/* * © Copyright 2018 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include "pan_context.h" #include "pan_swizzle.h" #include "pan_format.h" #include "util/macros.h" #include "util/u_format.h" #include "util/u_inlines.h" #include "util/u_upload_mgr.h" #include "util/u_memory.h" #include "util/u_vbuf.h" #include "util/half_float.h" #include "util/u_helpers.h" #include "util/u_format.h" #include "indices/u_primconvert.h" #include "tgsi/tgsi_parse.h" #include "util/u_math.h" #include "pan_screen.h" #include "pan_blending.h" #include "pan_blend_shaders.h" #include "pan_util.h" #include "pan_wallpaper.h" static int performance_counter_number = 0; extern const char *pan_counters_base; /* Do not actually send anything to the GPU; merely generate the cmdstream as fast as possible. Disables framebuffer writes */ //#define DRY_RUN /* Can a given format support AFBC? Not all can. */ static bool panfrost_can_afbc(enum pipe_format format) { const struct util_format_description *desc = util_format_description(format); if (util_format_is_rgba8_variant(desc)) return true; /* TODO: AFBC of other formats */ return false; } /* AFBC is enabled on a per-resource basis (AFBC enabling is theoretically * indepdent between color buffers and depth/stencil). To enable, we allocate * the AFBC metadata buffer and mark that it is enabled. We do -not- actually * edit the fragment job here. This routine should be called ONCE per * AFBC-compressed buffer, rather than on every frame. */ static void panfrost_enable_afbc(struct panfrost_context *ctx, struct panfrost_resource *rsrc, bool ds) { if (ctx->require_sfbd) { DBG("AFBC not supported yet on SFBD\n"); assert(0); } struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_screen *screen = pan_screen(gallium->screen); /* AFBC metadata is 16 bytes per tile */ int tile_w = (rsrc->base.width0 + (MALI_TILE_LENGTH - 1)) >> MALI_TILE_SHIFT; int tile_h = (rsrc->base.height0 + (MALI_TILE_LENGTH - 1)) >> MALI_TILE_SHIFT; int bytes_per_pixel = util_format_get_blocksize(rsrc->base.format); int stride = bytes_per_pixel * ALIGN(rsrc->base.width0, 16); stride *= 2; /* TODO: Should this be carried over? */ int main_size = stride * rsrc->base.height0; rsrc->bo->afbc_metadata_size = tile_w * tile_h * 16; /* Allocate the AFBC slab itself, large enough to hold the above */ screen->driver->allocate_slab(screen, &rsrc->bo->afbc_slab, (rsrc->bo->afbc_metadata_size + main_size + 4095) / 4096, true, 0, 0, 0); rsrc->bo->layout = PAN_AFBC; /* Compressed textured reads use a tagged pointer to the metadata */ rsrc->bo->gpu = rsrc->bo->afbc_slab.gpu | (ds ? 0 : 1); rsrc->bo->cpu = rsrc->bo->afbc_slab.cpu; rsrc->bo->gem_handle = rsrc->bo->afbc_slab.gem_handle; } static void panfrost_enable_checksum(struct panfrost_context *ctx, struct panfrost_resource *rsrc) { struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_screen *screen = pan_screen(gallium->screen); int tile_w = (rsrc->base.width0 + (MALI_TILE_LENGTH - 1)) >> MALI_TILE_SHIFT; int tile_h = (rsrc->base.height0 + (MALI_TILE_LENGTH - 1)) >> MALI_TILE_SHIFT; /* 8 byte checksum per tile */ rsrc->bo->checksum_stride = tile_w * 8; int pages = (((rsrc->bo->checksum_stride * tile_h) + 4095) / 4096); screen->driver->allocate_slab(screen, &rsrc->bo->checksum_slab, pages, false, 0, 0, 0); rsrc->bo->has_checksum = true; } /* Framebuffer descriptor */ static void panfrost_set_framebuffer_resolution(struct mali_single_framebuffer *fb, int w, int h) { fb->width = MALI_POSITIVE(w); fb->height = MALI_POSITIVE(h); /* No idea why this is needed, but it's how resolution_check is * calculated. It's not clear to us yet why the hardware wants this. * The formula itself was discovered mostly by manual bruteforce and * aggressive algebraic simplification. */ fb->resolution_check = ((w + h) / 3) << 4; } struct mali_single_framebuffer panfrost_emit_sfbd(struct panfrost_context *ctx) { struct mali_single_framebuffer framebuffer = { .unknown2 = 0x1f, .format = 0x30000000, .clear_flags = 0x1000, .unknown_address_0 = ctx->scratchpad.gpu, .unknown_address_1 = ctx->misc_0.gpu, .unknown_address_2 = ctx->misc_0.gpu + 40960, .tiler_flags = 0xf0, .tiler_heap_free = ctx->tiler_heap.gpu, .tiler_heap_end = ctx->tiler_heap.gpu + ctx->tiler_heap.size, }; panfrost_set_framebuffer_resolution(&framebuffer, ctx->pipe_framebuffer.width, ctx->pipe_framebuffer.height); return framebuffer; } struct bifrost_framebuffer panfrost_emit_mfbd(struct panfrost_context *ctx) { struct bifrost_framebuffer framebuffer = { /* It is not yet clear what tiler_meta means or how it's * calculated, but we can tell the lower 32-bits are a * (monotonically increasing?) function of tile count and * geometry complexity; I suspect it defines a memory size of * some kind? for the tiler. It's really unclear at the * moment... but to add to the confusion, the hardware is happy * enough to accept a zero in this field, so we don't even have * to worry about it right now. * * The byte (just after the 32-bit mark) is much more * interesting. The higher nibble I've only ever seen as 0xF, * but the lower one I've seen as 0x0 or 0xF, and it's not * obvious what the difference is. But what -is- obvious is * that when the lower nibble is zero, performance is severely * degraded compared to when the lower nibble is set. * Evidently, that nibble enables some sort of fast path, * perhaps relating to caching or tile flush? Regardless, at * this point there's no clear reason not to set it, aside from * substantially increased memory requirements (of the misc_0 * buffer) */ .tiler_meta = ((uint64_t) 0xff << 32) | 0x0, .width1 = MALI_POSITIVE(ctx->pipe_framebuffer.width), .height1 = MALI_POSITIVE(ctx->pipe_framebuffer.height), .width2 = MALI_POSITIVE(ctx->pipe_framebuffer.width), .height2 = MALI_POSITIVE(ctx->pipe_framebuffer.height), .unk1 = 0x1080, /* TODO: MRT */ .rt_count_1 = MALI_POSITIVE(1), .rt_count_2 = 4, .unknown2 = 0x1f, /* Corresponds to unknown_address_X of SFBD */ .scratchpad = ctx->scratchpad.gpu, .tiler_scratch_start = ctx->misc_0.gpu, /* The constant added here is, like the lower word of * tiler_meta, (loosely) another product of framebuffer size * and geometry complexity. It must be sufficiently large for * the tiler_meta fast path to work; if it's too small, there * will be DATA_INVALID_FAULTs. Conversely, it must be less * than the total size of misc_0, or else there's no room. It's * possible this constant configures a partition between two * parts of misc_0? We haven't investigated the functionality, * as these buffers are internally used by the hardware * (presumably by the tiler) but not seemingly touched by the driver */ .tiler_scratch_middle = ctx->misc_0.gpu + 0xf0000, .tiler_heap_start = ctx->tiler_heap.gpu, .tiler_heap_end = ctx->tiler_heap.gpu + ctx->tiler_heap.size, }; return framebuffer; } /* Are we currently rendering to the screen (rather than an FBO)? */ bool panfrost_is_scanout(struct panfrost_context *ctx) { /* If there is no color buffer, it's an FBO */ if (!ctx->pipe_framebuffer.nr_cbufs) return false; /* If we're too early that no framebuffer was sent, it's scanout */ if (!ctx->pipe_framebuffer.cbufs[0]) return true; return ctx->pipe_framebuffer.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET || ctx->pipe_framebuffer.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT || ctx->pipe_framebuffer.cbufs[0]->texture->bind & PIPE_BIND_SHARED; } static uint32_t pan_pack_color(const union pipe_color_union *color, enum pipe_format format) { /* Alpha magicked to 1.0 if there is no alpha */ bool has_alpha = util_format_has_alpha(format); float clear_alpha = has_alpha ? color->f[3] : 1.0f; /* Packed color depends on the framebuffer format */ const struct util_format_description *desc = util_format_description(format); if (util_format_is_rgba8_variant(desc)) { return (float_to_ubyte(clear_alpha) << 24) | (float_to_ubyte(color->f[2]) << 16) | (float_to_ubyte(color->f[1]) << 8) | (float_to_ubyte(color->f[0]) << 0); } else if (format == PIPE_FORMAT_B5G6R5_UNORM) { /* First, we convert the components to R5, G6, B5 separately */ unsigned r5 = CLAMP(color->f[0], 0.0, 1.0) * 31.0; unsigned g6 = CLAMP(color->f[1], 0.0, 1.0) * 63.0; unsigned b5 = CLAMP(color->f[2], 0.0, 1.0) * 31.0; /* Then we pack into a sparse u32. TODO: Why these shifts? */ return (b5 << 25) | (g6 << 14) | (r5 << 5); } else { /* Unknown format */ assert(0); } return 0; } static void panfrost_clear( struct pipe_context *pipe, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_job *job = panfrost_get_job_for_fbo(ctx); if (buffers & PIPE_CLEAR_COLOR) { enum pipe_format format = ctx->pipe_framebuffer.cbufs[0]->format; job->clear_color = pan_pack_color(color, format); } if (buffers & PIPE_CLEAR_DEPTH) { job->clear_depth = depth; } if (buffers & PIPE_CLEAR_STENCIL) { job->clear_stencil = stencil; } job->clear |= buffers; } static mali_ptr panfrost_attach_vt_mfbd(struct panfrost_context *ctx) { /* MFBD