/* * Copyright (C) 2008 Nicolai Haehnle. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * @file * * Shareable transformations that transform "special" ALU instructions * into ALU instructions that are supported by hardware. * */ #include "radeon_program_alu.h" #include "radeon_compiler.h" #include "radeon_compiler_util.h" static struct rc_instruction *emit1( struct radeon_compiler * c, struct rc_instruction * after, rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg, struct rc_src_register SrcReg) { struct rc_instruction *fpi = rc_insert_new_instruction(c, after); fpi->U.I.Opcode = Opcode; fpi->U.I.SaturateMode = Saturate; fpi->U.I.DstReg = DstReg; fpi->U.I.SrcReg[0] = SrcReg; return fpi; } static struct rc_instruction *emit2( struct radeon_compiler * c, struct rc_instruction * after, rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg, struct rc_src_register SrcReg0, struct rc_src_register SrcReg1) { struct rc_instruction *fpi = rc_insert_new_instruction(c, after); fpi->U.I.Opcode = Opcode; fpi->U.I.SaturateMode = Saturate; fpi->U.I.DstReg = DstReg; fpi->U.I.SrcReg[0] = SrcReg0; fpi->U.I.SrcReg[1] = SrcReg1; return fpi; } static struct rc_instruction *emit3( struct radeon_compiler * c, struct rc_instruction * after, rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg, struct rc_src_register SrcReg0, struct rc_src_register SrcReg1, struct rc_src_register SrcReg2) { struct rc_instruction *fpi = rc_insert_new_instruction(c, after); fpi->U.I.Opcode = Opcode; fpi->U.I.SaturateMode = Saturate; fpi->U.I.DstReg = DstReg; fpi->U.I.SrcReg[0] = SrcReg0; fpi->U.I.SrcReg[1] = SrcReg1; fpi->U.I.SrcReg[2] = SrcReg2; return fpi; } static struct rc_dst_register dstregtmpmask(int index, int mask) { struct rc_dst_register dst = {0, 0, 0}; dst.File = RC_FILE_TEMPORARY; dst.Index = index; dst.WriteMask = mask; return dst; } static const struct rc_src_register builtin_zero = { .File = RC_FILE_NONE, .Index = 0, .Swizzle = RC_SWIZZLE_0000 }; static const struct rc_src_register builtin_one = { .File = RC_FILE_NONE, .Index = 0, .Swizzle = RC_SWIZZLE_1111 }; static const struct rc_src_register builtin_half = { .File = RC_FILE_NONE, .Index = 0, .Swizzle = RC_SWIZZLE_HHHH }; static const struct rc_src_register srcreg_undefined = { .File = RC_FILE_NONE, .Index = 0, .Swizzle = RC_SWIZZLE_XYZW }; static struct rc_src_register srcreg(int file, int index) { struct rc_src_register src = srcreg_undefined; src.File = file; src.Index = index; return src; } static struct rc_src_register srcregswz(int file, int index, int swz) { struct rc_src_register src = srcreg_undefined; src.File = file; src.Index = index; src.Swizzle = swz; return src; } static struct rc_src_register absolute(struct rc_src_register reg) { struct rc_src_register newreg = reg; newreg.Abs = 1; newreg.Negate = RC_MASK_NONE; return newreg; } static struct rc_src_register negate(struct rc_src_register reg) { struct rc_src_register newreg = reg; newreg.Negate = newreg.Negate ^ RC_MASK_XYZW; return newreg; } static struct rc_src_register swizzle(struct rc_src_register reg, rc_swizzle x, rc_swizzle y, rc_swizzle z, rc_swizzle w) { struct rc_src_register swizzled = reg; swizzled.Swizzle = combine_swizzles4(reg.Swizzle, x, y, z, w); return swizzled; } static struct rc_src_register swizzle_smear(struct rc_src_register reg, rc_swizzle x) { return swizzle(reg, x, x, x, x); } static struct rc_src_register swizzle_xxxx(struct rc_src_register reg) { return swizzle_smear(reg, RC_SWIZZLE_X); } static struct rc_src_register swizzle_yyyy(struct rc_src_register reg) { return swizzle_smear(reg, RC_SWIZZLE_Y); } static struct rc_src_register swizzle_zzzz(struct rc_src_register reg) { return swizzle_smear(reg, RC_SWIZZLE_Z); } static struct rc_src_register swizzle_wwww(struct rc_src_register reg) { return swizzle_smear(reg, RC_SWIZZLE_W); } static int is_dst_safe_to_reuse(struct rc_instruction *inst) { const struct rc_opcode_info *info = rc_get_opcode_info(inst->U.I.Opcode); unsigned i; assert(info->HasDstReg); if (inst->U.I.DstReg.File != RC_FILE_TEMPORARY) return 0; for (i = 0; i < info->NumSrcRegs; i++) { if (inst->U.I.SrcReg[i].File == RC_FILE_TEMPORARY && inst->U.I.SrcReg[i].Index == inst->U.I.DstReg.Index) return 0; } return 