r300->textures[i], NULL); } r300->texture_count = count; } static void r300_set_scissor_state(struct pipe_context* pipe, const struct pipe_scissor_state* state) { struct r300_context* r300 = r300_context(pipe); draw_flush(r300->draw); uint32_t left, top, right, bottom; /* So, a bit of info. The scissors are offset by R300_SCISSORS_OFFSET in * both directions for all values, and can only be 13 bits wide. Why? * We may never know. */ left = (state->minx + R300_SCISSORS_OFFSET) & 0x1fff; top = (state->miny + R300_SCISSORS_OFFSET) & 0x1fff; right = (state->maxx + R300_SCISSORS_OFFSET) & 0x1fff; bottom = (state->maxy + R300_SCISSORS_OFFSET) & 0x1fff; r300->scissor_state->scissor_top_left = (left << R300_SCISSORS_X_SHIFT) | (top << R300_SCISSORS_Y_SHIFT); r300->scissor_state->scissor_bottom_right = (right << R300_SCISSORS_X_SHIFT) | (bottom << R300_SCISSORS_Y_SHIFT); r300->dirty_state |= R300_NEW_SCISSOR; } static void r300_set_viewport_state(struct pipe_context* pipe, const struct pipe_viewport_state* state) { struct r300_context* r300 = r300_context(pipe); /* XXX handing this off to Draw for now */ draw_set_viewport_state(r300->draw, state); } static void r300_set_vertex_buffers(struct pipe_context* pipe, unsigned count, const struct pipe_vertex_buffer* buffers) { struct r300_context* r300 = r300_context(pipe); /* XXX Draw */ draw_flush(r300->draw); draw_set_vertex_buffers(r300->draw, count, buffers); } static void r300_set_vertex_elements(struct pipe_context* pipe, unsigned count, const struct pipe_vertex_element* elements) { struct r300_context* r300 = r300_context(pipe); /* XXX Draw */ draw_flush(r300->draw); draw_set_vertex_elements(r300->draw, count, elements); } static void* r300_create_vs_state(struct pipe_context* pipe, const struct pipe_shader_state* state) { struct r300_context* context = r300_context(pipe); /* XXX handing this off to Draw for now */ return draw_create_vertex_shader(context->draw, state); } static void r300_bind_vs_state(struct pipe_context* pipe, void* state) { struct r300_context* context = r300_context(pipe); /* XXX handing this off to Draw for now */ draw_bind_vertex_shader(context->draw, (struct draw_vertex_shader*)state); } static void r300_delete_vs_state(struct pipe_context* pipe, void* state) { struct r300_context* context = r300_context(pipe); /* XXX handing this off to Draw for now */ draw_delete_vertex_shader(context->draw, (struct draw_vertex_shader*)state); } void r300_init_state_functions(struct r300_context* r300) { r300->context.create_blend_state = r300_create_blend_state; r300->context.bind_blend_state = r300_bind_blend_state; r300->context.delete_blend_state = r300_delete_blend_state; r300->context.set_blend_color = r300_set_blend_color; r300->context.set_clip_state = r300_set_clip_state; r300->context.set_constant_buffer = r300_set_constant_buffer; r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state; r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state; r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state; r300->context.set_edgeflags = r300_set_edgeflags; r300->context.set_framebuffer_state = r300_set_framebuffer_state; r300->context.create_fs_state = r300_create_fs_state; r300->context.bind_fs_state = r300_bind_fs_state; r300->context.delete_fs_state = r300_delete_fs_state; r300->context.set_polygon_stipple = r300_set_polygon_stipple; r300->context.create_rasterizer_state = r300_create_rs_state; r300->context.bind_rasterizer_state = r300_bind_rs_state; r300->context.delete_rasterizer_state = r300_delete_rs_state; r300->context.create_sampler_state = r300_create_sampler_state; r300->context.bind_sampler_states = r300_bind_sampler_states; r300->context.delete_sampler_state = r300_delete_sampler_state; r300->context.set_sampler_textures = r300_set_sampler_textures; r300->context.set_scissor_state = r300_set_scissor_state; r300->context.set_viewport_state = r300_set_viewport_state; r300->context.set_vertex_buffers = r300_set_vertex_buffers; r300->context.set_vertex_elements = r300_set_vertex_elements; r300->context.create_vs_state = r300_create_vs_state; r300->context.bind_vs_state = r300_bind_vs_state; r300->context.delete_vs_state = r300_delete_vs_state; }