/* Author(s): * Alyssa Rosenzweig * * Copyright (c) 2018 Alyssa Rosenzweig (alyssa@rosenzweig.io) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #define OP_IS_STORE_VARY(op) (\ op == midgard_op_st_vary_16 || \ op == midgard_op_st_vary_32 \ ) #define OP_IS_STORE(op) (\ OP_IS_STORE_VARY(op) || \ op == midgard_op_st_cubemap_coords \ ) #define OP_IS_MOVE(op) ( \ op == midgard_alu_op_fmov || \ op == midgard_alu_op_imov \ ) /* ALU control words are single bit fields with a lot of space */ #define ALU_ENAB_VEC_MUL (1 << 17) #define ALU_ENAB_SCAL_ADD (1 << 19) #define ALU_ENAB_VEC_ADD (1 << 21) #define ALU_ENAB_SCAL_MUL (1 << 23) #define ALU_ENAB_VEC_LUT (1 << 25) #define ALU_ENAB_BR_COMPACT (1 << 26) #define ALU_ENAB_BRANCH (1 << 27) /* Other opcode properties that don't conflict with the ALU_ENABs, non-ISA */ /* Denotes an opcode that takes a vector input with a fixed-number of * channels, but outputs to only a single output channel, like dot products. * For these, to determine the effective mask, this quirk can be set. We have * an intentional off-by-one (a la MALI_POSITIVE), since 0-channel makes no * sense but we need to fit 4 channels in 2-bits. Similarly, 1-channel doesn't * make sense (since then why are we quirked?), so that corresponds to "no * count set" */ #define OP_CHANNEL_COUNT(c) ((c - 1) << 0) #define GET_CHANNEL_COUNT(c) ((c & (0x3 << 0)) ? ((c & (0x3 << 0)) + 1) : 0) /* For instructions that take a single argument, normally the first argument * slot is used for the argument and the second slot is a dummy #0 constant. * However, there are exceptions: instructions like fmov store their argument * in the _second_ slot and store a dummy r24 in the first slot, designated by * QUIRK_FLIPPED_R24 */ #define QUIRK_FLIPPED_R24 (1 << 2) /* Is the op commutative? */ #define OP_COMMUTES (1 << 3) /* Does the op convert types between int- and float- space (i2f/f2u/etc) */ #define OP_TYPE_CONVERT (1 << 4) /* Vector-independant shorthands for the above; these numbers are arbitrary and * not from the ISA. Convert to the above with unit_enum_to_midgard */ #define UNIT_MUL 0 #define UNIT_ADD 1 #define UNIT_LUT 2 /* 4-bit type tags */ #define TAG_TEXTURE_4 0x3 #define TAG_LOAD_STORE_4 0x5 #define TAG_ALU_4 0x8 #define TAG_ALU_8 0x9 #define TAG_ALU_12 0xA #define TAG_ALU_16 0xB /* Special register aliases */ #define MAX_WORK_REGISTERS 16 /* Uniforms are begin at (REGISTER_UNIFORMS - uniform_count) */ #define REGISTER_UNIFORMS 24 #define REGISTER_UNUSED 24 #define REGISTER_CONSTANT 26 #define REGISTER_VARYING_BASE 26 #define REGISTER_OFFSET 27 #define REGISTER_TEXTURE_BASE 28 #define REGISTER_SELECT 31 /* SSA helper aliases to mimic the registers. UNUSED_0 encoded as an inline * constant. UNUSED_1 encoded as REGISTER_UNUSED */ #define SSA_UNUSED_0 0 #define SSA_UNUSED_1 -2 #define SSA_FIXED_SHIFT 24 #define SSA_FIXED_REGISTER(reg) ((1 + reg) << SSA_FIXED_SHIFT) #define SSA_REG_FROM_FIXED(reg) ((reg >> SSA_FIXED_SHIFT) - 1) #define SSA_FIXED_MINIMUM SSA_FIXED_REGISTER(0) /* Swizzle support */ #define SWIZZLE(A, B, C, D) ((D << 6) | (C << 4) | (B << 2) | (A << 0)) #define SWIZZLE_FROM_ARRAY(r) SWIZZLE(r[0], r[1], r[2], r[3]) #define COMPONENT_X 0x0 #define COMPONENT_Y 0x1 #define COMPONENT_Z 0x2 #define COMPONENT_W 0x3 /* See ISA notes */ #define LDST_NOP (3) /* There are five ALU units: VMUL, VADD, SMUL, SADD, LUT. A given opcode is * implemented on some subset of these units (or occassionally all of them). * This table encodes a bit mask of valid units for each opcode, so the * scheduler can figure where to plonk the instruction. */ /* Shorthands for each unit */ #define UNIT_VMUL ALU_ENAB_VEC_MUL #define UNIT_SADD ALU_ENAB_SCAL_ADD #define UNIT_VADD ALU_ENAB_VEC_ADD #define UNIT_SMUL ALU_ENAB_SCAL_MUL #define UNIT_VLUT ALU_ENAB_VEC_LUT /* Shorthands for usual combinations of units */ #define UNITS_MUL (UNIT_VMUL | UNIT_SMUL) #define UNITS_ADD (UNIT_VADD | UNIT_SADD) #define UNITS_MOST (UNITS_MUL | UNITS_ADD) #define UNITS_ALL (UNITS_MOST | UNIT_VLUT) #define UNITS_SCALAR (UNIT_SADD | UNIT_SMUL) #define UNITS_VECTOR (UNIT_VMUL | UNIT_VADD) #define UNITS_ANY_VECTOR (UNITS_VECTOR | UNIT_VLUT) /* Table of mapping opcodes to accompanying properties relevant to * scheduling/emission/etc */ static struct { const char *name; unsigned props; } alu_opcode_props[256] = { [midgard_alu_op_fadd] = {"fadd", UNITS_ADD | OP_COMMUTES}, [midgard_alu_op_fmul] = {"fmul", UNITS_MUL | UNIT_VLUT | OP_COMMUTES}, [midgard_alu_op_fmin] = {"fmin", UNITS_MUL | UNITS_ADD | OP_COMMUTES}, [midgard_alu_op_fmax] = {"fmax", UNITS_MUL | UNITS_ADD | OP_COMMUTES}, [midgard_alu_op_imin] = {"imin", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_imax] = {"imax", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_umin] = {"umin", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_umax] = {"umax", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_fmov] = {"fmov", UNITS_ALL | QUIRK_FLIPPED_R24}, [midgard_alu_op_fround] = {"fround", UNITS_ADD}, [midgard_alu_op_froundeven] = {"froundeven", UNITS_ADD}, [midgard_alu_op_ftrunc] = {"ftrunc", UNITS_ADD}, [midgard_alu_op_ffloor] = {"ffloor", UNITS_ADD}, [midgard_alu_op_fceil] = {"fceil", UNITS_ADD}, [midgard_alu_op_ffma] = {"ffma", UNIT_VLUT}, /* Though they output a scalar, they need to run on a vector unit * since they process vectors */ [midgard_alu_op_fdot3] = {"fdot3", UNIT_VMUL | OP_CHANNEL_COUNT(3) | OP_COMMUTES}, [midgard_alu_op_fdot3r] = {"fdot3r", UNIT_VMUL | OP_CHANNEL_COUNT(3) | OP_COMMUTES}, [midgard_alu_op_fdot4] = {"fdot4", UNIT_VMUL | OP_CHANNEL_COUNT(4) | OP_COMMUTES}, /* Incredibly, iadd can run on vmul, etc */ [midgard_alu_op_iadd] = {"iadd", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_iabs] = {"iabs", UNITS_ADD}, [midgard_alu_op_isub] = {"isub", UNITS_MOST}, [midgard_alu_op_imul] = {"imul", UNITS_MUL | OP_COMMUTES}, [midgard_alu_op_imov] = {"imov", UNITS_MOST | QUIRK_FLIPPED_R24}, /* For vector comparisons, use ball etc */ [midgard_alu_op_feq] = {"feq", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_fne] = {"fne", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_fle] = {"fle", UNITS_MOST}, [midgard_alu_op_flt] = {"flt", UNITS_MOST}, [midgard_alu_op_ieq] = {"ieq", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_ine] = {"ine", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_ilt] = {"ilt", UNITS_MOST}, [midgard_alu_op_ile] = {"ile", UNITS_MOST}, [midgard_alu_op_ult] = {"ult", UNITS_MOST}, [midgard_alu_op_ule] = {"ule", UNITS_MOST}, [midgard_alu_op_icsel] = {"icsel", UNITS_ADD}, [midgard_alu_op_icsel_v] = {"icsel_v", UNITS_ADD}, [midgard_alu_op_fcsel_v] = {"fcsel_v", UNITS_ADD}, [midgard_alu_op_fcsel] = {"fcsel", UNITS_ADD | UNIT_SMUL}, [midgard_alu_op_frcp] = {"frcp", UNIT_VLUT}, [midgard_alu_op_frsqrt] = {"frsqrt", UNIT_VLUT}, [midgard_alu_op_fsqrt] = {"fsqrt", UNIT_VLUT}, [midgard_alu_op_fpow_pt1] = {"fpow_pt1", UNIT_VLUT}, [midgard_alu_op_fexp2] = {"fexp2", UNIT_VLUT}, [midgard_alu_op_flog2] = {"flog2", UNIT_VLUT}, [midgard_alu_op_f2i] = {"f2i", UNITS_ADD | OP_TYPE_CONVERT}, [midgard_alu_op_f2u] = {"f2u", UNITS_ADD | OP_TYPE_CONVERT}, [midgard_alu_op_f2u8] = {"f2u8", UNITS_ADD | OP_TYPE_CONVERT}, [midgard_alu_op_i2f] = {"i2f", UNITS_ADD | OP_TYPE_CONVERT}, [midgard_alu_op_u2f] = {"u2f", UNITS_ADD | OP_TYPE_CONVERT}, [midgard_alu_op_fsin] = {"fsin", UNIT_VLUT}, [midgard_alu_op_fcos] = {"fcos", UNIT_VLUT}, /* XXX: Test case where it's right on smul but not sadd */ [midgard_alu_op_iand] = {"iand", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_iandnot] = {"iandnot", UNITS_MOST}, [midgard_alu_op_ior] = {"ior", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_iornot] = {"iornot", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_inor] = {"inor", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_ixor] = {"ixor", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_inxor] = {"inxor", UNITS_MOST | OP_COMMUTES}, [midgard_alu_op_iclz] = {"iclz", UNITS_ADD}, [midgard_alu_op_ibitcount8] = {"ibitcount8", UNITS_ADD}, [midgard_alu_op_inand] = {"inand", UNITS_MOST}, [midgard_alu_op_ishl] = {"ishl", UNITS_ADD}, [midgard_alu_op_iasr] = {"iasr", UNITS_ADD}, [midgard_alu_op_ilsr] = {"ilsr", UNITS_ADD}, [midgard_alu_op_fball_eq] = {"fball_eq", UNITS_VECTOR | OP_COMMUTES}, [midgard_alu_op_fbany_neq] = {"fbany_neq", UNITS_VECTOR | OP_COMMUTES}, [midgard_alu_op_iball_eq] = {"iball_eq", UNITS_VECTOR | OP_COMMUTES}, [midgard_alu_op_iball_neq] = {"iball_neq", UNITS_VECTOR | OP_COMMUTES}, [midgard_alu_op_ibany_eq] = {"ibany_eq", UNITS_VECTOR | OP_COMMUTES}, [midgard_alu_op_ibany_neq] = {"ibany_neq", UNITS_VECTOR | OP_COMMUTES}, /* These instructions are not yet emitted by the compiler, so * don't speculate about units yet */ [midgard_alu_op_ishladd] = {"ishladd", 0}, [midgard_alu_op_uball_lt] = {"uball_lt", 0}, [midgard_alu_op_uball_lte] = {"uball_lte", 0}, [midgard_alu_op_iball_lt] = {"iball_lt", 0}, [midgard_alu_op_iball_lte] = {"iball_lte", 0}, [midgard_alu_op_ubany_lt] = {"ubany_lt", 0}, [midgard_alu_op_ubany_lte] = {"ubany_lte", 0}, [midgard_alu_op_ibany_lt] = {"ibany_lt", 0}, [midgard_alu_op_ibany_lte] = {"ibany_lte", 0}, [midgard_alu_op_freduce] = {"freduce", 0}, [midgard_alu_op_bball_eq] = {"bball_eq", 0 | OP_COMMUTES}, [midgard_alu_op_bbany_neq] = {"bball_eq", 0 | OP_COMMUTES}, [midgard_alu_op_fatan2_pt1] = {"fatan2_pt1", 0}, [midgard_alu_op_fatan_pt2] = {"fatan_pt2", 0}, }; /* Is this opcode that of an integer (regardless of signedness)? Instruction * names authoritatively determine types */ static inline bool midgard_is_integer_op(int op) { const char *name = alu_opcode_props[op].name; if (!name) return false; return (name[0] == 'i') || (name[0] == 'u'); } /* Does this opcode *write* an integer? Same as is_integer_op, unless it's a * conversion between int<->float in which case we do the opposite */ static inline bool midgard_is_integer_out_op(int op) { bool is_int = midgard_is_integer_op(op); bool is_conversion = alu_opcode_props[op].props & OP_TYPE_CONVERT; return is_int ^ is_conversion; }