1; } static struct rc_dst_register try_to_reuse_dst(struct radeon_compiler *c, struct rc_instruction *inst) { unsigned tmp; if (is_dst_safe_to_reuse(inst)) tmp = inst->U.I.DstReg.Index; else tmp = rc_find_free_temporary(c); return dstregtmpmask(tmp, inst->U.I.DstReg.WriteMask); } static void transform_ABS(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_src_register src = inst->U.I.SrcReg[0]; src.Abs = 1; src.Negate = RC_MASK_NONE; emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode, inst->U.I.DstReg, src); rc_remove_instruction(inst); } static void transform_CEIL(struct radeon_compiler* c, struct rc_instruction* inst) { /* Assuming: * ceil(x) = -floor(-x) * * After inlining floor: * ceil(x) = -(-x-frac(-x)) * * After simplification: * ceil(x) = x+frac(-x) */ struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dst, negate(inst->U.I.SrcReg[0])); emit2(c, inst->Prev, RC_OPCODE_ADD, inst->U.I.SaturateMode, inst->U.I.DstReg, inst->U.I.SrcReg[0], srcreg(RC_FILE_TEMPORARY, dst.Index)); rc_remove_instruction(inst); } static void transform_CLAMP(struct radeon_compiler *c, struct rc_instruction *inst) { /* CLAMP dst, src, min, max * into: * MIN tmp, src, max * MAX dst, tmp, min */ struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_MIN, 0, dst, inst->U.I.SrcReg[0], inst->U.I.SrcReg[2]); emit2(c, inst->Prev, RC_OPCODE_MAX, inst->U.I.SaturateMode, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), inst->U.I.SrcReg[1]); rc_remove_instruction(inst); } static void transform_DP2(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_src_register src0 = inst->U.I.SrcReg[0]; struct rc_src_register src1 = inst->U.I.SrcReg[1]; src0.Negate &= ~(RC_MASK_Z | RC_MASK_W); src0.Swizzle &= ~(63 << (3 * 2)); src0.Swizzle |= (RC_SWIZZLE_ZERO << (3 * 2)) | (RC_SWIZZLE_ZERO << (3 * 3)); src1.Negate &= ~(RC_MASK_Z | RC_MASK_W); src1.Swizzle &= ~(63 << (3 * 2)); src1.Swizzle |= (RC_SWIZZLE_ZERO << (3 * 2)) | (RC_SWIZZLE_ZERO << (3 * 3)); emit2(c, inst->Prev, RC_OPCODE_DP3, inst->U.I.SaturateMode, inst->U.I.DstReg, src0, src1); rc_remove_instruction(inst); } static void transform_DPH(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_src_register src0 = inst->U.I.SrcReg[0]; src0.Negate &= ~RC_MASK_W; src0.Swizzle &= ~(7 << (3 * 3)); src0.Swizzle |= RC_SWIZZLE_ONE << (3 * 3); emit2(c, inst->Prev, RC_OPCODE_DP4, inst->U.I.SaturateMode, inst->U.I.DstReg, src0, inst->U.I.SrcReg[1]); rc_remove_instruction(inst); } /** * [1, src0.y*src1.y, src0.z, src1.w] * So basically MUL with lotsa swizzling. */ static void transform_DST(struct radeon_compiler* c, struct rc_instruction* inst) { emit2(c, inst->Prev, RC_OPCODE_MUL, inst->U.I.SaturateMode, inst->U.I.DstReg, swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_ONE, RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_ONE), swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_ONE, RC_SWIZZLE_Y, RC_SWIZZLE_ONE, RC_SWIZZLE_W)); rc_remove_instruction(inst); } static void transform_FLR(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dst, inst->U.I.SrcReg[0]); emit2(c, inst->Prev, RC_OPCODE_ADD, inst->U.I.SaturateMode, inst->U.I.DstReg, inst->U.I.SrcReg[0], negate(srcreg(RC_FILE_TEMPORARY, dst.Index))); rc_remove_instruction(inst); } /** * Definition of LIT (from ARB_fragment_program): * * tmp = VectorLoad(op0); * if (tmp.x < 0) tmp.x = 0; * if (tmp.y < 0) tmp.y = 0; * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon); * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon; * result.x = 1.0; * result.y = tmp.x; * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0; * result.w = 1.0; * * The longest path of computation is the one leading to result.z, * consisting of 5 operations. This implementation of LIT takes * 5 slots, if the subsequent optimization passes are clever enough * to pair instructions correctly. */ static void transform_LIT(struct radeon_compiler* c, struct rc_instruction* inst) { unsigned int constant; unsigned int constant_swizzle; unsigned int temp; struct rc_src_register srctemp; constant = rc_constants_add_immediate_scalar(&c->Program.Constants, -127.999999, &constant_swizzle); if (inst->U.I.DstReg.WriteMask != RC_MASK_XYZW || inst->U.I.DstReg.File != RC_FILE_TEMPORARY) { struct