needs a sequential semi-render target upload, but what exactly this is, is beyond me for now */ struct bifrost_render_target rts_list[] = { { .chunknown = { .unk = 0x30005, }, .framebuffer = ctx->misc_0.gpu, .zero2 = 0x3, }, }; /* Allocate memory for the three components */ int size = 1024 + sizeof(ctx->vt_framebuffer_mfbd) + sizeof(rts_list); struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, size); /* Opaque 1024-block */ rts_list[0].chunknown.pointer = transfer.gpu; memcpy(transfer.cpu + 1024, &ctx->vt_framebuffer_mfbd, sizeof(ctx->vt_framebuffer_mfbd)); memcpy(transfer.cpu + 1024 + sizeof(ctx->vt_framebuffer_mfbd), rts_list, sizeof(rts_list)); return (transfer.gpu + 1024) | MALI_MFBD; } static mali_ptr panfrost_attach_vt_sfbd(struct panfrost_context *ctx) { return panfrost_upload_transient(ctx, &ctx->vt_framebuffer_sfbd, sizeof(ctx->vt_framebuffer_sfbd)) | MALI_SFBD; } static void panfrost_attach_vt_framebuffer(struct panfrost_context *ctx) { mali_ptr framebuffer = ctx->require_sfbd ? panfrost_attach_vt_sfbd(ctx) : panfrost_attach_vt_mfbd(ctx); ctx->payload_vertex.postfix.framebuffer = framebuffer; ctx->payload_tiler.postfix.framebuffer = framebuffer; } /* Reset per-frame context, called on context initialisation as well as after * flushing a frame */ static void panfrost_invalidate_frame(struct panfrost_context *ctx) { unsigned transient_count = ctx->transient_pools[ctx->cmdstream_i].entry_index*ctx->transient_pools[0].entry_size + ctx->transient_pools[ctx->cmdstream_i].entry_offset; DBG("Uploaded transient %d bytes\n", transient_count); /* Rotate cmdstream */ if ((++ctx->cmdstream_i) == (sizeof(ctx->transient_pools) / sizeof(ctx->transient_pools[0]))) ctx->cmdstream_i = 0; if (ctx->require_sfbd) ctx->vt_framebuffer_sfbd = panfrost_emit_sfbd(ctx); else ctx->vt_framebuffer_mfbd = panfrost_emit_mfbd(ctx); /* Reset varyings allocated */ ctx->varying_height = 0; /* The transient cmdstream is dirty every frame; the only bits worth preserving * (textures, shaders, etc) are in other buffers anyways */ ctx->transient_pools[ctx->cmdstream_i].entry_index = 0; ctx->transient_pools[ctx->cmdstream_i].entry_offset = 0; /* Regenerate payloads */ panfrost_attach_vt_framebuffer(ctx); if (ctx->rasterizer) ctx->dirty |= PAN_DIRTY_RASTERIZER; /* XXX */ ctx->dirty |= PAN_DIRTY_SAMPLERS | PAN_DIRTY_TEXTURES; } /* In practice, every field of these payloads should be configurable * arbitrarily, which means these functions are basically catch-all's for * as-of-yet unwavering unknowns */ static void panfrost_emit_vertex_payload(struct panfrost_context *ctx) { struct midgard_payload_vertex_tiler payload = { .prefix = { .workgroups_z_shift = 32, .workgroups_x_shift_2 = 0x2, .workgroups_x_shift_3 = 0x5, }, .gl_enables = 0x4 | (ctx->is_t6xx ? 0 : 0x2), }; memcpy(&ctx->payload_vertex, &payload, sizeof(payload)); } static void panfrost_emit_tiler_payload(struct panfrost_context *ctx) { struct midgard_payload_vertex_tiler payload = { .prefix = { .workgroups_z_shift = 32, .workgroups_x_shift_2 = 0x2, .workgroups_x_shift_3 = 0x6, .zero1 = 0xffff, /* Why is this only seen on test-quad-textured? */ }, }; memcpy(&ctx->payload_tiler, &payload, sizeof(payload)); } static unsigned translate_tex_wrap(enum pipe_tex_wrap w) { switch (w) { case PIPE_TEX_WRAP_REPEAT: return MALI_WRAP_REPEAT; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return MALI_WRAP_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return MALI_WRAP_CLAMP_TO_BORDER; case PIPE_TEX_WRAP_MIRROR_REPEAT: return MALI_WRAP_MIRRORED_REPEAT; default: assert(0); return 0; } } static unsigned translate_tex_filter(enum pipe_tex_filter f) { switch (f) { case PIPE_TEX_FILTER_NEAREST: return MALI_NEAREST; case PIPE_TEX_FILTER_LINEAR: return MALI_LINEAR; default: assert(0); return 0; } } static unsigned translate_mip_filter(enum pipe_tex_mipfilter f) { return (f == PIPE_TEX_MIPFILTER_LINEAR) ? MALI_MIP_LINEAR : 0; } static unsigned panfrost_translate_compare_func(enum pipe_compare_func in) { switch (in) { case PIPE_FUNC_NEVER: return MALI_FUNC_NEVER; case PIPE_FUNC_LESS: return MALI_FUNC_LESS; case PIPE_FUNC_EQUAL: return MALI_FUNC_EQUAL; case PIPE_FUNC_LEQUAL: return MALI_FUNC_LEQUAL; case PIPE_FUNC_GREATER: return MALI_FUNC_GREATER; case PIPE_FUNC_NOTEQUAL: return MALI_FUNC_NOTEQUAL; case PIPE_FUNC_GEQUAL: return MALI_FUNC_GEQUAL; case PIPE_FUNC_ALWAYS: return MALI_FUNC_ALWAYS; } assert (0); return 0; /* Unreachable */ } static unsigned panfrost_translate_alt_compare_func(enum pipe_compare_func in) { switch (in) { case PIPE_FUNC_NEVER: return MALI_ALT_FUNC_NEVER; case PIPE_FUNC_LESS: return MALI_ALT_FUNC_LESS; case PIPE_FUNC_EQUAL: return MALI_ALT_FUNC_EQUAL; case PIPE_FUNC_LEQUAL: return MALI_ALT_FUNC_LEQUAL; case PIPE_FUNC_GREATER: return MALI_ALT_FUNC_GREATER; case PIPE_FUNC_NOTEQUAL: return MALI_ALT_FUNC_NOTEQUAL; case PIPE_FUNC_GEQUAL: return MALI_ALT_FUNC_GEQUAL; case PIPE_FUNC_ALWAYS: return MALI_ALT_FUNC_ALWAYS; } assert (0); return 0; /* Unreachable */ } static unsigned panfrost_translate_stencil_op(enum pipe_stencil_op in) { switch (in) { case PIPE_STENCIL_OP_KEEP: return MALI_STENCIL_KEEP; case PIPE_STENCIL_OP_ZERO: return MALI_STENCIL_ZERO; case PIPE_STENCIL_OP_REPLACE: return MALI_STENCIL_REPLACE; case PIPE_STENCIL_OP_INCR: return MALI_STENCIL_INCR; case PIPE_STENCIL_OP_DECR: return MALI_STENCIL_DECR; case PIPE_STENCIL_OP_INCR_WRAP: return MALI_STENCIL_INCR_WRAP; case PIPE_STENCIL_OP_DECR_WRAP: return MALI_STENCIL_DECR_WRAP; case PIPE_STENCIL_OP_INVERT: return MALI_STENCIL_INVERT; } assert (0); return 0; /* Unreachable */ } static void panfrost_make_stencil_state(const struct pipe_stencil_state *in, struct mali_stencil_test *out) { out->ref = 0; /* Gallium gets it from elsewhere */ out->mask = in->valuemask; out->func = panfrost_translate_compare_func(in->func); out->sfail = panfrost_translate_stencil_op(in->fail_op); out->dpfail = panfrost_translate_stencil_op(in->zfail_op); out->dppass = panfrost_translate_stencil_op(in->zpass_op); } static void panfrost_default_shader_backend(struct panfrost_context *ctx) { struct mali_shader_meta shader = { .alpha_coverage = ~MALI_ALPHA_COVERAGE(0.000000), .unknown2_3 = MALI_DEPTH_FUNC(MALI_FUNC_ALWAYS) | 0x3010, .unknown2_4 = MALI_NO_MSAA | 0x4e0, }; if (ctx->is_t6xx) { shader.unknown2_4 |= 0x10; } struct pipe_stencil_state default_stencil = { .enabled = 0, .func = PIPE_FUNC_ALWAYS, .fail_op = MALI_STENCIL_KEEP, .zfail_op = MALI_STENCIL_KEEP, .zpass_op = MALI_STENCIL_KEEP, .writemask = 0xFF, .valuemask = 0xFF }; panfrost_make_stencil_state(&default_stencil, &shader.stencil_front); shader.stencil_mask_front = default_stencil.writemask; panfrost_make_stencil_state(&default_stencil, &shader.stencil_back); shader.stencil_mask_back = default_stencil.writemask; if (default_stencil.enabled) shader.unknown2_4 |= MALI_STENCIL_TEST; memcpy(&ctx->fragment_shader_core, &shader, sizeof(shader)); } /* Generates a vertex/tiler job. This is, in some sense, the heart of the * graphics command stream. It should be called once per draw, accordding to * presentations. Set is_tiler for "tiler" jobs (fragment shader jobs, but in * Mali parlance, "fragment" refers to framebuffer writeout). Clear it for * vertex jobs. */ struct panfrost_transfer panfrost_vertex_tiler_job(struct panfrost_context *ctx, bool is_tiler, bool is_elided_tiler) { /* Each draw call corresponds to two jobs, and we want to offset to leave room for the set-value job */ int draw_job_index = 1 + (2 * ctx->draw_count); struct mali_job_descriptor_header job = { .job_type = is_tiler ? JOB_TYPE_TILER : JOB_TYPE_VERTEX, .job_index = draw_job_index + (is_tiler ? 