/* * Copyright (C) 2019 Alyssa Rosenzweig * Copyright (C) 2014-2017 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include "drm-uapi/panfrost_drm.h" #include "pan_bo.h" #include "pan_context.h" #include "util/hash_table.h" #include "util/ralloc.h" #include "util/format/u_format.h" #include "util/u_pack_color.h" #include "util/rounding.h" #include "pan_util.h" #include "pandecode/decode.h" #include "panfrost-quirks.h" /* panfrost_bo_access is here to help us keep track of batch accesses to BOs * and build a proper dependency graph such that batches can be pipelined for * better GPU utilization. * * Each accessed BO has a corresponding entry in the ->accessed_bos hash table. * A BO is either being written or read at any time, that's what the type field * encodes. * When the last access is a write, the batch writing the BO might have read * dependencies (readers that have not been executed yet and want to read the * previous BO content), and when the last access is a read, all readers might * depend on another batch to push its results to memory. That's what the * readers/writers keep track off. * There can only be one writer at any given time, if a new batch wants to * write to the same BO, a dependency will be added between the new writer and * the old writer (at the batch level), and panfrost_bo_access->writer will be * updated to point to the new writer. */ struct panfrost_bo_access { uint32_t type; struct util_dynarray readers; struct panfrost_batch_fence *writer; }; static struct panfrost_batch_fence * panfrost_create_batch_fence(struct panfrost_batch *batch) { struct panfrost_batch_fence *fence; ASSERTED int ret; fence = rzalloc(NULL, struct panfrost_batch_fence); assert(fence); pipe_reference_init(&fence->reference, 1); fence->ctx = batch->ctx; fence->batch = batch; ret = drmSyncobjCreate(pan_device(batch->ctx->base.screen)->fd, 0, &fence->syncobj); assert(!ret); return fence; } static void panfrost_free_batch_fence(struct panfrost_batch_fence *fence) { drmSyncobjDestroy(pan_device(fence->ctx->base.screen)->fd, fence->syncobj); ralloc_free(fence); } void panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence) { if (pipe_reference(&fence->reference, NULL)) panfrost_free_batch_fence(fence); } void panfrost_batch_fence_reference(struct panfrost_batch_fence *fence) { pipe_reference(NULL, &fence->reference); } static struct panfrost_batch * panfrost_create_batch(struct panfrost_context *ctx, const struct pipe_framebuffer_state *key) { struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch); batch->ctx = ctx; batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer, _mesa_key_pointer_equal); batch->minx = batch->miny = ~0; batch->maxx = batch->maxy = 0; batch->transient_offset = 0; batch->out_sync = panfrost_create_batch_fence(batch); util_copy_framebuffer_state(&batch->key, key); return batch; } static void panfrost_freeze_batch(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct hash_entry *entry; /* Remove the entry in the FBO -> batch hash table if the batch * matches. This way, next draws/clears targeting this FBO will trigger * the creation of a new batch. */ entry = _mesa_hash_table_search(ctx->batches, &batch->key); if (entry && entry->data == batch) _mesa_hash_table_remove(ctx->batches, entry); /* If this is the bound batch, the panfrost_context parameters are * relevant so submitting it invalidates those parameters, but if it's * not bound, the context parameters are for some other batch so we * can't invalidate them. */ if (ctx->batch == batch) { panfrost_invalidate_frame(ctx); ctx->batch = NULL; } } #ifdef PAN_BATCH_DEBUG static bool panfrost_batch_is_frozen(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->batches, &batch->key); if (entry && entry->data == batch) return false; if (ctx->batch == batch) return false; return true; } #endif static void panfrost_free_batch(struct panfrost_batch *batch) { if (!batch) return; #ifdef PAN_BATCH_DEBUG assert(panfrost_batch_is_frozen(batch)); #endif hash_table_foreach(batch->bos, entry) panfrost_bo_unreference((struct panfrost_bo *)entry->key); util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { panfrost_batch_fence_unreference(*dep); } /* The out_sync fence lifetime is different from the the batch one * since other batches might want to wait on a fence of already * submitted/signaled batch. All we need to do here is make sure the * fence does not point to an invalid batch, which the core will * interpret as 'batch is