rc_instruction * inst_mov; inst_mov = emit1(c, inst, RC_OPCODE_MOV, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, rc_find_free_temporary(c))); inst->U.I.DstReg.File = RC_FILE_TEMPORARY; inst->U.I.DstReg.Index = inst_mov->U.I.SrcReg[0].Index; inst->U.I.DstReg.WriteMask = RC_MASK_XYZW; } temp = inst->U.I.DstReg.Index; srctemp = srcreg(RC_FILE_TEMPORARY, temp); /* tmp.x = max(0.0, Src.x); */ /* tmp.y = max(0.0, Src.y); */ /* tmp.w = clamp(Src.z, -128+eps, 128-eps); */ emit2(c, inst->Prev, RC_OPCODE_MAX, 0, dstregtmpmask(temp, RC_MASK_XYW), inst->U.I.SrcReg[0], swizzle(srcreg(RC_FILE_CONSTANT, constant), RC_SWIZZLE_ZERO, RC_SWIZZLE_ZERO, RC_SWIZZLE_ZERO, constant_swizzle&3)); emit2(c, inst->Prev, RC_OPCODE_MIN, 0, dstregtmpmask(temp, RC_MASK_Z), swizzle_wwww(srctemp), negate(srcregswz(RC_FILE_CONSTANT, constant, constant_swizzle))); /* tmp.w = Pow(tmp.y, tmp.w) */ emit1(c, inst->Prev, RC_OPCODE_LG2, 0, dstregtmpmask(temp, RC_MASK_W), swizzle_yyyy(srctemp)); emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dstregtmpmask(temp, RC_MASK_W), swizzle_wwww(srctemp), swizzle_zzzz(srctemp)); emit1(c, inst->Prev, RC_OPCODE_EX2, 0, dstregtmpmask(temp, RC_MASK_W), swizzle_wwww(srctemp)); /* tmp.z = (tmp.x > 0) ? tmp.w : 0.0 */ emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, dstregtmpmask(temp, RC_MASK_Z), negate(swizzle_xxxx(srctemp)), swizzle_wwww(srctemp), builtin_zero); /* tmp.x, tmp.y, tmp.w = 1.0, tmp.x, 1.0 */ emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode, dstregtmpmask(temp, RC_MASK_XYW), swizzle(srctemp, RC_SWIZZLE_ONE, RC_SWIZZLE_X, RC_SWIZZLE_ONE, RC_SWIZZLE_ONE)); rc_remove_instruction(inst); } static void transform_LRP(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, inst->U.I.SrcReg[1], negate(inst->U.I.SrcReg[2])); emit3(c, inst->Prev, RC_OPCODE_MAD, inst->U.I.SaturateMode, inst->U.I.DstReg, inst->U.I.SrcReg[0], srcreg(RC_FILE_TEMPORARY, dst.Index), inst->U.I.SrcReg[2]); rc_remove_instruction(inst); } static void transform_POW(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register tempdst = try_to_reuse_dst(c, inst); struct rc_src_register tempsrc = srcreg(RC_FILE_TEMPORARY, tempdst.Index); tempdst.WriteMask = RC_MASK_W; tempsrc.Swizzle = RC_SWIZZLE_WWWW; emit1(c, inst->Prev, RC_OPCODE_LG2, 0, tempdst, swizzle_xxxx(inst->U.I.SrcReg[0])); emit2(c, inst->Prev, RC_OPCODE_MUL, 0, tempdst, tempsrc, swizzle_xxxx(inst->U.I.SrcReg[1])); emit1(c, inst->Prev, RC_OPCODE_EX2, inst->U.I.SaturateMode, inst->U.I.DstReg, tempsrc); rc_remove_instruction(inst); } /* dst = ROUND(src) : * add = src + .5 * frac = FRC(add) * dst = add - frac * * According to the GLSL spec, the implementor can decide which way to round * when the fraction is .5. We round down for .5. * */ static void transform_ROUND(struct radeon_compiler* c, struct rc_instruction* inst) { unsigned int mask = inst->U.I.DstReg.WriteMask; unsigned int frac_index, add_index; struct rc_dst_register frac_dst, add_dst; struct rc_src_register frac_src, add_src; /* add = src + .5 */ add_index = rc_find_free_temporary(c); add_dst = dstregtmpmask(add_index, mask); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, add_dst, inst->U.I.SrcReg[0], builtin_half); add_src = srcreg(RC_FILE_TEMPORARY, add_dst.Index); /* frac = FRC(add) */ frac_index = rc_find_free_temporary(c); frac_dst = dstregtmpmask(frac_index, mask); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, frac_dst, add_src); frac_src = srcreg(RC_FILE_TEMPORARY, frac_dst.Index); /* dst = add - frac */ emit2(c, inst->Prev, RC_OPCODE_ADD, 0, inst->U.I.DstReg, add_src, negate(frac_src)); rc_remove_instruction(inst); } static void transform_RSQ(struct radeon_compiler* c, struct rc_instruction* inst) { inst->U.I.SrcReg[0] = absolute(inst->U.I.SrcReg[0]); } static void transform_SEQ(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1])); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, negate(absolute(srcreg(RC_FILE_TEMPORARY, dst.Index))), builtin_zero, builtin_one); rc_remove_instruction(inst); } static void transform_SFL(struct radeon_compiler* c, struct rc_instruction* inst) { emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode, inst->U.I.DstReg, builtin_zero); rc_remove_instruction(inst); } static