1 : 0), #ifdef __LP64__ .job_descriptor_size = 1, #endif }; /* Only non-elided tiler jobs have dependencies which are known at this point */ if (is_tiler && !is_elided_tiler) { /* Tiler jobs depend on vertex jobs */ job.job_dependency_index_1 = draw_job_index; /* Tiler jobs also depend on the previous tiler job */ if (ctx->draw_count) job.job_dependency_index_2 = draw_job_index - 1; } struct midgard_payload_vertex_tiler *payload = is_tiler ? &ctx->payload_tiler : &ctx->payload_vertex; /* There's some padding hacks on 32-bit */ #ifdef __LP64__ int offset = 0; #else int offset = 4; #endif struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, sizeof(job) + sizeof(*payload)); memcpy(transfer.cpu, &job, sizeof(job)); memcpy(transfer.cpu + sizeof(job) - offset, payload, sizeof(*payload)); return transfer; } /* Generates a set value job. It's unclear what exactly this does, why it's * necessary, and when to call it. */ static void panfrost_set_value_job(struct panfrost_context *ctx) { struct mali_job_descriptor_header job = { .job_type = JOB_TYPE_SET_VALUE, .job_descriptor_size = 1, .job_index = 1 + (2 * ctx->draw_count), }; struct mali_payload_set_value payload = { .out = ctx->misc_0.gpu, .unknown = 0x3, }; struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, sizeof(job) + sizeof(payload)); memcpy(transfer.cpu, &job, sizeof(job)); memcpy(transfer.cpu + sizeof(job), &payload, sizeof(payload)); ctx->u_set_value_job = (struct mali_job_descriptor_header *) transfer.cpu; ctx->set_value_job = transfer.gpu; } static mali_ptr panfrost_emit_varyings( struct panfrost_context *ctx, union mali_attr *slot, unsigned stride, unsigned count) { mali_ptr varying_address = ctx->varying_mem.gpu + ctx->varying_height; /* Fill out the descriptor */ slot->elements = varying_address | MALI_ATTR_LINEAR; slot->stride = stride; slot->size = stride * count; ctx->varying_height += ALIGN(slot->size, 64); assert(ctx->varying_height < ctx->varying_mem.size); return varying_address; } static void panfrost_emit_point_coord(union mali_attr *slot) { slot->elements = MALI_VARYING_POINT_COORD | MALI_ATTR_LINEAR; slot->stride = slot->size = 0; } static void panfrost_emit_varying_descriptor( struct panfrost_context *ctx, unsigned invocation_count) { /* Load the shaders */ struct panfrost_shader_state *vs = &ctx->vs->variants[ctx->vs->active_variant]; struct panfrost_shader_state *fs = &ctx->fs->variants[ctx->fs->active_variant]; /* Allocate the varying descriptor */ size_t vs_size = sizeof(struct mali_attr_meta) * vs->tripipe->varying_count; size_t fs_size = sizeof(struct mali_attr_meta) * fs->tripipe->varying_count; struct panfrost_transfer trans = panfrost_allocate_transient(ctx, vs_size + fs_size); memcpy(trans.cpu, vs->varyings, vs_size); memcpy(trans.cpu + vs_size, fs->varyings, fs_size); ctx->payload_vertex.postfix.varying_meta = trans.gpu; ctx->payload_tiler.postfix.varying_meta = trans.gpu + vs_size; /* Buffer indices must be in this order per our convention */ union mali_attr varyings[PIPE_MAX_ATTRIBS]; unsigned idx = 0; /* General varyings -- use the VS's, since those are more likely to be * accurate on desktop */ panfrost_emit_varyings(ctx, &varyings[idx++], vs->general_varying_stride, invocation_count); /* fp32 vec4 gl_Position */ ctx->payload_tiler.postfix.position_varying = panfrost_emit_varyings(ctx, &varyings[idx++], sizeof(float) * 4, invocation_count); if (vs->writes_point_size || fs->reads_point_coord) { /* fp16 vec1 gl_PointSize */ ctx->payload_tiler.primitive_size.pointer = panfrost_emit_varyings(ctx, &varyings[idx++], 2, invocation_count); } if (fs->reads_point_coord) { /* Special descriptor */ panfrost_emit_point_coord(&varyings[idx++]); } mali_ptr varyings_p = panfrost_upload_transient(ctx, &varyings, idx * sizeof(union mali_attr)); ctx->payload_vertex.postfix.varyings = varyings_p; ctx->payload_tiler.postfix.varyings = varyings_p; } static mali_ptr panfrost_vertex_buffer_address(struct panfrost_context *ctx, unsigned i) { struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[i]; struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer.resource); return rsrc->bo->gpu + buf->buffer_offset; } /* Emits attributes and varying descriptors, which should be called every draw, * excepting some obscure circumstances */ static void panfrost_emit_vertex_data(struct panfrost_context *ctx, struct panfrost_job *job) { /* Staged mali_attr, and index into them. i =/= k, depending on the * vertex buffer mask */ union mali_attr attrs[PIPE_MAX_ATTRIBS]; unsigned k = 0; unsigned invocation_count = MALI_NEGATIVE(ctx->payload_tiler.prefix.invocation_count); for (int i = 0; i < ARRAY_SIZE(ctx->vertex_buffers); ++i) { if (!(ctx->vb_mask & (1 << i))) continue; struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[i]; struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer.resource); if (!rsrc) continue; /* Align to 64 bytes by masking off the lower bits. This * will be adjusted back when we fixup the src_offset in * mali_attr_meta */ mali_ptr addr = panfrost_vertex_buffer_address(ctx, i) & ~63; /* Offset vertex count by draw_start to make sure we upload enough */ attrs[k].stride = buf->stride; attrs[k].size = rsrc->base.width0; panfrost_job_add_bo(job, rsrc->bo); attrs[k].elements = addr | MALI_ATTR_LINEAR; ++k; } ctx->payload_vertex.postfix.attributes = panfrost_upload_transient(ctx, attrs, k * sizeof(union mali_attr)); panfrost_emit_varying_descriptor(ctx, invocation_count); } static bool panfrost_writes_point_size(struct panfrost_context *ctx) { assert(ctx->vs); struct panfrost_shader_state *vs = &ctx->vs->variants[ctx->vs->active_variant]; return vs->writes_point_size && ctx->payload_tiler.prefix.draw_mode == MALI_POINTS; } /* Stage the attribute descriptors so we can adjust src_offset * to let BOs align nicely */ static void panfrost_stage_attributes(struct panfrost_context *ctx) { struct panfrost_vertex_state *so = ctx->vertex; size_t sz = sizeof(struct mali_attr_meta) * so->num_elements; struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, sz); struct mali_attr_meta *target = (struct mali_attr_meta *) transfer.cpu; /* Copy as-is for the first pass */ memcpy(target, so->hw, sz); /* Fixup offsets for the second pass. Recall that the hardware * calculates attribute addresses as: * * addr = base + (stride * vtx) + src_offset; * * However, on Mali, base must be aligned to 64-bytes, so we * instead let: * * base' = base & ~63 = base - (base & 63) * * To compensate when using base' (see emit_vertex_data), we have * to adjust src_offset by the masked off piece: * * addr' = base' + (stride * vtx) + (src_offset + (base & 63)) * = base - (base & 63) + (stride * vtx) + src_offset + (base & 63) * = base + (stride * vtx) + src_offset * = addr; * * QED. */ for (unsigned i = 0; i < so->num_elements; ++i) { unsigned vbi = so->pipe[i].vertex_buffer_index; mali_ptr addr = panfrost_vertex_buffer_address(ctx, vbi); /* Adjust by the masked off bits of the offset */ target[i].src_offset += (addr & 63); } ctx->payload_vertex.postfix.attribute_meta = transfer.gpu; } /* Go through dirty flags and actualise them in the cmdstream. */ void panfrost_emit_for_draw(struct panfrost_context *ctx, bool with_vertex_data) { struct panfrost_job *job = panfrost_get_job_for_fbo(ctx); if (with_vertex_data) { panfrost_emit_vertex_data(ctx, job); } bool msaa = ctx->rasterizer->base.multisample; if (ctx->dirty & PAN_DIRTY_RASTERIZER) { ctx->payload_tiler.gl_enables = ctx->rasterizer->tiler_gl_enables; /* TODO: Sample size */ SET_BIT(ctx->fragment_shader_core.unknown2_3, MALI_HAS_MSAA, msaa); SET_BIT(ctx->fragment_shader_core.unknown2_4, MALI_NO_MSAA, !msaa); } /* Enable job requirements at draw-time */ if (msaa) job->requirements |= PAN_REQ_MSAA; if (ctx->depth_stencil->depth.writemask) job->requirements |= PAN_REQ_DEPTH_WRITE; if (ctx->occlusion_query) { ctx->payload_tiler.gl_enables |= MALI_OCCLUSION_QUERY | MALI_OCCLUSION_PRECISE; ctx->payload_tiler.postfix.occlusion_counter = ctx->occlusion_query->transfer.gpu; } if (ctx->dirty & PAN_DIRTY_VS) { assert(ctx->vs); struct panfrost_shader_state *vs = &ctx->vs->variants[ctx->vs->active_variant]; /* Late shader descriptor assignments */ vs->tripipe->texture_count = ctx->sampler_view_count[PIPE_SHADER_VERTEX]; vs->tripipe->sampler_count = ctx->sampler_count[PIPE_SHADER_VERTEX]; /* Who knows */ vs->tripipe->midgard1.unknown1 = 0x2201; ctx->payload_vertex.postfix._shader_upper = vs->tripipe_gpu >> 4; } if (ctx->dirty & (PAN_DIRTY_RASTERIZER | PAN_DIRTY_VS)) { /* Check if we need to link the gl_PointSize varying */ if (!panfrost_writes_point_size(ctx)) { /* If the size is constant, write it out. Otherwise, * don't touch primitive_size (since we would clobber * the pointer there) */ ctx->payload_tiler.primitive_size.constant = ctx->rasterizer->base.line_width; } } /* TODO: Maybe dirty track FS, maybe not. For now, it's transient. */ if (ctx->fs) ctx->dirty |= PAN_DIRTY_FS; if (ctx->dirty & PAN_DIRTY_FS) { assert(ctx->fs); struct panfrost_shader_state *variant = &ctx->fs->variants[ctx->fs->active_variant]; #define COPY(name) ctx->fragment_shader_core.name = variant->tripipe->name COPY(shader); COPY(attribute_count); COPY(varying_count); COPY(midgard1.uniform_count); COPY(midgard1.work_count); COPY(midgard1.unknown2); #undef COPY /* If there is a blend shader, work registers are shared */ if (ctx->blend->has_blend_shader) ctx->fragment_shader_core.midgard1.work_count = /*MAX2(ctx->fragment_shader_core.midgard1.work_count, ctx->blend->blend_work_count)*/16; /* Set late due to depending on render state */ /* The one at the end seems to mean "1 UBO" */ ctx->fragment_shader_core.midgard1.unknown1 = MALI_NO_ALPHA_TO_COVERAGE | 0x200 | 0x2201; /* Assign texture/sample count right before upload */ ctx->fragment_shader_core.texture_count = ctx->sampler_view_count[PIPE_SHADER_FRAGMENT]; ctx->fragment_shader_core.sampler_count = ctx->sampler_count[PIPE_SHADER_FRAGMENT]; /* Assign the stencil refs late */ ctx->fragment_shader_core.stencil_front.ref = ctx->stencil_ref.ref_value[0]; ctx->fragment_shader_core.stencil_back.ref = ctx->stencil_ref.ref_value[1]; /* CAN_DISCARD should be set if the fragment shader possibly * contains a 'discard' instruction. It