already submitted'. */ batch->out_sync->batch = NULL; panfrost_batch_fence_unreference(batch->out_sync); util_unreference_framebuffer_state(&batch->key); ralloc_free(batch); } #ifdef PAN_BATCH_DEBUG static bool panfrost_dep_graph_contains_batch(struct panfrost_batch *root, struct panfrost_batch *batch) { if (!root) return false; util_dynarray_foreach(&root->dependencies, struct panfrost_batch_fence *, dep) { if ((*dep)->batch == batch || panfrost_dep_graph_contains_batch((*dep)->batch, batch)) return true; } return false; } #endif static void panfrost_batch_add_dep(struct panfrost_batch *batch, struct panfrost_batch_fence *newdep) { if (batch == newdep->batch) return; /* We might want to turn ->dependencies into a set if the number of * deps turns out to be big enough to make this 'is dep already there' * search inefficient. */ util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { if (*dep == newdep) return; } #ifdef PAN_BATCH_DEBUG /* Make sure the dependency graph is acyclic. */ assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch)); #endif panfrost_batch_fence_reference(newdep); util_dynarray_append(&batch->dependencies, struct panfrost_batch_fence *, newdep); /* We now have a batch depending on us, let's make sure new draw/clear * calls targeting the same FBO use a new batch object. */ if (newdep->batch) panfrost_freeze_batch(newdep->batch); } static struct panfrost_batch * panfrost_get_batch(struct panfrost_context *ctx, const struct pipe_framebuffer_state *key) { /* Lookup the job first */ struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key); if (entry) return entry->data; /* Otherwise, let's create a job */ struct panfrost_batch *batch = panfrost_create_batch(ctx, key); /* Save the created job */ _mesa_hash_table_insert(ctx->batches, &batch->key, batch); return batch; } /* Get the job corresponding to the FBO we're currently rendering into */ struct panfrost_batch * panfrost_get_batch_for_fbo(struct panfrost_context *ctx) { /* If we're wallpapering, we special case to workaround * u_blitter abuse */ if (ctx->wallpaper_batch) return ctx->wallpaper_batch; /* If we already began rendering, use that */ if (ctx->batch) { assert(util_framebuffer_state_equal(&ctx->batch->key, &ctx->pipe_framebuffer)); return ctx->batch; } /* If not, look up the job */ struct panfrost_batch *batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer); /* Set this job as the current FBO job. Will be reset when updating the * FB state and when submitting or releasing a job. */ ctx->batch = batch; return batch; } struct panfrost_batch * panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx) { struct panfrost_batch *batch; batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer); /* The batch has no draw/clear queued, let's return it directly. * Note that it's perfectly fine to re-use a batch with an * existing clear, we'll just update it with the new clear request. */ if (!batch->first_job) return batch; /* Otherwise, we need to freeze the existing one and instantiate a new * one. */ panfrost_freeze_batch(batch); return panfrost_get_batch(ctx, &ctx->pipe_framebuffer); } static bool panfrost_batch_fence_is_signaled(struct panfrost_batch_fence *fence) { if (fence->signaled) return true; /* Batch has not been submitted yet. */ if (fence->batch) return false; int ret = drmSyncobjWait(pan_device(fence->ctx->base.screen)->fd, &fence->syncobj, 1, 0, 0, NULL); /* Cache whether the fence was signaled */ fence->signaled = ret >= 0; return fence->signaled; } static void panfrost_bo_access_gc_fences(struct panfrost_context *ctx, struct panfrost_bo_access *access, const struct panfrost_bo *bo) { if (access->writer && panfrost_batch_fence_is_signaled(access->writer)) { panfrost_batch_fence_unreference(access->writer); access->writer = NULL; } struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers); struct panfrost_batch_fence **new_readers = readers_array; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (!(*reader)) continue; if (panfrost_batch_fence_is_signaled(*reader)) { panfrost_batch_fence_unreference(*reader); *reader = NULL; } else { /* Build a new array of only unsignaled fences in-place */ *(new_readers++) = *reader; } } if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *, new_readers - readers_array) && new_readers != readers_array) unreachable("Invalid dynarray access->readers"); } /* Collect signaled fences to keep the kernel-side syncobj-map small. The * idea is to collect those signaled fences at the end of each flush_all * call. This function is likely to collect only fences from previous * batch flushes not the one that have just have just been submitted and * are probably still in flight when we trigger the garbage collection. * Anyway, we need to do this garbage collection at some point if we don't * want the BO access map to keep invalid entries around and retain * syncobjs forever. */ static void panfrost_gc_fences(struct panfrost_context *ctx) { hash_table_foreach(ctx->accessed_bos, entry) { struct panfrost_bo_access *access = entry->data; assert(access); panfrost_bo_access_gc_fences(ctx, access, entry->key); if (!util_dynarray_num_elements(&access->readers, struct panfrost_batch_fence *) && !access->writer) { ralloc_free(access); _mesa_hash_table_remove(ctx->accessed_bos, entry); } } } #ifdef PAN_BATCH_DEBUG static bool panfrost_batch_in_readers(struct panfrost_batch *batch, struct panfrost_bo_access *access) { util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch == batch) return true; } return false; } #endif static void panfrost_batch_update_bo_access(struct panfrost_batch *batch, struct panfrost_bo *bo, uint32_t access_type, bool already_accessed) { struct panfrost_context *ctx = batch->ctx; struct panfrost_bo_access *access; uint32_t old_access_type; struct hash_entry *entry; assert(access_type == PAN_BO_ACCESS_WRITE || access_type == PAN_BO_ACCESS_READ); entry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = entry ? entry->data : NULL; if (access) { old_access_type = access->type; } else { access = rzalloc(ctx, struct panfrost_bo_access); util_dynarray_init(&access->readers, access); _mesa_hash_table_insert(ctx->accessed_bos, bo, access); /* We are the first to access this BO, let's initialize * old_access_type to our own access type in that case. */ old_access_type = access_type; access->type = access_type; } assert(access); if (access_type == PAN_BO_ACCESS_WRITE && old_access_type == PAN_BO_ACCESS_READ) { /* Previous access was a read and we want to write this BO. * We first need to add explicit deps between our batch and * the previous readers. */ util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { /* We were already reading the BO, no need to add a dep * on ourself (the acyclic check would complain about * that). */ if (!(*reader) || (*reader)->batch == batch) continue; panfrost_batch_add_dep(batch, *reader); } panfrost_batch_fence_reference(batch->out_sync); /* We now are the new writer. */ access->writer = batch->out_sync; access->type = access_type; /* Release the previous readers and reset the readers array. */ util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (!*reader) continue; panfrost_batch_fence_unreference(*reader); } util_dynarray_clear(&access->readers); } else if (access_type == PAN_BO_ACCESS_WRITE && old_access_type == PAN_BO_ACCESS_WRITE) { /* Previous access was a write and we want to write this BO. * First check if we were the previous writer, in that case * there's nothing to do. Otherwise we need to add a * dependency between the new writer and the old one. */ if (access->writer != batch->out_sync) { if (access->writer) { panfrost_batch_add_dep(batch, access->writer); panfrost_batch_fence_unreference(access->writer); } panfrost_batch_fence_reference(batch->out_sync); access->writer = batch->out_sync; } } else if (access_type == PAN_BO_ACCESS_READ && old_access_type == PAN_BO_ACCESS_WRITE) { /* Previous access was a write and we want to read this BO. * First check if we were the previous writer, in that case * we want to keep the access type unchanged, as a write is * more constraining than a read. */ if (access->writer != batch->out_sync) { /* Add a dependency on the previous writer. */ panfrost_batch_add_dep(batch, access->writer); /* The previous access was a write, there's no reason * to have entries in the readers array. */ assert(!util_dynarray_num_elements(&access->readers, struct panfrost_batch_fence *)); /* Add ourselves to the readers array. */ panfrost_batch_fence_reference(batch->out_sync); util_dynarray_append(&access->readers, struct panfrost_batch_fence *, batch->out_sync); access->type = PAN_BO_ACCESS_READ; } } else { /* We already accessed this BO before, so we should already be * in the reader array. */ #ifdef PAN_BATCH_DEBUG if (already_accessed) { assert(panfrost_batch_in_readers(batch, access)); return; } #endif /* Previous access was a read and we want to read this BO. * Add ourselves to the readers array