void transform_SGE(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1])); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), builtin_zero, builtin_one); rc_remove_instruction(inst); } static void transform_SGT(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, negate(inst->U.I.SrcReg[0]), inst->U.I.SrcReg[1]); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), builtin_one, builtin_zero); rc_remove_instruction(inst); } static void transform_SLE(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, negate(inst->U.I.SrcReg[0]), inst->U.I.SrcReg[1]); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), builtin_zero, builtin_one); rc_remove_instruction(inst); } static void transform_SLT(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1])); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), builtin_one, builtin_zero); rc_remove_instruction(inst); } static void transform_SNE(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1])); emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg, negate(absolute(srcreg(RC_FILE_TEMPORARY, dst.Index))), builtin_one, builtin_zero); rc_remove_instruction(inst); } static void transform_SSG(struct radeon_compiler* c, struct rc_instruction* inst) { /* result = sign(x) * * CMP tmp0, -x, 1, 0 * CMP tmp1, x, 1, 0 * ADD result, tmp0, -tmp1; */ struct rc_dst_register dst0; unsigned tmp1; /* 0 < x */ dst0 = try_to_reuse_dst(c, inst); emit3(c, inst->Prev, RC_OPCODE_CMP, 0, dst0, negate(inst->U.I.SrcReg[0]), builtin_one, builtin_zero); /* x < 0 */ tmp1 = rc_find_free_temporary(c); emit3(c, inst->Prev, RC_OPCODE_CMP, 0, dstregtmpmask(tmp1, inst->U.I.DstReg.WriteMask), inst->U.I.SrcReg[0], builtin_one, builtin_zero); /* Either both are zero, or one of them is one and the other is zero. */ /* result = tmp0 - tmp1 */ emit2(c, inst->Prev, RC_OPCODE_ADD, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst0.Index), negate(srcreg(RC_FILE_TEMPORARY, tmp1))); rc_remove_instruction(inst); } static void transform_SUB(struct radeon_compiler* c, struct rc_instruction* inst) { inst->U.I.Opcode = RC_OPCODE_ADD; inst->U.I.SrcReg[1] = negate(inst->U.I.SrcReg[1]); } static void transform_SWZ(struct radeon_compiler* c, struct rc_instruction* inst) { inst->U.I.Opcode = RC_OPCODE_MOV; } static void transform_XPD(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dst, swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_W), swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_W)); emit3(c, inst->Prev, RC_OPCODE_MAD, inst->U.I.SaturateMode, inst->U.I.DstReg, swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_W), swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_W), negate(srcreg(RC_FILE_TEMPORARY, dst.Index))); rc_remove_instruction(inst); } /** * Can be used as a transformation for @ref radeonClauseLocalTransform, * no userData necessary. * * Eliminates the following ALU instructions: * ABS, CEIL, DPH, DST, FLR, LIT, LRP, POW, SEQ, SFL, SGE, SGT, SLE, SLT, SNE, SUB, SWZ, XPD * using: * MOV, ADD, MUL, MAD, FRC, DP3, LG2, EX2, CMP * * Transforms RSQ to Radeon's native RSQ by explicitly setting * absolute value. * * @note should be applicable to R300 and R500 fragment programs. */ int radeonTransformALU( struct radeon_compiler * c, struct rc_instruction* inst, void* unused) { switch(inst->U.I.Opcode) { case RC_OPCODE_ABS: transform_ABS(c, inst); return 1; case RC_OPCODE_CEIL: transform_CEIL(c, inst); return 1; case RC_OPCODE_CLAMP: transform_CLAMP(c, inst); return 1; case RC_OPCODE_DP2: transform_DP2(c, inst); return 1; case RC_OPCODE_DPH: transform_DPH(c, inst); return 1; case RC_OPCODE_DST: transform_DST(c, inst); return 1; case RC_OPCODE_FLR: transform_FLR(c, inst); return 1; case RC_OPCODE_LIT: transform_LIT(c, inst); return 1; case RC_OPCODE_LRP: transform_LRP(c, inst); return 1; case RC_OPCODE_POW: transform_POW(c, inst); return 1; case RC_OPCODE_ROUND: transform_ROUND(c, inst); return 1; case RC_OPCODE_RSQ: transform_RSQ(c, inst); return 1; case RC_OPCODE_SEQ: transform_SEQ(c, inst); return 1; case RC_OPCODE_SFL: transform_SFL(c, inst); return 1; case RC_OPCODE_SGE: transform_SGE(c, inst); return 1; case RC_OPCODE_SGT: transform_SGT(c, inst); return 1; case RC_OPCODE_SLE: transform_SLE(c, inst); return 