is likely this is * related to optimizations related to forward-pixel kill, as * per "Mali Performance 3: Is EGL_BUFFER_PRESERVED a good * thing?" by Peter Harris */ if (variant->can_discard) { ctx->fragment_shader_core.unknown2_3 |= MALI_CAN_DISCARD; ctx->fragment_shader_core.midgard1.unknown1 &= ~MALI_NO_ALPHA_TO_COVERAGE; ctx->fragment_shader_core.midgard1.unknown1 |= 0x4000; ctx->fragment_shader_core.midgard1.unknown1 = 0x4200; } /* Check if we're using the default blend descriptor (fast path) */ bool no_blending = !ctx->blend->has_blend_shader && (ctx->blend->equation.rgb_mode == 0x122) && (ctx->blend->equation.alpha_mode == 0x122) && (ctx->blend->equation.color_mask == 0xf); /* Even on MFBD, the shader descriptor gets blend shaders. It's * *also* copied to the blend_meta appended (by convention), * but this is the field actually read by the hardware. (Or * maybe both are read...?) */ if (ctx->blend->has_blend_shader) { ctx->fragment_shader_core.blend.shader = ctx->blend->blend_shader; } if (ctx->require_sfbd) { /* When only a single render target platform is used, the blend * information is inside the shader meta itself. We * additionally need to signal CAN_DISCARD for nontrivial blend * modes (so we're able to read back the destination buffer) */ if (!ctx->blend->has_blend_shader) { ctx->fragment_shader_core.blend.equation = ctx->blend->equation; } if (!no_blending) { ctx->fragment_shader_core.unknown2_3 |= MALI_CAN_DISCARD; } } size_t size = sizeof(struct mali_shader_meta) + sizeof(struct midgard_blend_rt); struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, size); memcpy(transfer.cpu, &ctx->fragment_shader_core, sizeof(struct mali_shader_meta)); ctx->payload_tiler.postfix._shader_upper = (transfer.gpu) >> 4; if (!ctx->require_sfbd) { /* Additional blend descriptor tacked on for jobs using MFBD */ unsigned blend_count = 0x200; if (ctx->blend->has_blend_shader) { /* For a blend shader, the bottom nibble corresponds to * the number of work registers used, which signals the * -existence- of a blend shader */ assert(ctx->blend->blend_work_count >= 2); blend_count |= MIN2(ctx->blend->blend_work_count, 3); } else { /* Otherwise, the bottom bit simply specifies if * blending (anything other than REPLACE) is enabled */ if (!no_blending) blend_count |= 0x1; } struct midgard_blend_rt rts[4]; /* TODO: MRT */ for (unsigned i = 0; i < 1; ++i) { rts[i].flags = blend_count; if (ctx->blend->has_blend_shader) rts[i].blend.shader = ctx->blend->blend_shader; else rts[i].blend.equation = ctx->blend->equation; } memcpy(transfer.cpu + sizeof(struct mali_shader_meta), rts, sizeof(rts[0]) * 1); } } /* We stage to transient, so always dirty.. */ panfrost_stage_attributes(ctx); if (ctx->dirty & PAN_DIRTY_SAMPLERS) { /* Upload samplers back to back, no padding */ for (int t = 0; t <= PIPE_SHADER_FRAGMENT; ++t) { if (!ctx->sampler_count[t]) continue; struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, sizeof(struct mali_sampler_descriptor) * ctx->sampler_count[t]); struct mali_sampler_descriptor *desc = (struct mali_sampler_descriptor *) transfer.cpu; for (int i = 0; i < ctx->sampler_count[t]; ++i) { desc[i] = ctx->samplers[t][i]->hw; } if (t == PIPE_SHADER_FRAGMENT) ctx->payload_tiler.postfix.sampler_descriptor = transfer.gpu; else if (t == PIPE_SHADER_VERTEX) ctx->payload_vertex.postfix.sampler_descriptor = transfer.gpu; else assert(0); } } if (ctx->dirty & PAN_DIRTY_TEXTURES) { for (int t = 0; t <= PIPE_SHADER_FRAGMENT; ++t) { /* Shortcircuit */ if (!ctx->sampler_view_count[t]) continue; uint64_t trampolines[PIPE_MAX_SHADER_SAMPLER_VIEWS]; for (int i = 0; i < ctx->sampler_view_count[t]; ++i) { if (!ctx->sampler_views[t][i]) continue; struct pipe_resource *tex_rsrc = ctx->sampler_views[t][i]->base.texture; struct panfrost_resource *rsrc = (struct panfrost_resource *) tex_rsrc; /* Inject the addresses in, interleaving cube * faces and mip levels appropriately. */ for (int l = 0; l <= tex_rsrc->last_level; ++l) { for (int f = 0; f < tex_rsrc->array_size; ++f) { unsigned idx = (l * tex_rsrc->array_size) + f; ctx->sampler_views[t][i]->hw.swizzled_bitmaps[idx] = rsrc->bo->gpu + rsrc->bo->slices[l].offset + f * rsrc->bo->cubemap_stride; } } trampolines[i] = panfrost_upload_transient(ctx, &ctx->sampler_views[t][i]->hw, sizeof(struct mali_texture_descriptor)); } mali_ptr trampoline = panfrost_upload_transient(ctx, trampolines, sizeof(uint64_t) * ctx->sampler_view_count[t]); if (t == PIPE_SHADER_FRAGMENT) ctx->payload_tiler.postfix.texture_trampoline = trampoline; else if (t == PIPE_SHADER_VERTEX) ctx->payload_vertex.postfix.texture_trampoline = trampoline; else assert(0); } } const struct pipe_viewport_state *vp = &ctx->pipe_viewport; /* For flipped-Y buffers (signaled by negative scale), the translate is * flipped as well */ bool invert_y = vp->scale[1] < 0.0; float translate_y = vp->translate[1]; if (invert_y) translate_y = ctx->pipe_framebuffer.height - translate_y; for (int i = 0; i <= PIPE_SHADER_FRAGMENT; ++i) { struct panfrost_constant_buffer *buf = &ctx->constant_buffer[i]; struct panfrost_shader_state *vs = &ctx->vs->variants[ctx->vs->active_variant]; struct panfrost_shader_state *fs = &ctx->fs->variants[ctx->fs->active_variant]; struct panfrost_shader_state *ss = (i == PIPE_SHADER_FRAGMENT) ? fs : vs; /* Allocate room for the sysval and the uniforms */ size_t sys_size = sizeof(float) * 4 * ss->sysval_count; size_t size = sys_size + buf->size; struct panfrost_transfer transfer = panfrost_allocate_transient(ctx, size); /* Upload sysvals requested by the shader */ float *uniforms = (float *) transfer.cpu; for (unsigned i = 0; i < ss->sysval_count; ++i) { int sysval = ss->sysval[i]; if (sysval == PAN_SYSVAL_VIEWPORT_SCALE) { uniforms[4*i + 0] = vp->scale[0]; uniforms[4*i + 1] = fabsf(vp->scale[1]); uniforms[4*i + 2] = vp->scale[2]; } else if (sysval == PAN_SYSVAL_VIEWPORT_OFFSET) { uniforms[4*i + 0] = vp->translate[0]; uniforms[4*i + 1] = translate_y; uniforms[4*i + 2] = vp->translate[2]; } else { assert(0); } } /* Upload uniforms */ memcpy(transfer.cpu + sys_size, buf->buffer, buf->size); int uniform_count = 0; struct mali_vertex_tiler_postfix *postfix; switch (i) { case PIPE_SHADER_VERTEX: uniform_count = ctx->vs->variants[ctx->vs->active_variant].uniform_count; postfix = &ctx->payload_vertex.postfix; break; case PIPE_SHADER_FRAGMENT: uniform_count = ctx->fs->variants[ctx->fs->active_variant].uniform_count; postfix = &ctx->payload_tiler.postfix; break; default: DBG("Unknown shader stage %d in uniform upload\n", i); assert(0); } /* Also attach the same buffer as a UBO for extended access */ struct mali_uniform_buffer_meta uniform_buffers[] = { { .size = MALI_POSITIVE((2 + uniform_count)), .ptr = transfer.gpu >> 2, }, }; mali_ptr ubufs = panfrost_upload_transient(ctx, uniform_buffers, sizeof(uniform_buffers)); postfix->uniforms = transfer.gpu; postfix->uniform_buffers = ubufs; buf->dirty = 0; } /* TODO: Upload the viewport somewhere more appropriate */ /* Clip bounds are encoded as floats. The viewport itself is encoded as * (somewhat) asymmetric ints. */ const struct pipe_scissor_state *ss = &ctx->scissor; struct mali_viewport view = { /* By default, do no viewport clipping, i.e. clip to (-inf, * inf) in each direction. Clipping to the viewport in theory * should work, but in practice causes issues when we're not * explicitly trying to scissor */ .clip_minx = -inff, .clip_miny = -inff, .clip_maxx = inff, .clip_maxy = inff, .clip_minz = 0.0, .clip_maxz = 1.0, }; /* Always scissor to the viewport by default. */ view.viewport0[0] = (int) (vp->translate[0] - vp->scale[0]); view.viewport1[0] = MALI_POSITIVE((int) (vp->translate[0] + vp->scale[0])); view.viewport0[1] = (int) (translate_y - fabs(vp->scale[1])); view.viewport1[1] = MALI_POSITIVE((int) (translate_y + fabs(vp->scale[1]))); if (ss && ctx->rasterizer && ctx->rasterizer->base.scissor) { /* Invert scissor if needed */ unsigned miny = invert_y ? ctx->pipe_framebuffer.height - ss->maxy : ss->miny; unsigned maxy = invert_y ? ctx->pipe_framebuffer.height - ss->miny : ss->maxy; /* Set the actual scissor */ view.viewport0[0] = ss->minx; view.viewport0[1] = miny; view.viewport1[0] = MALI_POSITIVE(ss->maxx); view.viewport1[1] = MALI_POSITIVE(maxy); } ctx->payload_tiler.postfix.viewport = panfrost_upload_transient(ctx, &view, sizeof(struct mali_viewport)); ctx->dirty = 0; } /* Corresponds to exactly one draw, but does not submit anything */ static void panfrost_queue_draw(struct panfrost_context *ctx) { /* TODO: Expand the array? */ if (ctx->draw_count >= MAX_DRAW_CALLS) { DBG("Job buffer overflow, ignoring draw\n"); assert(0); } /* Handle dirty flags now */ panfrost_emit_for_draw(ctx, true); struct panfrost_transfer vertex = panfrost_vertex_tiler_job(ctx, false, false); struct panfrost_transfer tiler = panfrost_vertex_tiler_job(ctx, true, false); ctx->u_vertex_jobs[ctx->vertex_job_count] = (struct