and add a dependency on * the previous writer if any. */ panfrost_batch_fence_reference(batch->out_sync); util_dynarray_append(&access->readers, struct panfrost_batch_fence *, batch->out_sync); if (access->writer) panfrost_batch_add_dep(batch, access->writer); } } void panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo, uint32_t flags) { if (!bo) return; struct hash_entry *entry; uint32_t old_flags = 0; entry = _mesa_hash_table_search(batch->bos, bo); if (!entry) { entry = _mesa_hash_table_insert(batch->bos, bo, (void *)(uintptr_t)flags); panfrost_bo_reference(bo); } else { old_flags = (uintptr_t)entry->data; /* All batches have to agree on the shared flag. */ assert((old_flags & PAN_BO_ACCESS_SHARED) == (flags & PAN_BO_ACCESS_SHARED)); } assert(entry); if (old_flags == flags) return; flags |= old_flags; entry->data = (void *)(uintptr_t)flags; /* If this is not a shared BO, we don't really care about dependency * tracking. */ if (!(flags & PAN_BO_ACCESS_SHARED)) return; /* All dependencies should have been flushed before we execute the * wallpaper draw, so it should be harmless to skip the * update_bo_access() call. */ if (batch == batch->ctx->wallpaper_batch) return; /* Only pass R/W flags to the dep tracking logic. */ assert(flags & PAN_BO_ACCESS_RW); flags = (flags & PAN_BO_ACCESS_WRITE) ? PAN_BO_ACCESS_WRITE : PAN_BO_ACCESS_READ; panfrost_batch_update_bo_access(batch, bo, flags, old_flags != 0); } static void panfrost_batch_add_resource_bos(struct panfrost_batch *batch, struct panfrost_resource *rsrc, uint32_t flags) { panfrost_batch_add_bo(batch, rsrc->bo, flags); for (unsigned i = 0; i < MAX_MIP_LEVELS; i++) if (rsrc->slices[i].checksum_bo) panfrost_batch_add_bo(batch, rsrc->slices[i].checksum_bo, flags); if (rsrc->separate_stencil) panfrost_batch_add_bo(batch, rsrc->separate_stencil->bo, flags); } void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch) { uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT; for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) { struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture); panfrost_batch_add_resource_bos(batch, rsrc, flags); } if (batch->key.zsbuf) { struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture); panfrost_batch_add_resource_bos(batch, rsrc, flags); } } struct panfrost_bo * panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size, uint32_t create_flags, uint32_t access_flags) { struct panfrost_bo *bo; bo = pan_bo_create(pan_device(batch->ctx->base.screen), size, create_flags); panfrost_batch_add_bo(batch, bo, access_flags); /* panfrost_batch_add_bo() has retained a reference and * pan_bo_create() initialize the refcnt to 1, so let's * unreference the BO here so it gets released when the batch is * destroyed (unless it's retained by someone else in the meantime). */ panfrost_bo_unreference(bo); return bo; } /* Returns the polygon list's GPU address if available, or otherwise allocates * the polygon list. It's perfectly fast to use allocate/free BO directly, * since we'll hit the BO cache and this is one-per-batch anyway. */ mali_ptr panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size) { if (batch->polygon_list) { assert(batch->polygon_list->size >= size); } else { /* Create the BO as invisible, as there's no reason to map */ size = util_next_power_of_two(size); batch->polygon_list = panfrost_batch_create_bo(batch, size, PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); } return batch->polygon_list->gpu; } struct panfrost_bo * panfrost_batch_get_scratchpad(struct panfrost_batch *batch, unsigned shift, unsigned thread_tls_alloc, unsigned core_count) { unsigned size = panfrost_get_total_stack_size(shift, thread_tls_alloc, core_count); if (batch->scratchpad) { assert(batch->scratchpad->size >= size); } else { batch->scratchpad = panfrost_batch_create_bo(batch, size, PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); } return batch->scratchpad; } struct panfrost_bo * panfrost_batch_get_shared_memory(struct panfrost_batch *batch, unsigned size, unsigned workgroup_count) { if (batch->shared_memory) { assert(batch->shared_memory->size >= size); } else { batch->shared_memory = panfrost_batch_create_bo(batch, size, PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER); } return batch->shared_memory; } struct panfrost_bo * panfrost_batch_get_tiler_heap(struct panfrost_batch *batch) { if (batch->tiler_heap) return batch->tiler_heap; batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096, PAN_BO_INVISIBLE | PAN_BO_GROWABLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); assert(batch->tiler_heap); return batch->tiler_heap; } mali_ptr panfrost_batch_get_tiler_meta(struct panfrost_batch *batch, unsigned vertex_count) { if (!vertex_count) return 0; if (batch->tiler_meta) return batch->tiler_meta; struct panfrost_bo *tiler_heap; tiler_heap = panfrost_batch_get_tiler_heap(batch); struct bifrost_tiler_heap_meta tiler_heap_meta = { .heap_size = tiler_heap->size, .tiler_heap_start = tiler_heap->gpu, .tiler_heap_free = tiler_heap->gpu, .tiler_heap_end = tiler_heap->gpu + tiler_heap->size, .unk1 = 0x1, .unk7e007e = 0x7e007e, }; struct bifrost_tiler_meta tiler_meta = { .hierarchy_mask = 0x28, .flags = 0x0, .width = MALI_POSITIVE(batch->key.width), .height = MALI_POSITIVE(batch->key.height), .tiler_heap_meta = panfrost_upload_transient(batch, &tiler_heap_meta, sizeof(tiler_heap_meta)), }; batch->tiler_meta = panfrost_upload_transient(batch, &tiler_meta, sizeof(tiler_meta)); return batch->tiler_meta; } struct panfrost_bo * panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); uint32_t create_flags = 0; if (batch->tiler_dummy) return batch->tiler_dummy; if (!(dev->quirks & MIDGARD_NO_HIER_TILING)) create_flags = PAN_BO_INVISIBLE; batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096, create_flags, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); assert(batch->tiler_dummy); return batch->tiler_dummy; } static void panfrost_batch_draw_wallpaper(struct panfrost_batch *batch) { /* Color 0 is cleared, no need to draw the wallpaper. * TODO: MRT wallpapers. */ if (batch->clear & PIPE_CLEAR_COLOR0) return; /* Nothing to reload? TODO: MRT wallpapers */ if (batch->key.cbufs[0] == NULL) return; /* No draw calls, and no clear on the depth/stencil bufs. * Drawing the wallpaper would be useless. */ if (!batch->tiler_dep && !(batch->clear & PIPE_CLEAR_DEPTHSTENCIL)) return; /* Check if the buffer has any content on it worth preserving */ struct pipe_surface *surf = batch->key.cbufs[0]; struct panfrost_resource *rsrc = pan_resource(surf->texture); unsigned level = surf->u.tex.level; if (!rsrc->slices[level].initialized) return; batch->ctx->wallpaper_batch = batch; /* Clamp the rendering area to the damage extent. The * KHR_partial_update() spec states that trying to render outside of * the damage region is "undefined behavior", so we should be safe. */ unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx); unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny); if (damage_width && damage_height) { panfrost_batch_intersection_scissor(batch, rsrc->damage.extent.minx, rsrc->damage.extent.miny, rsrc->damage.extent.maxx, rsrc->damage.extent.maxy); } /* FIXME: Looks like aligning on a tile is not enough, but * aligning on twice the tile size seems to works. We don't * know exactly what happens here but this deserves extra * investigation to figure it out. */ batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1); batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1); batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2), rsrc->base.width0); batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2), rsrc->base.height0); struct pipe_scissor_state damage; struct pipe_box rects[4]; /* Clamp the damage box to the rendering area. */ damage.minx = MAX2(batch->minx, rsrc->damage.biggest_rect.x); damage.miny = MAX2(batch->miny, rsrc->damage.biggest_rect.y); damage.maxx = MIN2(batch->maxx, rsrc->damage.biggest_rect.x + rsrc->damage.biggest_rect.width); damage.maxx = MAX2(damage.maxx, damage.minx); damage.maxy = MIN2(batch->maxy, rsrc->damage.biggest_rect.y + rsrc->damage.biggest_rect.height); damage.maxy = MAX2(damage.maxy, damage.miny); /* One damage rectangle means we can end up with at most 4 reload * regions: * 1: left region, only exists if damage.x > 0 * 2: right region, only exists if damage.x + damage.width < fb->width * 3: top region, only exists if damage.y > 0. The intersection with * the left and right regions are dropped * 4: bottom region, only exists if damage.y + damage.height < fb->height. * The intersection with the left and right regions are dropped * * ____________________________ * | | 3 | | * | |___________| | * | | damage | | * | 1 | rect | 2 | * | |___________| | * | | 4 | | * |_______|___________|______| */ u_box_2d(batch->minx, batch->miny, damage.minx - batch->minx, batch->maxy - batch->miny, &rects[0]); u_box_2d(damage.maxx, batch->miny, batch->maxx - damage.maxx, batch->maxy - batch->miny, &rects[1]); u_box_2d(damage.minx, batch->miny, damage.maxx - damage.minx, damage.miny - batch->miny, &rects[2]); u_box_2d(damage.minx, damage.maxy, damage.maxx - damage.minx, batch->maxy - damage.maxy, &rects[3]); for (unsigned i = 0; i < 4; i++) { /* Width and height are always >= 0 even if width is declared as a * signed integer: u_box_2d() helper takes unsigned args and * panfrost_set_damage_region() is taking care of clamping * negative values. */ if (!rects[i].width || !rects[i].height) continue; /* Blit the wallpaper in */ panfrost_blit_wallpaper(batch->ctx, &rects[i]); } batch->ctx->wallpaper_batch = NULL; } static int panfrost_batch_submit_ioctl(struct panfrost_batch *batch, mali_ptr first_job_desc, uint32_t reqs) { struct panfrost_context *ctx = batch->ctx; struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_device *dev = pan_device(gallium->screen); struct drm_panfrost_submit submit = {0,}; uint32_t *bo_handles, *in_syncs = NULL; bool is_fragment_shader; int ret; is_fragment_shader = (reqs & PANFROST_JD_REQ_FS) && batch->first_job; if (is_fragment_shader) submit.in_sync_count = 1; else submit.in_sync_count = util_dynarray_num_elements(&batch->dependencies, struct panfrost_batch_fence *); if (submit.in_sync_count) { in_syncs = calloc(submit.in_sync_count, sizeof(*in_syncs)); assert(in_syncs); } /* The fragment job always depends on the vertex/tiler job if there's * one */ if (is_fragment_shader) { in_syncs[0] = batch->out_sync->syncobj; } else { unsigned int i = 0; util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) in_syncs[i++] = (*dep)->syncobj; } submit.in_syncs = (uintptr_t)in_syncs; submit.out_sync = batch->out_sync->syncobj; submit.jc = first_job_desc; submit.requirements = reqs; bo_handles = calloc(batch->bos->entries, sizeof(*bo_handles)); assert(bo_handles); hash_table_foreach(batch->bos, entry) { struct panfrost_bo *bo = (struct panfrost_bo *)entry->key; uint32_t flags = (uintptr_t)entry->data; assert(bo->gem_handle > 0); bo_handles[submit.bo_handle_count++] = bo->gem_handle; /* Update the BO access flags so that panfrost_bo_wait() knows * about all pending accesses. * We only keep the READ/WRITE info since this is all the BO * wait logic cares about. * We also preserve existing flags as this batch might not * be the first one to access the BO. */ bo->gpu_access |= flags & (PAN_BO_ACCESS_RW); } submit.bo_handles = (u64) (uintptr_t) bo_handles; ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit); free(bo_handles); free(in_syncs); if (ret) { DBG("Error submitting: %m\n"); return errno; } /* Trace the job if we're doing that */ if (pan_debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) { /* Wait so we can get errors reported back */ drmSyncobjWait(dev->fd, &batch->out_sync->syncobj, 1, INT64_MAX, 0, NULL); /* Trace gets priority over sync */ bool minimal = !(pan_debug & PAN_DBG_TRACE); pandecode_jc(submit.jc, dev->quirks & IS_BIFROST, dev->gpu_id, minimal); } return 0; } static int panfrost_batch_submit_jobs(struct panfrost_batch *batch) { bool has_draws = batch->first_job; int ret = 0; if (has_draws) { ret = panfrost_batch_submit_ioctl(batch, batch->first_job, 0); assert(!ret); } if (batch->tiler_dep || batch->clear) { mali_ptr fragjob = panfrost_fragment_job(batch, has_draws); ret = panfrost_batch_submit_ioctl(batch, fragjob, PANFROST_JD_REQ_FS); assert(!ret); } return ret; } static void panfrost_batch_submit(struct panfrost_batch *batch) { assert(batch); /* Submit the dependencies first. */ util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { if ((*dep)->batch) panfrost_batch_submit((*dep)->batch); } int ret; /* Nothing to do! */ if (!batch->first_job && !batch->clear) { /* Mark the fence as signaled so the fence logic does not try * to wait on it. */ batch->out_sync->signaled = true; goto out; } panfrost_batch_draw_wallpaper(batch); /* Now that all draws are in, we can finally prepare the * FBD for the batch */ if (batch->framebuffer.gpu && batch->first_job) { struct panfrost_context *ctx = batch->ctx; struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_device *dev = pan_device(gallium->screen); if (dev->quirks & MIDGARD_SFBD) panfrost_attach_sfbd(batch, ~0); else panfrost_attach_mfbd(batch, ~0); } panfrost_scoreboard_initialize_tiler(batch); ret = panfrost_batch_submit_jobs(batch); if (ret) DBG("panfrost_batch_submit failed: %d\n", ret); /* We must reset the damage info of our render targets here even * though a damage