1; case RC_OPCODE_SLT: transform_SLT(c, inst); return 1; case RC_OPCODE_SNE: transform_SNE(c, inst); return 1; case RC_OPCODE_SSG: transform_SSG(c, inst); return 1; case RC_OPCODE_SUB: transform_SUB(c, inst); return 1; case RC_OPCODE_SWZ: transform_SWZ(c, inst); return 1; case RC_OPCODE_XPD: transform_XPD(c, inst); return 1; default: return 0; } } static void transform_r300_vertex_ABS(struct radeon_compiler* c, struct rc_instruction* inst) { /* Note: r500 can take absolute values, but r300 cannot. */ inst->U.I.Opcode = RC_OPCODE_MAX; inst->U.I.SrcReg[1] = inst->U.I.SrcReg[0]; inst->U.I.SrcReg[1].Negate ^= RC_MASK_XYZW; } static void transform_r300_vertex_CMP(struct radeon_compiler* c, struct rc_instruction* inst) { /* There is no decent CMP available, so let's rig one up. * CMP is defined as dst = src0 < 0.0 ? src1 : src2 * The following sequence consumes zero to two temps and two extra slots * (the second temp and the second slot is consumed by transform_LRP), * but should be equivalent: * * SLT tmp0, src0, 0.0 * LRP dst, tmp0, src1, src2 * * Yes, I know, I'm a mad scientist. ~ C. & M. */ struct rc_dst_register dst = try_to_reuse_dst(c, inst); /* SLT tmp0, src0, 0.0 */ emit2(c, inst->Prev, RC_OPCODE_SLT, 0, dst, inst->U.I.SrcReg[0], builtin_zero); /* LRP dst, tmp0, src1, src2 */ transform_LRP(c, emit3(c, inst->Prev, RC_OPCODE_LRP, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst.Index), inst->U.I.SrcReg[1], inst->U.I.SrcReg[2])); rc_remove_instruction(inst); } static void transform_r300_vertex_DP2(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_instruction *next_inst = inst->Next; transform_DP2(c, inst); next_inst->Prev->U.I.Opcode = RC_OPCODE_DP4; } static void transform_r300_vertex_DP3(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_src_register src0 = inst->U.I.SrcReg[0]; struct rc_src_register src1 = inst->U.I.SrcReg[1]; src0.Negate &= ~RC_MASK_W; src0.Swizzle &= ~(7 << (3 * 3)); src0.Swizzle |= RC_SWIZZLE_ZERO << (3 * 3); src1.Negate &= ~RC_MASK_W; src1.Swizzle &= ~(7 << (3 * 3)); src1.Swizzle |= RC_SWIZZLE_ZERO << (3 * 3); emit2(c, inst->Prev, RC_OPCODE_DP4, inst->U.I.SaturateMode, inst->U.I.DstReg, src0, src1); rc_remove_instruction(inst); } static void transform_r300_vertex_fix_LIT(struct radeon_compiler* c, struct rc_instruction* inst) { struct rc_dst_register dst = try_to_reuse_dst(c, inst); unsigned constant_swizzle; int constant = rc_constants_add_immediate_scalar(&c->Program.Constants, 0.0000000000000000001, &constant_swizzle); /* MOV dst, src */ dst.WriteMask = RC_MASK_XYZW; emit1(c, inst->Prev, RC_OPCODE_MOV, 0, dst, inst->U.I.SrcReg[0]); /* MAX dst.y, src, 0.00...001 */ emit2(c, inst->Prev, RC_OPCODE_MAX, 0, dstregtmpmask(dst.Index, RC_MASK_Y), srcreg(RC_FILE_TEMPORARY, dst.Index), srcregswz(RC_FILE_CONSTANT, constant, constant_swizzle)); inst->U.I.SrcReg[0] = srcreg(RC_FILE_TEMPORARY, dst.Index); } static void transform_r300_vertex_SEQ(struct radeon_compiler *c, struct rc_instruction *inst) { /* x = y <==> x >= y && y >= x */ int tmp = rc_find_free_temporary(c); /* x <= y */ emit2(c, inst->Prev, RC_OPCODE_SGE, 0, dstregtmpmask(tmp, inst->U.I.DstReg.WriteMask), inst->U.I.SrcReg[0], inst->U.I.SrcReg[1]); /* y <= x */ emit2(c, inst->Prev, RC_OPCODE_SGE, 0, inst->U.I.DstReg, inst->U.I.SrcReg[1], inst->U.I.SrcReg[0]); /* x && y = x * y */ emit2(c, inst->Prev, RC_OPCODE_MUL, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, tmp), srcreg(inst->U.I.DstReg.File, inst->U.I.DstReg.Index)); rc_remove_instruction(inst); } static void transform_r300_vertex_SNE(struct radeon_compiler *c, struct rc_instruction *inst) { /* x != y <==> x < y || y < x */ int tmp = rc_find_free_temporary(c); /* x < y */ emit2(c, inst->Prev, RC_OPCODE_SLT, 0, dstregtmpmask(tmp, inst->U.I.DstReg.WriteMask), inst->U.I.SrcReg[0], inst->U.I.SrcReg[1]); /* y < x */ emit2(c, inst->Prev, RC_OPCODE_SLT, 0, inst->U.I.DstReg, inst->U.I.SrcReg[1], inst->U.I.SrcReg[0]); /* x || y = max(x, y) */ emit2(c, inst->Prev, RC_OPCODE_MAX, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, tmp), srcreg(inst->U.I.DstReg.File, inst->U.I.DstReg.Index)); rc_remove_instruction(inst); } static void transform_r300_vertex_SGT(struct radeon_compiler* c, struct