mali_job_descriptor_header *) vertex.cpu; ctx->vertex_jobs[ctx->vertex_job_count++] = vertex.gpu; ctx->u_tiler_jobs[ctx->tiler_job_count] = (struct mali_job_descriptor_header *) tiler.cpu; ctx->tiler_jobs[ctx->tiler_job_count++] = tiler.gpu; ctx->draw_count++; } /* At the end of the frame, the vertex and tiler jobs are linked together and * then the fragment job is plonked at the end. Set value job is first for * unknown reasons. */ static void panfrost_link_job_pair(struct mali_job_descriptor_header *first, mali_ptr next) { if (first->job_descriptor_size) first->next_job_64 = (u64) (uintptr_t) next; else first->next_job_32 = (u32) (uintptr_t) next; } static void panfrost_link_jobs(struct panfrost_context *ctx) { if (ctx->draw_count) { /* Generate the set_value_job */ panfrost_set_value_job(ctx); /* Have the first vertex job depend on the set value job */ ctx->u_vertex_jobs[0]->job_dependency_index_1 = ctx->u_set_value_job->job_index; /* SV -> V */ panfrost_link_job_pair(ctx->u_set_value_job, ctx->vertex_jobs[0]); } /* V -> V/T ; T -> T/null */ for (int i = 0; i < ctx->vertex_job_count; ++i) { bool isLast = (i + 1) == ctx->vertex_job_count; panfrost_link_job_pair(ctx->u_vertex_jobs[i], isLast ? ctx->tiler_jobs[0] : ctx->vertex_jobs[i + 1]); } /* T -> T/null */ for (int i = 0; i < ctx->tiler_job_count; ++i) { bool isLast = (i + 1) == ctx->tiler_job_count; panfrost_link_job_pair(ctx->u_tiler_jobs[i], isLast ? 0 : ctx->tiler_jobs[i + 1]); } } /* The entire frame is in memory -- send it off to the kernel! */ static void panfrost_submit_frame(struct panfrost_context *ctx, bool flush_immediate, struct pipe_fence_handle **fence, struct panfrost_job *job) { struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_screen *screen = pan_screen(gallium->screen); /* Edge case if screen is cleared and nothing else */ bool has_draws = ctx->draw_count > 0; /* Workaround a bizarre lockup (a hardware errata?) */ if (!has_draws) flush_immediate = true; /* A number of jobs are batched -- this must be linked and cleared */ panfrost_link_jobs(ctx); ctx->draw_count = 0; ctx->vertex_job_count = 0; ctx->tiler_job_count = 0; #ifndef DRY_RUN bool is_scanout = panfrost_is_scanout(ctx); screen->driver->submit_vs_fs_job(ctx, has_draws, is_scanout); /* If visual, we can stall a frame */ if (!flush_immediate) screen->driver->force_flush_fragment(ctx, fence); screen->last_fragment_flushed = false; screen->last_job = job; /* If readback, flush now (hurts the pipelined performance) */ if (flush_immediate) screen->driver->force_flush_fragment(ctx, fence); if (screen->driver->dump_counters && pan_counters_base) { screen->driver->dump_counters(screen); char filename[128]; snprintf(filename, sizeof(filename), "%s/frame%d.mdgprf", pan_counters_base, ++performance_counter_number); FILE *fp = fopen(filename, "wb"); fwrite(screen->perf_counters.cpu, 4096, sizeof(uint32_t), fp); fclose(fp); } #endif } void panfrost_flush( struct pipe_context *pipe, struct pipe_fence_handle **fence, unsigned flags) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_job *job = panfrost_get_job_for_fbo(ctx); /* Nothing to do! */ if (!ctx->draw_count && !job->clear) return; /* Whether to stall the pipeline for immediately correct results */ bool flush_immediate = flags & PIPE_FLUSH_END_OF_FRAME; /* Submit the frame itself */ panfrost_submit_frame(ctx, flush_immediate, fence, job); /* Prepare for the next frame */ panfrost_invalidate_frame(ctx); } #define DEFINE_CASE(c) case PIPE_PRIM_##c: return MALI_##c; static int g2m_draw_mode(enum pipe_prim_type mode) { switch (mode) { DEFINE_CASE(POINTS); DEFINE_CASE(LINES); DEFINE_CASE(LINE_LOOP); DEFINE_CASE(LINE_STRIP); DEFINE_CASE(TRIANGLES); DEFINE_CASE(TRIANGLE_STRIP); DEFINE_CASE(TRIANGLE_FAN); DEFINE_CASE(QUADS); DEFINE_CASE(QUAD_STRIP); DEFINE_CASE(POLYGON); default: DBG("Illegal draw mode %d\n", mode); assert(0); return MALI_LINE_LOOP; } } #undef DEFINE_CASE static unsigned panfrost_translate_index_size(unsigned size) { switch (size) { case 1: return MALI_DRAW_INDEXED_UINT8; case 2: return MALI_DRAW_INDEXED_UINT16; case 4: return MALI_DRAW_INDEXED_UINT32; default: DBG("Unknown index size %d\n", size); assert(0); return 0; } } /* Gets a GPU address for the associated index buffer. Only gauranteed to be * good for the duration of the draw (transient), could last longer */ static mali_ptr panfrost_get_index_buffer_mapped(struct panfrost_context *ctx, const struct pipe_draw_info *info) { struct panfrost_resource *rsrc = (struct panfrost_resource *) (info->index.resource); off_t offset = info->start * info->index_size; if (!info->has_user_indices) { /* Only resources can be directly mapped */ return rsrc->bo->gpu + offset; } else { /* Otherwise, we need to upload to transient memory */ const uint8_t *ibuf8 = (const uint8_t *) info->index.user; return panfrost_upload_transient(ctx, ibuf8 + offset, info->count * info->index_size); } } static void panfrost_draw_vbo( struct pipe_context *pipe, const struct pipe_draw_info *info) { struct panfrost_context *ctx = pan_context(pipe); ctx->payload_vertex.draw_start = info->start; ctx->payload_tiler.draw_start = info->start; int mode = info->mode; /* Fallback for unsupported modes */ if (!(ctx->draw_modes & (1 << mode))) { if (mode == PIPE_PRIM_QUADS && info->count == 4 && ctx->rasterizer && !ctx->rasterizer->base.flatshade) { mode = PIPE_PRIM_TRIANGLE_FAN; } else { if (info->count < 4) { /* Degenerate case? */ return; } util_primconvert_save_rasterizer_state(ctx->primconvert, &ctx->rasterizer->base); util_primconvert_draw_vbo(ctx->primconvert, info); return; } } /* Now that we have a guaranteed terminating path, find the job. * Assignment commented out to prevent unused warning */ /* struct panfrost_job *job = */ panfrost_get_job_for_fbo(ctx); ctx->payload_tiler.prefix.draw_mode = g2m_draw_mode(mode); ctx->vertex_count = info->count; /* For non-indexed draws, they're the same */ unsigned invocation_count = ctx->vertex_count; unsigned draw_flags = 0; /* The draw flags interpret how primitive size is interpreted */ if (panfrost_writes_point_size(ctx)) draw_flags |= MALI_DRAW_VARYING_SIZE; /* For higher amounts of vertices (greater than what fits in a 16-bit * short), the other value is needed, otherwise there will be bizarre * rendering artefacts. It's not clear what these values mean yet. */ draw_flags |= (mode == PIPE_PRIM_POINTS || ctx->vertex_count > 65535) ? 0x3000 : 0x18000; if (info->index_size) { /* Calculate the min/max index used so we can figure out how * many times to invoke the vertex shader */ /* Fetch / calculate index bounds */ unsigned min_index = 0, max_index = 0; if (info->max_index == ~0u) { u_vbuf_get_minmax_index(pipe, info, &min_index, &max_index); } else { min_index = info->min_index; max_index = info->max_index; } /* Use the corresponding values */ invocation_count = max_index - min_index + 1; ctx->payload_vertex.draw_start = min_index; ctx->payload_tiler.draw_start = min_index; ctx->payload_tiler.prefix.negative_start = -min_index; ctx->payload_tiler.prefix.index_count = MALI_POSITIVE(info->count); //assert(!info->restart_index); /* TODO: Research */ assert(!info->index_bias); draw_flags |= panfrost_translate_index_size(info->index_size); ctx->payload_tiler.prefix.indices = panfrost_get_index_buffer_mapped(ctx, info); } else { /* Index count == vertex count, if no indexing is applied, as * if it is internally indexed in the expected order */ ctx->payload_tiler.prefix.negative_start = 0; ctx->payload_tiler.prefix.index_count = MALI_POSITIVE(ctx->vertex_count); /* Reverse index state */ ctx->payload_tiler.prefix.indices = (uintptr_t) NULL; } ctx->payload_vertex.prefix.invocation_count = MALI_POSITIVE(invocation_count); ctx->payload_tiler.prefix.invocation_count = MALI_POSITIVE(invocation_count); ctx->payload_tiler.prefix.unknown_draw = draw_flags; /* Fire off the draw itself */ panfrost_queue_draw(ctx); } /* CSO state */ static void panfrost_generic_cso_delete(struct pipe_context *pctx, void *hwcso) { free(hwcso); } static void * panfrost_create_rasterizer_state( struct pipe_context *pctx, const struct pipe_rasterizer_state *cso) { struct panfrost_context *ctx = pan_context(pctx); struct panfrost_rasterizer *so = CALLOC_STRUCT(panfrost_rasterizer); so->base = *cso; /* Bitmask, unknown meaning of the start value */ so->tiler_gl_enables = ctx->is_t6xx ? 