reset normally happens when the DRI layer swaps * buffers. That's because there can be implicit flushes the GL * app is not aware of, and those might impact the damage region: if * part of the damaged portion is drawn during those implicit flushes, * you have to reload those areas before next draws are pushed, and * since the driver can't easily know what's been modified by the draws * it flushed, the easiest solution is to reload everything. */ for (unsigned i = 0; i < batch->key.nr_cbufs; i++) { struct panfrost_resource *res; if (!batch->key.cbufs[i]) continue; res = pan_resource(batch->key.cbufs[i]->texture); panfrost_resource_reset_damage(res); } out: panfrost_freeze_batch(batch); panfrost_free_batch(batch); } void panfrost_flush_all_batches(struct panfrost_context *ctx, bool wait) { struct util_dynarray fences, syncobjs; if (wait) { util_dynarray_init(&fences, NULL); util_dynarray_init(&syncobjs, NULL); } hash_table_foreach(ctx->batches, hentry) { struct panfrost_batch *batch = hentry->data; assert(batch); if (wait) { panfrost_batch_fence_reference(batch->out_sync); util_dynarray_append(&fences, struct panfrost_batch_fence *, batch->out_sync); util_dynarray_append(&syncobjs, uint32_t, batch->out_sync->syncobj); } panfrost_batch_submit(batch); } assert(!ctx->batches->entries); /* Collect batch fences before returning */ panfrost_gc_fences(ctx); if (!wait) return; drmSyncobjWait(pan_device(ctx->base.screen)->fd, util_dynarray_begin(&syncobjs), util_dynarray_num_elements(&syncobjs, uint32_t), INT64_MAX, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL, NULL); util_dynarray_foreach(&fences, struct panfrost_batch_fence *, fence) panfrost_batch_fence_unreference(*fence); util_dynarray_fini(&fences); util_dynarray_fini(&syncobjs); } bool panfrost_pending_batches_access_bo(struct panfrost_context *ctx, const struct panfrost_bo *bo) { struct panfrost_bo_access *access; struct hash_entry *hentry; hentry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = hentry ? hentry->data : NULL; if (!access) return false; if (access->writer && access->writer->batch) return true; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch) return true; } return false; } void panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx, struct panfrost_bo *bo, uint32_t access_type) { struct panfrost_bo_access *access; struct hash_entry *hentry; /* It doesn't make any to flush only the readers. */ assert(access_type == PAN_BO_ACCESS_WRITE || access_type == PAN_BO_ACCESS_RW); hentry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = hentry ? hentry->data : NULL; if (!access) return; if (access_type & PAN_BO_ACCESS_WRITE && access->writer && access->writer->batch) panfrost_batch_submit(access->writer->batch); if (!(access_type & PAN_BO_ACCESS_READ)) return; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch) panfrost_batch_submit((*reader)->batch); } } void panfrost_batch_set_requirements(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; if (ctx->rasterizer && ctx->rasterizer->base.multisample) batch->requirements |= PAN_REQ_MSAA; if (ctx->depth_stencil && ctx->depth_stencil->depth.writemask) batch->requirements |= PAN_REQ_DEPTH_WRITE; } void panfrost_batch_adjust_stack_size(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) { struct panfrost_shader_state *ss; ss = panfrost_get_shader_state(ctx, i); if (!ss) continue; batch->stack_size = MAX2(batch->stack_size, ss->stack_size); } } /* Helper to smear a 32-bit color across 128-bit components */ static void pan_pack_color_32(uint32_t *packed, uint32_t v) { for (unsigned i = 0; i < 4; ++i) packed[i] = v; } static void pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi) { for (unsigned i = 0; i < 4; i += 2) { packed[i + 0] = lo; packed[i + 1] = hi; } } static void pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format) { /* Alpha magicked to 1.0 if there is no alpha */ bool has_alpha = util_format_has_alpha(format); float clear_alpha = has_alpha ? color->f[3] : 1.0f; /* Packed color depends on the framebuffer format */ const struct util_format_description *desc = util_format_description(format); if (util_format_is_rgba8_variant(desc)) { pan_pack_color_32(packed, ((uint32_t) float_to_ubyte(clear_alpha) << 24) | ((uint32_t) float_to_ubyte(color->f[2]) << 16) | ((uint32_t) float_to_ubyte(color->f[1]) << 8) | ((uint32_t) float_to_ubyte(color->f[0]) << 0)); } else if (format == PIPE_FORMAT_B5G6R5_UNORM) { /* First, we convert the components to R5, G6, B5 