rc_instruction* inst) { /* x > y <==> -x < -y */ inst->U.I.Opcode = RC_OPCODE_SLT; inst->U.I.SrcReg[0].Negate ^= RC_MASK_XYZW; inst->U.I.SrcReg[1].Negate ^= RC_MASK_XYZW; } static void transform_r300_vertex_SLE(struct radeon_compiler* c, struct rc_instruction* inst) { /* x <= y <==> -x >= -y */ inst->U.I.Opcode = RC_OPCODE_SGE; inst->U.I.SrcReg[0].Negate ^= RC_MASK_XYZW; inst->U.I.SrcReg[1].Negate ^= RC_MASK_XYZW; } static void transform_r300_vertex_SSG(struct radeon_compiler* c, struct rc_instruction* inst) { /* result = sign(x) * * SLT tmp0, 0, x; * SLT tmp1, x, 0; * ADD result, tmp0, -tmp1; */ struct rc_dst_register dst0 = try_to_reuse_dst(c, inst); unsigned tmp1; /* 0 < x */ dst0 = try_to_reuse_dst(c, inst); emit2(c, inst->Prev, RC_OPCODE_SLT, 0, dst0, builtin_zero, inst->U.I.SrcReg[0]); /* x < 0 */ tmp1 = rc_find_free_temporary(c); emit2(c, inst->Prev, RC_OPCODE_SLT, 0, dstregtmpmask(tmp1, inst->U.I.DstReg.WriteMask), inst->U.I.SrcReg[0], builtin_zero); /* Either both are zero, or one of them is one and the other is zero. */ /* result = tmp0 - tmp1 */ emit2(c, inst->Prev, RC_OPCODE_ADD, 0, inst->U.I.DstReg, srcreg(RC_FILE_TEMPORARY, dst0.Index), negate(srcreg(RC_FILE_TEMPORARY, tmp1))); rc_remove_instruction(inst); } /** * For use with rc_local_transform, this transforms non-native ALU * instructions of the r300 up to r500 vertex engine. */ int r300_transform_vertex_alu( struct radeon_compiler * c, struct rc_instruction* inst, void* unused) { switch(inst->U.I.Opcode) { case RC_OPCODE_ABS: transform_r300_vertex_ABS(c, inst); return 1; case RC_OPCODE_CEIL: transform_CEIL(c, inst); return 1; case RC_OPCODE_CLAMP: transform_CLAMP(c, inst); return 1; case RC_OPCODE_CMP: transform_r300_vertex_CMP(c, inst); return 1; case RC_OPCODE_DP2: transform_r300_vertex_DP2(c, inst); return 1; case RC_OPCODE_DP3: transform_r300_vertex_DP3(c, inst); return 1; case RC_OPCODE_DPH: transform_DPH(c, inst); return 1; case RC_OPCODE_FLR: transform_FLR(c, inst); return 1; case RC_OPCODE_LIT: transform_r300_vertex_fix_LIT(c, inst); return 1; case RC_OPCODE_LRP: transform_LRP(c, inst); return 1; case RC_OPCODE_SEQ: if (!c->is_r500) { transform_r300_vertex_SEQ(c, inst); return 1; } return 0; case RC_OPCODE_SFL: transform_SFL(c, inst); return 1; case RC_OPCODE_SGT: transform_r300_vertex_SGT(c, inst); return 1; case RC_OPCODE_SLE: transform_r300_vertex_SLE(c, inst); return 1; case RC_OPCODE_SNE: if (!c->is_r500) { transform_r300_vertex_SNE(c, inst); return 1; } return 0; case RC_OPCODE_SSG: transform_r300_vertex_SSG(c, inst); return 1; case RC_OPCODE_SUB: transform_SUB(c, inst); return 1; case RC_OPCODE_SWZ: transform_SWZ(c, inst); return 1; case RC_OPCODE_XPD: transform_XPD(c, inst); return 1; default: return 0; } } static void sincos_constants(struct radeon_compiler* c, unsigned int *constants) { static const float SinCosConsts[2][4] = { { 1.273239545, /* 4/PI */ -0.405284735, /* -4/(PI*PI) */ 3.141592654, /* PI */ 0.2225 /* weight */ }, { 0.75, 0.5, 0.159154943, /* 1/(2*PI) */ 6.283185307 /* 2*PI */ } }; int i; for(i = 0; i < 2; ++i) constants[i] = rc_constants_add_immediate_vec4(&c->Program.Constants, SinCosConsts[i]); } /** * Approximate sin(x), where x is clamped to (-pi/2, pi/2). * * MUL tmp.xy, src, { 4/PI, -4/(PI^2) } * MAD tmp.x, tmp.y, |src|, tmp.x * MAD tmp.y, tmp.x, |tmp.x|, -tmp.x * MAD dest, tmp.y, weight, tmp.x */ static void sin_approx( struct radeon_compiler* c, struct rc_instruction * inst, struct rc_dst_register dst, struct rc_src_register src, const unsigned int* constants) { unsigned int tempreg = rc_find_free_temporary(c); emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dstregtmpmask(tempreg, RC_MASK_XY), swizzle_xxxx(src), srcreg(RC_FILE_CONSTANT, constants[0])); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_X), swizzle_yyyy(srcreg(RC_FILE_TEMPORARY, tempreg)), absolute(swizzle_xxxx(src)), swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg))); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_Y), swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg)), absolute(swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg))), negate(swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg)))); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dst, swizzle_yyyy(srcreg(RC_FILE_TEMPORARY, tempreg)), swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[0])), swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg))); } /** * Translate