0x105 : 0x7; so->tiler_gl_enables |= MALI_FRONT_FACE( cso->front_ccw ? MALI_CCW : MALI_CW); if (cso->cull_face & PIPE_FACE_FRONT) so->tiler_gl_enables |= MALI_CULL_FACE_FRONT; if (cso->cull_face & PIPE_FACE_BACK) so->tiler_gl_enables |= MALI_CULL_FACE_BACK; return so; } static void panfrost_bind_rasterizer_state( struct pipe_context *pctx, void *hwcso) { struct panfrost_context *ctx = pan_context(pctx); /* TODO: Why can't rasterizer be NULL ever? Other drivers are fine.. */ if (!hwcso) return; ctx->rasterizer = hwcso; ctx->dirty |= PAN_DIRTY_RASTERIZER; } static void * panfrost_create_vertex_elements_state( struct pipe_context *pctx, unsigned num_elements, const struct pipe_vertex_element *elements) { struct panfrost_vertex_state *so = CALLOC_STRUCT(panfrost_vertex_state); so->num_elements = num_elements; memcpy(so->pipe, elements, sizeof(*elements) * num_elements); /* XXX: What the cornball? This is totally, 100%, unapologetically * nonsense. And yet it somehow fixes a regression in -bshadow * (previously, we allocated the descriptor here... a newer commit * removed that allocation, and then memory corruption led to * shader_meta getting overwritten in bad ways and then the whole test * case falling apart . TODO: LOOK INTO PLEASE XXX XXX BAD XXX XXX XXX */ panfrost_allocate_chunk(pan_context(pctx), 0, HEAP_DESCRIPTOR); for (int i = 0; i < num_elements; ++i) { so->hw[i].index = elements[i].vertex_buffer_index; enum pipe_format fmt = elements[i].src_format; const struct util_format_description *desc = util_format_description(fmt); so->hw[i].unknown1 = 0x2; so->hw[i].swizzle = panfrost_get_default_swizzle(desc->nr_channels); so->hw[i].format = panfrost_find_format(desc); /* The field itself should probably be shifted over */ so->hw[i].src_offset = elements[i].src_offset; } return so; } static void panfrost_bind_vertex_elements_state( struct pipe_context *pctx, void *hwcso) { struct panfrost_context *ctx = pan_context(pctx); ctx->vertex = hwcso; ctx->dirty |= PAN_DIRTY_VERTEX; } static void panfrost_delete_vertex_elements_state(struct pipe_context *pctx, void *hwcso) { struct panfrost_vertex_state *so = (struct panfrost_vertex_state *) hwcso; unsigned bytes = sizeof(struct mali_attr_meta) * so->num_elements; DBG("Vertex elements delete leaks descriptor (%d bytes)\n", bytes); free(hwcso); } static void * panfrost_create_shader_state( struct pipe_context *pctx, const struct pipe_shader_state *cso) { struct panfrost_shader_variants *so = CALLOC_STRUCT(panfrost_shader_variants); so->base = *cso; /* Token deep copy to prevent memory corruption */ if (cso->type == PIPE_SHADER_IR_TGSI) so->base.tokens = tgsi_dup_tokens(so->base.tokens); return so; } static void panfrost_delete_shader_state( struct pipe_context *pctx, void *so) { struct panfrost_shader_variants *cso = (struct panfrost_shader_variants *) so; if (cso->base.type == PIPE_SHADER_IR_TGSI) { DBG("Deleting TGSI shader leaks duplicated tokens\n"); } unsigned leak = cso->variant_count * sizeof(struct mali_shader_meta); DBG("Deleting shader state leaks descriptors (%d bytes), and shader bytecode\n", leak); free(so); } static void * panfrost_create_sampler_state( struct pipe_context *pctx, const struct pipe_sampler_state *cso) { struct panfrost_sampler_state *so = CALLOC_STRUCT(panfrost_sampler_state); so->base = *cso; /* sampler_state corresponds to mali_sampler_descriptor, which we can generate entirely here */ struct mali_sampler_descriptor sampler_descriptor = { .filter_mode = MALI_TEX_MIN(translate_tex_filter(cso->min_img_filter)) | MALI_TEX_MAG(translate_tex_filter(cso->mag_img_filter)) | translate_mip_filter(cso->min_mip_filter) | 0x20, .wrap_s = translate_tex_wrap(cso->wrap_s), .wrap_t = translate_tex_wrap(cso->wrap_t), .wrap_r = translate_tex_wrap(cso->wrap_r), .compare_func = panfrost_translate_alt_compare_func(cso->compare_func), .border_color = { cso->border_color.f[0], cso->border_color.f[1], cso->border_color.f[2], cso->border_color.f[3] }, .min_lod = FIXED_16(cso->min_lod), .max_lod = FIXED_16(cso->max_lod), .unknown2 = 1, }; so->hw = sampler_descriptor; return so; } static void panfrost_bind_sampler_states( struct pipe_context *pctx, enum pipe_shader_type shader, unsigned start_slot, unsigned num_sampler, void **sampler) { assert(start_slot == 0); struct panfrost_context *ctx = pan_context(pctx); /* XXX: Should upload, not just copy? */ ctx->sampler_count[shader] = num_sampler; memcpy(ctx->samplers[shader], sampler, num_sampler * sizeof (void *)); ctx->dirty |= PAN_DIRTY_SAMPLERS; } static bool panfrost_variant_matches(struct panfrost_context *ctx, struct panfrost_shader_state *variant) { struct pipe_alpha_state *alpha = &ctx->depth_stencil->alpha; if (alpha->enabled || variant->alpha_state.enabled) { /* Make sure enable state is at least the same */ if (alpha->enabled != variant->alpha_state.enabled) { return false; } /* Check that the contents of the test are the same */ bool same_func = alpha->func == variant->alpha_state.func; bool same_ref = alpha->ref_value == variant->alpha_state.ref_value; if (!(same_func && same_ref)) { return false; } } /* Otherwise, we're good to go */ return true; } static void panfrost_bind_fs_state( struct pipe_context *pctx, void *hwcso) { struct panfrost_context *ctx = pan_context(pctx); ctx->fs = hwcso; if (hwcso) { /* Match the appropriate variant */ signed variant = -1; struct panfrost_shader_variants *variants = (struct panfrost_shader_variants *) hwcso; for (unsigned i = 0; i < variants->variant_count; ++i) { if (panfrost_variant_matches(ctx, &variants->variants[i])) { variant = i; break; } } if (variant == -1) { /* No variant matched, so create a new one */ variant = variants->variant_count++; assert(variants->variant_count < MAX_SHADER_VARIANTS); variants->variants[variant].base = hwcso; variants->variants[variant].alpha_state = ctx->depth_stencil->alpha; /* Allocate the mapped descriptor ahead-of-time. TODO: Use for FS as well as VS */ struct panfrost_context *ctx = pan_context(pctx); struct panfrost_transfer transfer = panfrost_allocate_chunk(ctx, sizeof(struct mali_shader_meta), HEAP_DESCRIPTOR); variants->variants[variant].tripipe = (struct mali_shader_meta *) transfer.cpu; variants->variants[variant].tripipe_gpu = transfer.gpu; } /* Select this variant */ variants->active_variant = variant; struct panfrost_shader_state *shader_state = &variants->variants[variant]; assert(panfrost_variant_matches(ctx, shader_state)); /* Now we have a variant selected, so compile and go */ if (!shader_state->compiled) { panfrost_shader_compile(ctx, shader_state->tripipe, NULL, JOB_TYPE_TILER, shader_state); shader_state->compiled = true; } } ctx->dirty |= PAN_DIRTY_FS; } static void panfrost_bind_vs_state( struct pipe_context *pctx, void *hwcso) { struct panfrost_context *ctx = pan_context(pctx); ctx->vs = hwcso; if (hwcso) { if (!ctx->vs->variants[0].compiled) { ctx->vs->variants[0].base = hwcso; /* TODO DRY from above */ struct panfrost_transfer transfer = panfrost_allocate_chunk(ctx, sizeof(struct mali_shader_meta), HEAP_DESCRIPTOR); ctx->vs->variants[0].tripipe = (struct mali_shader_meta *) transfer.cpu; ctx->vs->variants[0].tripipe_gpu = transfer.gpu; panfrost_shader_compile(ctx, ctx->vs->variants[0].tripipe, NULL, JOB_TYPE_VERTEX, &ctx->vs->variants[0]); ctx->vs->variants[0].compiled = true; } } ctx->dirty |= PAN_DIRTY_VS; } static void panfrost_set_vertex_buffers( struct pipe_context *pctx, unsigned start_slot, unsigned num_buffers, const struct pipe_vertex_buffer *buffers) { struct panfrost_context *ctx = pan_context(pctx); util_set_vertex_buffers_mask(ctx->vertex_buffers, &ctx->vb_mask, buffers, start_slot, num_buffers); } static void panfrost_set_constant_buffer( struct pipe_context *pctx, enum pipe_shader_type shader, uint index, const struct pipe_constant_buffer *buf) { struct panfrost_context *ctx = pan_context(pctx); struct panfrost_constant_buffer *pbuf = &ctx->constant_buffer[shader]; size_t sz = buf ? buf->buffer_size : 0; /* Free previous buffer */ pbuf->dirty = true; pbuf->size = sz; if (pbuf->buffer) { free(pbuf->buffer); pbuf->buffer = NULL; } /* If unbinding, we're done */ if (!buf) return; /* Multiple constant buffers not yet supported */ assert(index == 0); const uint8_t *cpu; struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer); if (rsrc) { cpu = rsrc->bo->cpu; } else if (buf->user_buffer) { cpu = buf->user_buffer; } else { DBG("No constant buffer?\n"); return; } /* Copy the constant buffer into the driver context for later upload */ pbuf->buffer = malloc(sz); memcpy(pbuf->buffer, cpu + buf->buffer_offset, sz); } static void panfrost_set_stencil_ref( struct pipe_context *pctx, const struct pipe_stencil_ref *ref) { struct panfrost_context *ctx = pan_context(pctx); ctx->stencil_ref = *ref; /* Shader core dirty */ ctx->dirty |= PAN_DIRTY_FS; } static struct pipe_sampler_view * panfrost_create_sampler_view( struct pipe_context *pctx, struct pipe_resource *texture, const struct pipe_sampler_view *template) { struct panfrost_sampler_view *so = CALLOC_STRUCT(panfrost_sampler_view); int bytes_per_pixel = util_format_get_blocksize(texture->format); pipe_reference(NULL, &texture->reference); struct panfrost_resource *prsrc = (struct panfrost_resource *) texture; so->base = *template; so->base.texture = texture; so->base.reference.count = 1; so->base.context = pctx; /* sampler_views correspond to texture descriptors, minus the texture * (data) itself. So, we serialise the descriptor here and cache it for * later. */ /* Make sure it's something with which we're familiar */ assert(bytes_per_pixel >= 1 && bytes_per_pixel <= 4); /* TODO: Detect from format better */ const struct util_format_description *desc = util_format_description(prsrc->base.format); unsigned char user_swizzle[4] = { template->swizzle_r, template->swizzle_g, template->swizzle_b, template->swizzle_a }; enum mali_format format = panfrost_find_format(desc); bool is_depth = desc->format == PIPE_FORMAT_Z32_UNORM; unsigned usage2_layout = 0x10; switch (prsrc->bo->layout) { case PAN_AFBC: usage2_layout |= 0x8 | 0x4; break; case PAN_TILED: usage2_layout |= 0x1; break; case PAN_LINEAR: usage2_layout |= is_depth ? 