separately */ unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0); unsigned g6 = _mesa_roundevenf(SATURATE(color->f[1]) * 63.0); unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0); /* Then we pack into a sparse u32. TODO: Why these shifts? */ pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5)); } else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) { /* Convert to 4-bits */ unsigned r4 = _mesa_roundevenf(SATURATE(color->f[0]) * 15.0); unsigned g4 = _mesa_roundevenf(SATURATE(color->f[1]) * 15.0); unsigned b4 = _mesa_roundevenf(SATURATE(color->f[2]) * 15.0); unsigned a4 = _mesa_roundevenf(SATURATE(clear_alpha) * 15.0); /* Pack on *byte* intervals */ pan_pack_color_32(packed, (a4 << 28) | (b4 << 20) | (g4 << 12) | (r4 << 4)); } else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) { /* Scale as expected but shift oddly */ unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0); unsigned g5 = _mesa_roundevenf(SATURATE(color->f[1]) * 31.0); unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0); unsigned a1 = _mesa_roundevenf(SATURATE(clear_alpha) * 1.0); pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5)); } else { /* Otherwise, it's generic subject to replication */ union util_color out = { 0 }; unsigned size = util_format_get_blocksize(format); util_pack_color(color->f, format, &out); if (size == 1) { unsigned b = out.ui[0]; unsigned s = b | (b << 8); pan_pack_color_32(packed, s | (s << 16)); } else if (size == 2) pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16)); else if (size == 3 || size == 4) pan_pack_color_32(packed, out.ui[0]); else if (size == 6) pan_pack_color_64(packed, out.ui[0], out.ui[1] | (out.ui[1] << 16)); /* RGB16F -- RGBB */ else if (size == 8) pan_pack_color_64(packed, out.ui[0], out.ui[1]); else if (size == 16) memcpy(packed, out.ui, 16); else unreachable("Unknown generic format size packing clear colour"); } } void panfrost_batch_clear(struct panfrost_batch *batch, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { struct panfrost_context *ctx = batch->ctx; if (buffers & PIPE_CLEAR_COLOR) { for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) { if (!(buffers & (PIPE_CLEAR_COLOR0 << i))) continue; enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format; pan_pack_color(batch->clear_color[i], color, format); } } if (buffers & PIPE_CLEAR_DEPTH) { batch->clear_depth = depth; } if (buffers & PIPE_CLEAR_STENCIL) { batch->clear_stencil = stencil; } batch->clear |= buffers; /* Clearing affects the entire framebuffer (by definition -- this is * the Gallium clear callback, which clears the whole framebuffer. If * the scissor test were enabled from the GL side, the gallium frontend * would emit a quad instead and we wouldn't go down this code path) */ panfrost_batch_union_scissor(batch, 0, 0, ctx->pipe_framebuffer.width, ctx->pipe_framebuffer.height); } static bool panfrost_batch_compare(const void *a, const void *b) { return util_framebuffer_state_equal(a, b); } static uint32_t panfrost_batch_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state)); } /* Given a new bounding rectangle (scissor), let the job cover the union of the * new and old bounding rectangles */ void panfrost_batch_union_scissor(struct panfrost_batch *batch, unsigned minx, unsigned miny, unsigned maxx, unsigned maxy) { batch->minx = MIN2(batch->minx, minx); batch->miny = MIN2(batch->miny, miny); batch->maxx = MAX2(batch->maxx, maxx); batch->maxy = MAX2(batch->maxy, maxy); } void panfrost_batch_intersection_scissor(struct panfrost_batch *batch, unsigned minx, unsigned miny, unsigned maxx, unsigned maxy) { batch->minx = MAX2(batch->minx, minx); batch->miny = MAX2(batch->miny, miny); batch->maxx = MIN2(batch->maxx, maxx); batch->maxy = MIN2(batch->maxy, maxy); } /* Are we currently rendering to the dev (rather than an FBO)? */ bool panfrost_batch_is_scanout(struct panfrost_batch *batch) { /* If there is no color buffer, it's an FBO */ if (batch->key.nr_cbufs != 1) return false; /* If we're too early that no framebuffer was sent, it's scanout */ if (!batch->key.cbufs[0]) return true; return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET || batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT || batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED; } void panfrost_batch_init(struct panfrost_context *ctx) { ctx->batches = _mesa_hash_table_create(ctx, panfrost_batch_hash, panfrost_batch_compare); ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); }