the trigonometric functions COS, SIN, and SCS * using only the basic instructions * MOV, ADD, MUL, MAD, FRC */ int r300_transform_trig_simple(struct radeon_compiler* c, struct rc_instruction* inst, void* unused) { unsigned int constants[2]; unsigned int tempreg; if (inst->U.I.Opcode != RC_OPCODE_COS && inst->U.I.Opcode != RC_OPCODE_SIN && inst->U.I.Opcode != RC_OPCODE_SCS) return 0; tempreg = rc_find_free_temporary(c); sincos_constants(c, constants); if (inst->U.I.Opcode == RC_OPCODE_COS) { /* MAD tmp.x, src, 1/(2*PI), 0.75 */ /* FRC tmp.x, tmp.x */ /* MAD tmp.z, tmp.x, 2*PI, -PI */ emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_xxxx(inst->U.I.SrcReg[0]), swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])), swizzle_xxxx(srcreg(RC_FILE_CONSTANT, constants[1]))); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg))); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)), swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])), negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0])))); sin_approx(c, inst, inst->U.I.DstReg, swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)), constants); } else if (inst->U.I.Opcode == RC_OPCODE_SIN) { emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_xxxx(inst->U.I.SrcReg[0]), swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])), swizzle_yyyy(srcreg(RC_FILE_CONSTANT, constants[1]))); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg))); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W), swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)), swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])), negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0])))); sin_approx(c, inst, inst->U.I.DstReg, swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)), constants); } else { struct rc_dst_register dst; emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY), swizzle_xxxx(inst->U.I.SrcReg[0]), swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])), swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_W)); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_XY), srcreg(RC_FILE_TEMPORARY, tempreg)); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY), srcreg(RC_FILE_TEMPORARY, tempreg), swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])), negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0])))); dst = inst->U.I.DstReg; dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_X; sin_approx(c, inst, dst, swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg)), constants); dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_Y; sin_approx(c, inst, dst, swizzle_yyyy(srcreg(RC_FILE_TEMPORARY, tempreg)), constants); } rc_remove_instruction(inst); return 1; } static void r300_transform_SIN_COS_SCS(struct radeon_compiler *c, struct rc_instruction *inst, unsigned srctmp) { if (inst->U.I.Opcode == RC_OPCODE_COS) { emit1(c, inst->Prev, RC_OPCODE_COS, inst->U.I.SaturateMode, inst->U.I.DstReg, srcregswz(RC_FILE_TEMPORARY, srctmp, RC_SWIZZLE_WWWW)); } else if (inst->U.I.Opcode == RC_OPCODE_SIN) { emit1(c, inst->Prev, RC_OPCODE_SIN, inst->U.I.SaturateMode, inst->U.I.DstReg, srcregswz(RC_FILE_TEMPORARY, srctmp, RC_SWIZZLE_WWWW)); } else if (inst->U.I.Opcode == RC_OPCODE_SCS) { struct rc_dst_register moddst = inst->U.I.DstReg; if (inst->U.I.DstReg.WriteMask & RC_MASK_X) { moddst.WriteMask = RC_MASK_X; emit1(c, inst->Prev, RC_OPCODE_COS, inst->U.I.SaturateMode, moddst, srcregswz(RC_FILE_TEMPORARY, srctmp, RC_SWIZZLE_WWWW)); } if (inst->U.I.DstReg.WriteMask & RC_MASK_Y) { moddst.WriteMask = RC_MASK_Y; emit1(c, inst->Prev, RC_OPCODE_SIN, inst->U.I.SaturateMode, moddst, srcregswz(RC_FILE_TEMPORARY, srctmp, RC_SWIZZLE_WWWW)); } } rc_remove_instruction(inst); } /** * Transform the trigonometric functions COS, SIN, and SCS * to include pre-scaling by 1/(2*PI) and taking the fractional * part, so that the input to COS and SIN is always in the range [0,1). * SCS is replaced by one COS and one SIN instruction. * * @warning This transformation implicitly changes the semantics