0x1 : 0x2; break; default: assert(0); break; } struct mali_texture_descriptor texture_descriptor = { .width = MALI_POSITIVE(texture->width0), .height = MALI_POSITIVE(texture->height0), .depth = MALI_POSITIVE(texture->depth0), /* TODO: Decode */ .format = { .swizzle = panfrost_translate_swizzle_4(desc->swizzle), .format = format, .usage1 = 0x0, .is_not_cubemap = texture->target != PIPE_TEXTURE_CUBE, .usage2 = usage2_layout }, .swizzle = panfrost_translate_swizzle_4(user_swizzle) }; /* TODO: Other base levels require adjusting dimensions / level numbers / etc */ assert (template->u.tex.first_level == 0); /* Disable mipmapping for now to avoid regressions while automipmapping * is being implemented. TODO: Remove me once automipmaps work */ //texture_descriptor.nr_mipmap_levels = template->u.tex.last_level - template->u.tex.first_level; texture_descriptor.nr_mipmap_levels = 0; so->hw = texture_descriptor; return (struct pipe_sampler_view *) so; } static void panfrost_set_sampler_views( struct pipe_context *pctx, enum pipe_shader_type shader, unsigned start_slot, unsigned num_views, struct pipe_sampler_view **views) { struct panfrost_context *ctx = pan_context(pctx); assert(start_slot == 0); ctx->sampler_view_count[shader] = num_views; memcpy(ctx->sampler_views[shader], views, num_views * sizeof (void *)); ctx->dirty |= PAN_DIRTY_TEXTURES; } static void panfrost_sampler_view_destroy( struct pipe_context *pctx, struct pipe_sampler_view *views) { //struct panfrost_context *ctx = pan_context(pctx); /* TODO */ free(views); } static void panfrost_set_framebuffer_state(struct pipe_context *pctx, const struct pipe_framebuffer_state *fb) { struct panfrost_context *ctx = pan_context(pctx); /* Flush when switching away from an FBO */ if (!panfrost_is_scanout(ctx)) { panfrost_flush(pctx, NULL, 0); } ctx->pipe_framebuffer.nr_cbufs = fb->nr_cbufs; ctx->pipe_framebuffer.samples = fb->samples; ctx->pipe_framebuffer.layers = fb->layers; ctx->pipe_framebuffer.width = fb->width; ctx->pipe_framebuffer.height = fb->height; for (int i = 0; i < PIPE_MAX_COLOR_BUFS; i++) { struct pipe_surface *cb = i < fb->nr_cbufs ? fb->cbufs[i] : NULL; /* check if changing cbuf */ if (ctx->pipe_framebuffer.cbufs[i] == cb) continue; if (cb && (i != 0)) { DBG("XXX: Multiple render targets not supported before t7xx!\n"); assert(0); } /* assign new */ pipe_surface_reference(&ctx->pipe_framebuffer.cbufs[i], cb); if (!cb) continue; if (ctx->require_sfbd) ctx->vt_framebuffer_sfbd = panfrost_emit_sfbd(ctx); else ctx->vt_framebuffer_mfbd = panfrost_emit_mfbd(ctx); panfrost_attach_vt_framebuffer(ctx); struct panfrost_resource *tex = ((struct panfrost_resource *) ctx->pipe_framebuffer.cbufs[i]->texture); enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format; bool is_scanout = panfrost_is_scanout(ctx); if (!is_scanout && tex->bo->layout != PAN_AFBC && panfrost_can_afbc(format)) { /* The blob is aggressive about enabling AFBC. As such, * it's pretty much necessary to use it here, since we * have no traces of non-compressed FBO. */ panfrost_enable_afbc(ctx, tex, false); } if (!is_scanout && !tex->bo->has_checksum) { /* Enable transaction elimination if we can */ panfrost_enable_checksum(ctx, tex); } } { struct pipe_surface *zb = fb->zsbuf; if (ctx->pipe_framebuffer.zsbuf != zb) { pipe_surface_reference(&ctx->pipe_framebuffer.zsbuf, zb); if (zb) { /* FBO has depth */ if (ctx->require_sfbd) ctx->vt_framebuffer_sfbd = panfrost_emit_sfbd(ctx); else ctx->vt_framebuffer_mfbd = panfrost_emit_mfbd(ctx); panfrost_attach_vt_framebuffer(ctx); /* Keep the depth FBO linear */ } } } } static void * panfrost_create_blend_state(struct pipe_context *pipe, const struct pipe_blend_state *blend) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_blend_state *so = CALLOC_STRUCT(panfrost_blend_state); so->base = *blend; /* TODO: The following features are not yet implemented */ assert(!blend->logicop_enable); assert(!blend->alpha_to_coverage); assert(!blend->alpha_to_one); /* Compile the blend state, first as fixed-function if we can */ if (panfrost_make_fixed_blend_mode(&blend->rt[0], &so->equation, blend->rt[0].colormask, &ctx->blend_color)) return so; /* If we can't, compile a blend shader instead */ panfrost_make_blend_shader(ctx, so, &ctx->blend_color); return so; } static void panfrost_bind_blend_state(struct pipe_context *pipe, void *cso) { struct panfrost_context *ctx = pan_context(pipe); struct pipe_blend_state *blend = (struct pipe_blend_state *) cso; struct panfrost_blend_state *pblend = (struct panfrost_blend_state *) cso; ctx->blend = pblend; if (!blend) return; SET_BIT(ctx->fragment_shader_core.unknown2_4, MALI_NO_DITHER, !blend->dither); /* TODO: Attach color */ /* Shader itself is not dirty, but the shader core is */ ctx->dirty |= PAN_DIRTY_FS; } static void panfrost_delete_blend_state(struct pipe_context *pipe, void *blend) { struct panfrost_blend_state *so = (struct panfrost_blend_state *) blend; if (so->has_blend_shader) { DBG("Deleting blend state leak blend shaders bytecode\n"); } free(blend); } static void panfrost_set_blend_color(struct pipe_context *pipe, const struct pipe_blend_color *blend_color) { struct panfrost_context *ctx = pan_context(pipe); /* If blend_color is we're unbinding, so ctx->blend_color is now undefined -> nothing to do */ if (blend_color) { ctx->blend_color = *blend_color; /* The blend mode depends on the blend constant color, due to the * fixed/programmable split. So, we're forced to regenerate the blend * equation */ /* TODO: Attach color */ } } static void * panfrost_create_depth_stencil_state(struct pipe_context *pipe, const struct pipe_depth_stencil_alpha_state *depth_stencil) { return mem_dup(depth_stencil, sizeof(*depth_stencil)); } static void panfrost_bind_depth_stencil_state(struct pipe_context *pipe, void *cso) { struct panfrost_context *ctx = pan_context(pipe); struct pipe_depth_stencil_alpha_state *depth_stencil = cso; ctx->depth_stencil = depth_stencil; if (!depth_stencil) return; /* Alpha does not exist in the hardware (it's not in ES3), so it's * emulated in the fragment shader */ if (depth_stencil->alpha.enabled) { /* We need to trigger a new shader (maybe) */ ctx->base.bind_fs_state(&ctx->base, ctx->fs); } /* Stencil state */ SET_BIT(ctx->fragment_shader_core.unknown2_4, MALI_STENCIL_TEST, depth_stencil->stencil[0].enabled); /* XXX: which one? */ panfrost_make_stencil_state(&depth_stencil->stencil[0], &ctx->fragment_shader_core.stencil_front); ctx->fragment_shader_core.stencil_mask_front = depth_stencil->stencil[0].writemask; panfrost_make_stencil_state(&depth_stencil->stencil[1], &ctx->fragment_shader_core.stencil_back); ctx->fragment_shader_core.stencil_mask_back = depth_stencil->stencil[1].writemask; /* Depth state (TODO: Refactor) */ SET_BIT(ctx->fragment_shader_core.unknown2_3, MALI_DEPTH_TEST, depth_stencil->depth.enabled); int func = depth_stencil->depth.enabled ? depth_stencil->depth.func : PIPE_FUNC_ALWAYS; ctx->fragment_shader_core.unknown2_3 &= ~MALI_DEPTH_FUNC_MASK; ctx->fragment_shader_core.unknown2_3 |= MALI_DEPTH_FUNC(panfrost_translate_compare_func(func)); /* Bounds test not implemented */ assert(!depth_stencil->depth.bounds_test); ctx->dirty |= PAN_DIRTY_FS; } static void panfrost_delete_depth_stencil_state(struct pipe_context *pipe, void *depth) { free( depth ); } static void panfrost_set_sample_mask(struct pipe_context *pipe, unsigned sample_mask) { } static void panfrost_set_clip_state(struct pipe_context *pipe, const struct pipe_clip_state *clip) { //struct panfrost_context *panfrost = pan_context(pipe); } static void panfrost_set_viewport_states(struct pipe_context *pipe, unsigned start_slot, unsigned num_viewports, const struct pipe_viewport_state *viewports) { struct panfrost_context *ctx = pan_context(pipe); assert(start_slot == 0); assert(num_viewports == 1); ctx->pipe_viewport = *viewports; #if 0 /* TODO: What if not centered? */ float w = abs(viewports->scale[0]) * 2.0; float h = abs(viewports->scale[1]) * 2.0; ctx->viewport.viewport1[0] = MALI_POSITIVE((int) w); ctx->viewport.viewport1[1] = MALI_POSITIVE((int) h); #endif } static void panfrost_set_scissor_states(struct pipe_context *pipe, unsigned start_slot, unsigned num_scissors, const struct pipe_scissor_state *scissors) { struct panfrost_context *ctx = pan_context(pipe); assert(start_slot == 0); assert(num_scissors == 1); ctx->scissor = *scissors; } static void panfrost_set_polygon_stipple(struct pipe_context *pipe, const struct pipe_poly_stipple *stipple) { //struct panfrost_context *panfrost = pan_context(pipe); } static void panfrost_set_active_query_state(struct pipe_context *pipe, boolean enable) { //struct panfrost_context *panfrost = pan_context(pipe); } static void panfrost_destroy(struct pipe_context *pipe) { struct panfrost_context *panfrost = pan_context(pipe); struct panfrost_screen *screen = pan_screen(pipe->screen); if (panfrost->blitter) util_blitter_destroy(panfrost->blitter); screen->driver->free_slab(screen, &panfrost->scratchpad); screen->driver->free_slab(screen, &panfrost->varying_mem); screen->driver->free_slab(screen, &panfrost->shaders); screen->driver->free_slab(screen, &panfrost->tiler_heap); screen->driver->free_slab(screen, &panfrost->misc_0); } static struct pipe_query * panfrost_create_query(struct pipe_context *pipe, unsigned type, unsigned index) { struct panfrost_query *q = CALLOC_STRUCT(panfrost_query); q->type = type; q->index = index; return (struct pipe_query *) q; } static void panfrost_destroy_query(struct pipe_context *pipe, struct pipe_query *q) { FREE(q); } static boolean panfrost_begin_query(struct pipe_context *pipe, struct pipe_query *q) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_query *query = (struct panfrost_query *) q; switch (query->type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: { /* Allocate a word for the query results to be stored */ query->transfer = panfrost_allocate_chunk(ctx, sizeof(unsigned), HEAP_DESCRIPTOR); ctx->occlusion_query = query; break; } default: DBG("Skipping query %d\n", query->type); break; } return true; } static bool panfrost_end_query(struct pipe_context *pipe, struct pipe_query *q) { struct panfrost_context *ctx = pan_context(pipe); ctx->occlusion_query = NULL; return true; } static boolean panfrost_get_query_result(struct pipe_context *pipe, struct pipe_query *q, boolean wait, union pipe_query_result *vresult) { /* STUB */ struct panfrost_query *query = (struct panfrost_query *) q; /* We need to flush out the jobs to actually run the counter, TODO * check wait, TODO wallpaper after if needed */ panfrost_flush(pipe, NULL, PIPE_FLUSH_END_OF_FRAME); switch (query->type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: { /* Read back the query results */ unsigned *result = (unsigned *) query->transfer.cpu; unsigned passed = *result; if (query->type == PIPE_QUERY_OCCLUSION_COUNTER) { vresult->u64 = passed; } else { vresult->b = !!passed; } break; } default: DBG("Skipped query get %d\n", query->type); break; } return true; } static struct pipe_stream_output_target * panfrost_create_stream_output_target(struct pipe_context *pctx, struct pipe_resource *prsc, unsigned buffer_offset, unsigned buffer_size) { struct pipe_stream_output_target *target; target = CALLOC_STRUCT(pipe_stream_output_target); if (!target) return NULL; pipe_reference_init(&target->reference, 1); pipe_resource_reference(&target->buffer, prsc); target->context = pctx; target->buffer_offset = buffer_offset; target->buffer_size = buffer_size; return target; } static void panfrost_stream_output_target_destroy(struct pipe_context *pctx, struct pipe_stream_output_target *target) { pipe_resource_reference(&target->buffer, NULL); free(target); } static void panfrost_set_stream_output_targets(struct pipe_context *pctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { /* STUB */ } static void panfrost_setup_hardware(struct panfrost_context *ctx) { struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_screen *screen = pan_screen(gallium->screen); for (int i = 0; i < ARRAY_SIZE(ctx->transient_pools); ++i) { /* Allocate the beginning of the transient pool */ int entry_size = (1 << 22); /* 4MB */ ctx->transient_pools[i].entry_size = entry_size; ctx->transient_pools[i].entry_count = 1; ctx->transient_pools[i].entries[0] = (struct panfrost_memory_entry *) pb_slab_alloc(&screen->slabs, entry_size, HEAP_TRANSIENT); } screen->driver->allocate_slab(screen, &ctx->scratchpad, 64, false, 0, 0, 0); screen->driver->allocate_slab(screen, &ctx->varying_mem, 16384, false, PAN_ALLOCATE_INVISIBLE | PAN_ALLOCATE_COHERENT_LOCAL, 0, 0); screen->driver->allocate_slab(screen, &ctx->shaders, 4096, true, PAN_ALLOCATE_EXECUTE, 0, 0); screen->driver->allocate_slab(screen, &ctx->tiler_heap, 32768, false, PAN_ALLOCATE_INVISIBLE | PAN_ALLOCATE_GROWABLE, 1, 128); screen->driver->allocate_slab(screen, &ctx->misc_0, 128*128, false, PAN_ALLOCATE_INVISIBLE | PAN_ALLOCATE_GROWABLE, 1, 128); } /* New context creation, which also does hardware initialisation since I don't * know the better way to structure this :smirk: */ struct pipe_context * panfrost_create_context(struct pipe_screen *screen, void *priv, unsigned flags) { struct panfrost_context *ctx = CALLOC_STRUCT(panfrost_context); struct panfrost_screen *pscreen = pan_screen(screen); memset(ctx, 0, sizeof(*ctx)); struct pipe_context *gallium = (struct pipe_context *) ctx; unsigned gpu_id; gpu_id = pscreen->driver->query_gpu_version(pscreen); ctx->is_t6xx = gpu_id <= 0x0750; /* For now, this flag means T760 or less */ ctx->require_sfbd = gpu_id < 0x0750; /* T760 is the first to support MFBD */ gallium->screen = screen; gallium->destroy = panfrost_destroy; gallium->set_framebuffer_state = panfrost_set_framebuffer_state; gallium->flush = panfrost_flush; gallium->clear = panfrost_clear; gallium->draw_vbo = panfrost_draw_vbo; gallium->set_vertex_buffers = panfrost_set_vertex_buffers; gallium->set_constant_buffer = panfrost_set_constant_buffer; gallium->set_stencil_ref = panfrost_set_stencil_ref; gallium->create_sampler_view = panfrost_create_sampler_view; gallium->set_sampler_views = panfrost_set_sampler_views; gallium->sampler_view_destroy = panfrost_sampler_view_destroy; gallium->create_rasterizer_state = panfrost_create_rasterizer_state; gallium->bind_rasterizer_state = panfrost_bind_rasterizer_state; gallium->delete_rasterizer_state = panfrost_generic_cso_delete; gallium->create_vertex_elements_state = panfrost_create_vertex_elements_state; gallium->bind_vertex_elements_state = panfrost_bind_vertex_elements_state; gallium->delete_vertex_elements_state = panfrost_delete_vertex_elements_state; gallium->create_fs_state = panfrost_create_shader_state; gallium->delete_fs_state = panfrost_delete_shader_state; gallium->bind_fs_state = panfrost_bind_fs_state; gallium->create_vs_state = panfrost_create_shader_state; gallium->delete_vs_state = panfrost_delete_shader_state; gallium->bind_vs_state = panfrost_bind_vs_state; gallium->create_sampler_state = panfrost_create_sampler_state; gallium->delete_sampler_state = panfrost_generic_cso_delete; gallium->bind_sampler_states = panfrost_bind_sampler_states; gallium->create_blend_state = panfrost_create_blend_state; gallium->bind_blend_state = panfrost_bind_blend_state; gallium->delete_blend_state = panfrost_delete_blend_state; gallium->set_blend_color = panfrost_set_blend_color; gallium->create_depth_stencil_alpha_state = panfrost_create_depth_stencil_state; gallium->bind_depth_stencil_alpha_state = panfrost_bind_depth_stencil_state; gallium->delete_depth_stencil_alpha_state = panfrost_delete_depth_stencil_state; gallium->set_sample_mask = panfrost_set_sample_mask; gallium->set_clip_state = panfrost_set_clip_state; gallium->set_viewport_states = panfrost_set_viewport_states; gallium->set_scissor_states = panfrost_set_scissor_states; gallium->set_polygon_stipple = panfrost_set_polygon_stipple; gallium->set_active_query_state = panfrost_set_active_query_state; gallium->create_query = panfrost_create_query; gallium->destroy_query = panfrost_destroy_query; gallium->begin_query = panfrost_begin_query; gallium->end_query = panfrost_end_query; gallium->get_query_result = panfrost_get_query_result; gallium->create_stream_output_target = panfrost_create_stream_output_target; gallium->stream_output_target_destroy = panfrost_stream_output_target_destroy; gallium->set_stream_output_targets = panfrost_set_stream_output_targets; panfrost_resource_context_init(gallium); pscreen->driver->init_context(ctx); panfrost_setup_hardware(ctx); /* XXX: leaks */ gallium->stream_uploader = u_upload_create_default(gallium); gallium->const_uploader = gallium->stream_uploader; assert(gallium->stream_uploader); /* Midgard supports ES modes, plus QUADS/QUAD_STRIPS/POLYGON */ ctx->draw_modes = (1 << (PIPE_PRIM_POLYGON + 1)) - 1; ctx->primconvert = util_primconvert_create(gallium, ctx->draw_modes); ctx->blitter = util_blitter_create(gallium); assert(ctx->blitter); /* Prepare for render! */ panfrost_job_init(ctx); panfrost_emit_vertex_payload(ctx); panfrost_emit_tiler_payload(ctx); panfrost_invalidate_frame(ctx); panfrost_default_shader_backend(ctx); panfrost_generate_space_filler_indices(); return gallium; }