of SIN and COS! */ int radeonTransformTrigScale(struct radeon_compiler* c, struct rc_instruction* inst, void* unused) { static const float RCP_2PI = 0.15915494309189535; unsigned int temp; unsigned int constant; unsigned int constant_swizzle; if (inst->U.I.Opcode != RC_OPCODE_COS && inst->U.I.Opcode != RC_OPCODE_SIN && inst->U.I.Opcode != RC_OPCODE_SCS) return 0; temp = rc_find_free_temporary(c); constant = rc_constants_add_immediate_scalar(&c->Program.Constants, RCP_2PI, &constant_swizzle); emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dstregtmpmask(temp, RC_MASK_W), swizzle_xxxx(inst->U.I.SrcReg[0]), srcregswz(RC_FILE_CONSTANT, constant, constant_swizzle)); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(temp, RC_MASK_W), srcreg(RC_FILE_TEMPORARY, temp)); r300_transform_SIN_COS_SCS(c, inst, temp); return 1; } /** * Transform the trigonometric functions COS, SIN, and SCS * so that the input to COS and SIN is always in the range [-PI, PI]. * SCS is replaced by one COS and one SIN instruction. */ int r300_transform_trig_scale_vertex(struct radeon_compiler *c, struct rc_instruction *inst, void *unused) { static const float cons[4] = {0.15915494309189535, 0.5, 6.28318530717959, -3.14159265358979}; unsigned int temp; unsigned int constant; if (inst->U.I.Opcode != RC_OPCODE_COS && inst->U.I.Opcode != RC_OPCODE_SIN && inst->U.I.Opcode != RC_OPCODE_SCS) return 0; /* Repeat x in the range [-PI, PI]: * * repeat(x) = frac(x / 2PI + 0.5) * 2PI - PI */ temp = rc_find_free_temporary(c); constant = rc_constants_add_immediate_vec4(&c->Program.Constants, cons); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(temp, RC_MASK_W), swizzle_xxxx(inst->U.I.SrcReg[0]), srcregswz(RC_FILE_CONSTANT, constant, RC_SWIZZLE_XXXX), srcregswz(RC_FILE_CONSTANT, constant, RC_SWIZZLE_YYYY)); emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(temp, RC_MASK_W), srcreg(RC_FILE_TEMPORARY, temp)); emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(temp, RC_MASK_W), srcreg(RC_FILE_TEMPORARY, temp), srcregswz(RC_FILE_CONSTANT, constant, RC_SWIZZLE_ZZZZ), srcregswz(RC_FILE_CONSTANT, constant, RC_SWIZZLE_WWWW)); r300_transform_SIN_COS_SCS(c, inst, temp); return 1; } /** * Rewrite DDX/DDY instructions to properly work with r5xx shaders. * The r5xx MDH/MDV instruction provides per-quad partial derivatives. * It takes the form A*B+C. A and C are set by setting src0. B should be -1. * * @warning This explicitly changes the form of DDX and DDY! */ int radeonTransformDeriv(struct radeon_compiler* c, struct rc_instruction* inst, void* unused) { if (inst->U.I.Opcode != RC_OPCODE_DDX && inst->U.I.Opcode != RC_OPCODE_DDY) return 0; inst->U.I.SrcReg[1].Swizzle = RC_SWIZZLE_1111; inst->U.I.SrcReg[1].Negate = RC_MASK_XYZW; return 1; } /** * IF Temp[0].x -> IF Temp[0].x * ... -> ... * KILP -> KIL -abs(Temp[0].x) * ... -> ... * ENDIF -> ENDIF * * === OR === * * IF Temp[0].x -\ * KILP - > KIL -abs(Temp[0].x) * ENDIF -/ * * === OR === * * IF Temp[0].x -> IF Temp[0].x * ... -> ... * ELSE -> ELSE * ... -> ... * KILP -> KIL -abs(Temp[0].x) * ... -> ... * ENDIF -> ENDIF * * === OR === * * KILP -> KIL -none.1111 * * This needs to be done in its own pass, because it might modify the * instructions before and after KILP. */ void rc_transform_KILP(struct radeon_compiler * c, void *user) { struct rc_instruction * inst; for (inst = c->Program.Instructions.Next; inst != &c->Program.Instructions; inst = inst->Next) { struct rc_instruction * if_inst; unsigned in_if = 0; if (inst->U.I.Opcode != RC_OPCODE_KILP) continue; for (if_inst = inst->Prev; if_inst != &c->Program.Instructions; if_inst = if_inst->Prev) { if (if_inst->U.I.Opcode == RC_OPCODE_IF) { in_if = 1; break; } } inst->U.I.Opcode = RC_OPCODE_KIL; if (!in_if) { inst->U.I.SrcReg[0] = negate(builtin_one); } else { /* This should work even if the KILP is inside the ELSE * block, because -0.0 is considered negative. */ inst->U.I.SrcReg[0] = negate(absolute(if_inst->U.I.SrcReg[0])); if (inst->Prev->U.I.Opcode != RC_OPCODE_IF && inst->Next->U.I.Opcode != RC_OPCODE_ENDIF) { /* Optimize the special case: * IF Temp[0].x * KILP * ENDIF */ /* Remove IF */ rc_remove_instruction(inst->Prev); /* Remove ENDIF */ rc_remove_instruction(inst->Next); } } } }