#include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/u_inlines.h" #include "util/u_debug.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_ureg.h" #include "nvfx_context.h" #include "nvfx_shader.h" #include "nvfx_resource.h" #define MAX_CONSTS 128 #define MAX_IMM 32 struct nvfx_fpc { struct nvfx_pipe_fragment_program* pfp; struct nvfx_fragment_program *fp; unsigned r_temps; unsigned r_temps_discard; struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS]; struct nvfx_reg *r_temp; int num_regs; unsigned inst_offset; unsigned have_const; struct { int pipe; float vals[4]; } consts[MAX_CONSTS]; int nr_consts; struct nvfx_reg imm[MAX_IMM]; unsigned nr_imm; unsigned char generic_to_slot[256]; /* semantic idx for each input semantic */ struct util_dynarray if_stack; //struct util_dynarray loop_stack; struct util_dynarray label_relocs; }; static INLINE struct nvfx_reg temp(struct nvfx_fpc *fpc) { int idx = ffs(~fpc->r_temps) - 1; if (idx < 0) { NOUVEAU_ERR("out of temps!!\n"); assert(0); return nvfx_reg(NVFXSR_TEMP, 0); } fpc->r_temps |= (1 << idx); fpc->r_temps_discard |= (1 << idx); return nvfx_reg(NVFXSR_TEMP, idx); } static INLINE void release_temps(struct nvfx_fpc *fpc) { fpc->r_temps &= ~fpc->r_temps_discard; fpc->r_temps_discard = 0; } static INLINE struct nvfx_reg constant(struct nvfx_fpc *fpc, int pipe, float vals[4]) { int idx; if (fpc->nr_consts == MAX_CONSTS) assert(0); idx = fpc->nr_consts++; fpc->consts[idx].pipe = pipe; if (pipe == -1) memcpy(fpc->consts[idx].vals, vals, 4 * sizeof(float)); return nvfx_reg(NVFXSR_CONST, idx); } static void grow_insns(struct nvfx_fpc *fpc, int size) { struct nvfx_fragment_program *fp = fpc->fp; fp->insn_len += size; fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len); } static void emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src) { struct nvfx_fragment_program *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; uint32_t sr = 0; switch (src.reg.type) { case NVFXSR_INPUT: sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT); hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT); break; case NVFXSR_OUTPUT: sr |= NVFX_FP_REG_SRC_HALF; /* fall-through */ case NVFXSR_TEMP: sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT); sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT); break; case NVFXSR_RELOCATED: sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT); //printf("adding relocation at %x for %x\n", fpc->inst_offset, src.index); util_dynarray_append(&fpc->fp->slot_relocations[src.reg.index], unsigned, fpc->inst_offset); break; case NVFXSR_CONST: if (!fpc->have_const) { grow_insns(fpc, 4); fpc->have_const = 1; } hw = &fp->insn[fpc->inst_offset]; if (fpc->consts[src.reg.index].pipe >= 0) { struct nvfx_fragment_program_data *fpd; fp->consts = realloc(fp->consts, ++fp->nr_consts * sizeof(*fpd)); fpd = &fp->consts[fp->nr_consts - 1]; fpd->offset = fpc->inst_offset + 4; fpd->index = fpc->consts[src.reg.index].pipe; memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4); } else { memcpy(&fp->insn[fpc->inst_offset + 4], fpc->consts[src.reg.index].vals, sizeof(uint32_t) * 4); } sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT); break; case NVFXSR_NONE: sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT); break; default: assert(0); } if (src.negate) sr |= NVFX_FP_REG_NEGATE; if (src.abs) hw[1] |= (1 << (29 + pos)); sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) | (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) | (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) | (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT)); hw[pos + 1] |= sr; } static void emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst) { struct nvfx_fragment_program *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; switch (dst.type) { case NVFXSR_TEMP: if (fpc->num_regs < (dst.index + 1)) fpc->num_regs = dst.index + 1; break; case NVFXSR_OUTPUT: if (dst.index == 1) { fp->fp_control |= 0xe; } else { hw[0] |= NVFX_FP_OP_OUT_REG_HALF; } break; case NVFXSR_NONE: hw[0] |= (1 << 30); break; default: assert(0); } hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT); } static void nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn) { struct nvfx_fragment_program *fp = fpc->fp; uint32_t *hw; fpc->inst_offset = fp->insn_len; fpc->have_const = 0; grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; memset(hw, 0, sizeof(uint32_t) * 4); if (insn.op == NVFX_FP_OP_OPCODE_KIL) fp->fp_control |= NV34TCL_FP_CONTROL_USES_KIL; hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT); hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT); hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT); if (insn.sat) hw[0] |= NVFX_FP_OP_OUT_SAT; if (insn.cc_update) hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE; hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT); hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) | (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) | (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT)); if(insn.unit >= 0) { hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT); fp->samplers |= (1 << insn.unit); } emit_dst(fpc, insn.dst); emit_src(fpc, 0, insn.src[0]); emit_src(fpc, 1, insn.src[1]); emit_src(fpc, 2, insn.src[2]); } #define arith(s,o,d,m,s0,s1,s2) \ nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \ (d), (m), (s0), (s1), (s2)) #define tex(s,o,u,d,m,s0,s1,s2) \ nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \ (d), (m), (s0), none, none) /* IF src.x != 0, as TGSI specifies */ static void nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src) { const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none); uint32_t *hw; insn.cc_update = 1; nvfx_fp_emit(fpc, insn); fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) | (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT); hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */ hw[3] = 0; /* | endif_offset */ util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset); } /* IF src.x != 0, as TGSI specifies */ static void nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */ hw[3] = 0; reloc.target = target; reloc.location = fpc->inst_offset + 2; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); } static void nv40_fp_ret(struct nvfx_fpc *fpc) { uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */ hw[3] = 0; } static void nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | (count << NV40_FP_OP_REP_COUNT1_SHIFT) | (count << NV40_FP_OP_REP_COUNT2_SHIFT) | (count << NV40_FP_OP_REP_COUNT3_SHIFT); hw[3] = 0; /* | end_offset */ reloc.target = target; reloc.location = fpc->inst_offset + 3; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); //util_dynarray_append(&fpc->loop_stack, unsigned, target); } /* warning: this only works forward, and probably only if not inside any IF */ static void nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */ hw[3] = 0; /* | endif_offset */ reloc.target = target; reloc.location = fpc->inst_offset + 2; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); reloc.target = target; reloc.location = fpc->inst_offset + 3; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); } static void nv40_fp_brk(struct nvfx_fpc *fpc) { uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE; /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; hw[3] = 0; } static INLINE struct nvfx_src tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc) { struct nvfx_src src; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_POSITION) { assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0); src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_POSITION); } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_COLOR) { if(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0) src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_COL0); else if(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 1) src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_COL1); else assert(0); } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG) { assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0); src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_FOGC); } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FACE) { /* TODO: check this has the correct values */ /* XXX: what do we do for nv30 here (assuming it lacks facing)?! */ assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0); src.reg = nvfx_reg(NVFXSR_INPUT, NV40_FP_OP_INPUT_SRC_FACING); } else { assert(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_GENERIC); src.reg = nvfx_reg(NVFXSR_RELOCATED, fpc->generic_to_slot[fpc->pfp->info.input_semantic_index[fsrc->Register.Index]]); } break; case TGSI_FILE_CONSTANT: src.reg = constant(fpc, fsrc->Register.Index, NULL); break; case TGSI_FILE_IMMEDIATE: assert(fsrc->Register.Index < fpc->nr_imm); src.reg = fpc->imm[fsrc->Register.Index]; break; case TGSI_FILE_TEMPORARY: src.reg = fpc->r_temp[fsrc->Register.Index]; break; /* NV40 fragprog result regs are just temps, so this is simple */ case TGSI_FILE_OUTPUT: src.reg = fpc->r_result[fsrc->Register.Index]; break; default: NOUVEAU_ERR("bad src file\n"); src.reg.index = 0; src.reg.type = 0; break; } src.abs = fsrc->Register.Absolute; src.negate = fsrc->Register.Negate; src.swz[0] = fsrc->Register.SwizzleX; src.swz[1] = fsrc->Register.SwizzleY; src.swz[2] = fsrc->Register.SwizzleZ; src.swz[3] = fsrc->Register.SwizzleW; return src; } static INLINE struct nvfx_reg tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) { switch (fdst->Register.File) { case TGSI_FILE_OUTPUT: return fpc->r_result[fdst->Register.Index]; case TGSI_FILE_TEMPORARY: return fpc->r_temp[fdst->Register.Index]; case TGSI_FILE_NULL: return nvfx_reg(NVFXSR_NONE, 0); default: NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File); return nvfx_reg(NVFXSR_NONE, 0); } } static INLINE int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W; return mask; } static boolean nvfx_fragprog_parse_instruction(struct nvfx_context* nvfx, struct nvfx_fpc *fpc, const struct tgsi_full_instruction *finst) { const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn; struct nvfx_src src[3], tmp, tmp2; struct nvfx_reg dst; int mask, sat, unit = 0; int ai = -1, ci = -1, ii = -1; int i; if (finst->Instruction.Opcode == TGSI_OPCODE_END) return TRUE; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; if (fsrc->Register.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(fpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if (ai == -1 || ai == fsrc->Register.Index) { ai = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_CONSTANT: if ((ci == -1 && ii == -1) || ci == fsrc->Register.Index) { ci = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_IMMEDIATE: if ((ci == -1 && ii == -1) || ii == fsrc->Register.Index) { ii = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; case TGSI_FILE_SAMPLER: unit = fsrc->Register.Index; break; case TGSI_FILE_OUTPUT: break; default: NOUVEAU_ERR("bad src file\n"); return FALSE; } } dst = tgsi_dst(fpc, &finst->Dst[0]); mask = tgsi_mask(finst->Dst[0].Register.WriteMask); sat = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE); switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ABS: nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, abs(src[0]), none, none)); break; case TGSI_OPCODE_ADD: nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_CMP: insn = arith(0, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); insn = arith(sat, MOV, dst, mask, src[2], none, none); insn.cc_test = NVFX_COND_GE; nvfx_fp_emit(fpc, insn); insn = arith(sat, MOV, dst, mask, src[1], none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_COS: nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_DDX: if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none)); nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none)); nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none)); nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none)); } else { nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none)); } break; case TGSI_OPCODE_DDY: if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none)); nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none)); nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none)); nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none)); } else { nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none)); } break; case TGSI_OPCODE_DP2: tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none)); nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none)); break; case TGSI_OPCODE_DP3: nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DP4: nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DPH: tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[1], none)); nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, swz(tmp, X, X, X, X), swz(src[1], W, W, W, W), none)); break; case TGSI_OPCODE_DST: nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_EX2: nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FLR: nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FRC: nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_KILP: nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_KIL: insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); insn = arith(0, KIL, none.reg, 0, none, none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_LG2: nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none)); break; // case TGSI_OPCODE_LIT: case TGSI_OPCODE_LRP: if(!nvfx->is_nv4x) nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2])); else { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2])); nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp)); } break; case TGSI_OPCODE_MAD: nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2])); break; case TGSI_OPCODE_MAX: nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MIN: nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MOV: nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_MUL: nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_NOP: break; case TGSI_OPCODE_POW: if(!nvfx->is_nv4x) nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none)); else { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none)); nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none)); } break; case TGSI_OPCODE_RCP: nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_RFL: if(!nvfx->is_nv4x) nvfx_fp_emit(fpc, arith(0, RFL_NV30, dst, mask, src[0], src[1], none)); else { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[0], none)); nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_Y, src[0], src[1], none)); insn = arith(0, DIV, tmp.reg, NVFX_FP_MASK_Z, swz(tmp, Y, Y, Y, Y), swz(tmp, X, X, X, X), none); insn.scale = NVFX_FP_OP_DST_SCALE_2X; nvfx_fp_emit(fpc, insn); nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, swz(tmp, Z, Z, Z, Z), src[0], neg(src[1]))); } break; case TGSI_OPCODE_RSQ: if(!nvfx->is_nv4x) nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none)); else { tmp = nvfx_src(temp(fpc)); insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none); insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X; nvfx_fp_emit(fpc, insn); nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none)); } break; case TGSI_OPCODE_SCS: /* avoid overwriting the source */ if(src[0].swz[NVFX_SWZ_X] != NVFX_SWZ_X) { if (mask & NVFX_FP_MASK_X) nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none)); if (mask & NVFX_FP_MASK_Y) nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none)); } else { if (mask & NVFX_FP_MASK_Y) nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none)); if (mask & NVFX_FP_MASK_X) nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none)); } break; case TGSI_OPCODE_SEQ: nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SFL: nvfx_fp_emit(fpc, arith(sat, SFL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGE: nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGT: nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SIN: nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_SLE: nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SLT: nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SNE: nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SSG: tmp = nvfx_src(temp(fpc)); tmp2 = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, SGT, tmp.reg, mask, src[0], nvfx_src(nvfx_reg(NVFXSR_CONST, 0)), none)); nvfx_fp_emit(fpc, arith(0, SLT, tmp.reg, mask, src[0], nvfx_src(nvfx_reg(NVFXSR_CONST, 0)), none)); nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, tmp, neg(tmp2), none)); break; case TGSI_OPCODE_STR: nvfx_fp_emit(fpc, arith(sat, STR, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SUB: nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], neg(src[1]), none)); break; case TGSI_OPCODE_TEX: nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TRUNC: tmp = nvfx_src(temp(fpc)); insn = arith(0, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none)); nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none)); insn = arith(sat, MOV, dst, mask, neg(tmp), none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_TXB: nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TXL: if(nvfx->is_nv4x) nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none)); else /* unsupported on nv30, use TEX and hope they like it */ nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TXP: nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_XPD: tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none)); nvfx_fp_emit(fpc, arith(sat, MAD, dst, (mask & ~NVFX_FP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp))); break; case TGSI_OPCODE_IF: // MOVRC0 R31 (TR0.xyzw), R: // IF (NE.xxxx) ELSE END if(!nvfx->is_nv4x) goto nv3x_cflow; nv40_fp_if(fpc, src[0]); break; case TGSI_OPCODE_ELSE: { uint32_t *hw; if(!nvfx->is_nv4x) goto nv3x_cflow; assert(util_dynarray_contains(&fpc->if_stack, unsigned)); hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)]; hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len; break; } case TGSI_OPCODE_ENDIF: { uint32_t *hw; if(!nvfx->is_nv4x) goto nv3x_cflow; assert(util_dynarray_contains(&fpc->if_stack, unsigned)); hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)]; if(!hw[2]) hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len; hw[3] = fpc->fp->insn_len; break; } case TGSI_OPCODE_BRA: /* This can in limited cases be implemented with an IF with the else and endif labels pointing to the target */ /* no state tracker uses this, so don't implement this for now */ assert(0); nv40_fp_bra(fpc, finst->Label.Label); break; case TGSI_OPCODE_BGNSUB: case TGSI_OPCODE_ENDSUB: /* nothing to do here */ break; case TGSI_OPCODE_CAL: if(!nvfx->is_nv4x) goto nv3x_cflow; nv40_fp_cal(fpc, finst->Label.Label); break; case TGSI_OPCODE_RET: if(!nvfx->is_nv4x) goto nv3x_cflow; nv40_fp_ret(fpc); break; case TGSI_OPCODE_BGNLOOP: if(!nvfx->is_nv4x) goto nv3x_cflow; /* TODO: we should support using two nested REPs to allow a > 255 iteration count */ nv40_fp_rep(fpc, 255, finst->Label.Label); break; case TGSI_OPCODE_ENDLOOP: break; case TGSI_OPCODE_BRK: if(!nvfx->is_nv4x) goto nv3x_cflow; nv40_fp_brk(fpc); break; case TGSI_OPCODE_CONT: { static int warned = 0; if(!warned) { NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n"); warned = 1; } break; } default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return FALSE; } out: release_temps(fpc); return TRUE; nv3x_cflow: { static int warned = 0; if(!warned) { NOUVEAU_ERR( "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n" "If rendering is incorrect, try to disable GLSL support in the application.\n"); warned = 1; } } goto out; } static boolean nvfx_fragprog_parse_decl_output(struct nvfx_context* nvfx, struct nvfx_fpc *fpc, const struct tgsi_full_declaration *fdec) { unsigned idx = fdec->Range.First; unsigned hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = 1; break; case TGSI_SEMANTIC_COLOR: hw = ~0; switch (fdec->Semantic.Index) { case 0: hw = 0; break; case 1: hw = 2; break; case 2: hw = 3; break; case 3: hw = 4; break; } if(hw > ((nvfx->is_nv4x) ? 4 : 2)) { NOUVEAU_ERR("bad rcol index\n"); return FALSE; } break; default: NOUVEAU_ERR("bad output semantic\n"); return FALSE; } fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw); fpc->r_temps |= (1 << hw); return TRUE; } static boolean nvfx_fragprog_prepare(struct nvfx_context* nvfx, struct nvfx_fpc *fpc) { struct tgsi_parse_context p; int high_temp = -1, i; struct util_semantic_set set; float const0v[4] = {0, 0, 0, 0}; struct nvfx_reg const0; fpc->fp->num_slots = util_semantic_set_from_program_file(&set, fpc->pfp->pipe.tokens, TGSI_FILE_INPUT); if(fpc->fp->num_slots > 8) return FALSE; util_semantic_layout_from_set(fpc->fp->slot_to_generic, &set, 0, 8); util_semantic_table_from_layout(fpc->generic_to_slot, fpc->fp->slot_to_generic, 0, 8); memset(fpc->fp->slot_to_fp_input, 0xff, sizeof(fpc->fp->slot_to_fp_input)); const0 = constant(fpc, -1, const0v); assert(const0.index == 0); tgsi_parse_init(&p, fpc->pfp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch(tok->Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_OUTPUT: if (!nvfx_fragprog_parse_decl_output(nvfx, fpc, fdec)) goto out_err; break; case TGSI_FILE_TEMPORARY: if (fdec->Range.Last > high_temp) { high_temp = fdec->Range.Last; } break; default: break; } } break; case TGSI_TOKEN_TYPE_IMMEDIATE: { struct tgsi_full_immediate *imm; float vals[4]; imm = &p.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(fpc->nr_imm < MAX_IMM); vals[0] = imm->u[0].Float; vals[1] = imm->u[1].Float; vals[2] = imm->u[2].Float; vals[3] = imm->u[3].Float; fpc->imm[fpc->nr_imm++] = constant(fpc, -1, vals); } break; default: break; } } tgsi_parse_free(&p); if (++high_temp) { fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg)); for (i = 0; i < high_temp; i++) fpc->r_temp[i] = temp(fpc); fpc->r_temps_discard = 0; } return TRUE; out_err: if (fpc->r_temp) FREE(fpc->r_temp); tgsi_parse_free(&p); return FALSE; } DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", FALSE) static struct nvfx_fragment_program* nvfx_fragprog_translate(struct nvfx_context *nvfx, struct nvfx_pipe_fragment_program *pfp) { struct tgsi_parse_context parse; struct nvfx_fpc *fpc = NULL; struct util_dynarray insns; struct nvfx_fragment_program* fp = NULL; const int min_size = 4096; fp = CALLOC_STRUCT(nvfx_fragment_program); if(!fp) goto out_err; fpc = CALLOC_STRUCT(nvfx_fpc); if (!fpc) goto out_err; fpc->pfp = pfp; fpc->fp = fp; fpc->num_regs = 2; if (!nvfx_fragprog_prepare(nvfx, fpc)) goto out_err; tgsi_parse_init(&parse, pfp->pipe.tokens); util_dynarray_init(&insns); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; util_dynarray_append(&insns, unsigned, fp->insn_len); finst = &parse.FullToken.FullInstruction; if (!nvfx_fragprog_parse_instruction(nvfx, fpc, finst)) goto out_err; } break; default: break; } } util_dynarray_append(&insns, unsigned, fp->insn_len); for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation)) { struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i); fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target]; } util_dynarray_fini(&insns); if(!nvfx->is_nv4x) fp->fp_control |= (fpc->num_regs-1)/2; else fp->fp_control |= fpc->num_regs << NV40TCL_FP_CONTROL_TEMP_COUNT_SHIFT; /* Terminate final instruction */ if(fp->insn) fp->insn[fpc->inst_offset] |= 0x00000001; /* Append NOP + END instruction for branches to the end of the program */ fpc->inst_offset = fp->insn_len; grow_insns(fpc, 4); fp->insn[fpc->inst_offset + 0] = 0x00000001; fp->insn[fpc->inst_offset + 1] = 0x00000000; fp->insn[fpc->inst_offset + 2] = 0x00000000; fp->insn[fpc->inst_offset + 3] = 0x00000000; if(debug_get_option_nvfx_dump_fp()) { debug_printf("\n"); tgsi_dump(pfp->pipe.tokens, 0); debug_printf("\n%s fragment program:\n", nvfx->is_nv4x ? "nv4x" : "nv3x"); for (unsigned i = 0; i < fp->insn_len; i += 4) debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]); debug_printf("\n"); } fp->prog_size = (fp->insn_len * 4 + 63) & ~63; if(fp->prog_size >= min_size) fp->progs_per_bo = 1; else fp->progs_per_bo = min_size / fp->prog_size; fp->bo_prog_idx = fp->progs_per_bo - 1; out: tgsi_parse_free(&parse); if(fpc) { if (fpc->r_temp) FREE(fpc->r_temp); util_dynarray_fini(&fpc->if_stack); util_dynarray_fini(&fpc->label_relocs); //util_dynarray_fini(&fpc->loop_stack); FREE(fpc); } return fp; out_err: _debug_printf("Error: failed to compile this fragment program:\n"); tgsi_dump(pfp->pipe.tokens, 0); if(fp) { FREE(fp); fp = NULL; } goto out; } static inline void nvfx_fp_memcpy(void* dst, const void* src, size_t len) { #ifndef WORDS_BIGENDIAN memcpy(dst, src, len); #else size_t i; for(i = 0; i < len; i += 4) { uint32_t v = (uint32_t*)((char*)src + i); *(uint32_t*)((char*)dst + i) = (v >> 16) | (v << 16); } #endif } /* The hardware only supports immediate constants inside the fragment program, * and at least on nv30 doesn't support an indirect linkage table. * * Hence, we need to patch the fragment program itself both to update constants * and update linkage. * * Using a single fragment program would entail unacceptable stalls if the GPU is * already rendering with that fragment program. * Thus, we instead use a "rotating queue" of buffer objects, each of which is * packed with multiple versions of the same program. * * Whenever we need to patch something, we move to the next program and * patch it. If all buffer objects are in use by the GPU, we allocate another one, * expanding the queue. * * As an additional optimization, we record when all the programs have the * current input slot configuration, and at that point we stop patching inputs. * This happens, for instance, if a given fragment program is always used with * the same vertex program (i.e. always with GLSL), or if the layouts match * enough (non-GLSL). * * Note that instead of using multiple programs, we could push commands * on the FIFO to patch a single program: it's not fully clear which option is * faster, but my guess is that the current way is faster. * * We also track the previous slot assignments for each version and don't * patch if they are the same (this could perhaps be removed). */ void nvfx_fragprog_validate(struct nvfx_context *nvfx) { struct nouveau_channel* chan = nvfx->screen->base.channel; struct nvfx_pipe_fragment_program *pfp = nvfx->fragprog; struct nvfx_vertex_program* vp; unsigned sprite_coord_enable; unsigned key = 0; struct nvfx_fragment_program* fp; fp = pfp->fps[key]; if (!fp) { fp = nvfx_fragprog_translate(nvfx, pfp); if(!fp) { if(!nvfx->dummy_fs) { struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT ); if (ureg) { ureg_END( ureg ); nvfx->dummy_fs = ureg_create_shader_and_destroy( ureg, &nvfx->pipe ); } if(!nvfx->dummy_fs) { _debug_printf("Error: unable to create a dummy fragment shader: aborting."); abort(); } } fp = nvfx_fragprog_translate(nvfx, nvfx->dummy_fs); if(!fp) { _debug_printf("Error: unable to compile even a dummy fragment shader: aborting."); abort(); } } pfp->fps[key] = fp; } nvfx->hw_fragprog = fp; vp = nvfx->render_mode == HW ? nvfx->vertprog : nvfx->swtnl.vertprog; sprite_coord_enable = nvfx->rasterizer->pipe.point_quad_rasterization * nvfx->rasterizer->pipe.sprite_coord_enable; if (fp->last_vp_id != vp->id || fp->last_sprite_coord_enable != sprite_coord_enable) { int sprite_input = -1; unsigned i; fp->last_vp_id = vp->id; fp->last_sprite_coord_enable = sprite_coord_enable; if(sprite_coord_enable) { sprite_input = vp->sprite_fp_input; if(sprite_input < 0) { unsigned used_texcoords = 0; for(unsigned i = 0; i < fp->num_slots; ++i) { unsigned generic = fp->slot_to_generic[i]; if(!((1 << generic) & sprite_coord_enable)) { unsigned char slot_mask = vp->generic_to_fp_input[generic]; if(slot_mask >= 0xf0) used_texcoords |= 1 << ((slot_mask & 0xf) - NVFX_FP_OP_INPUT_SRC_TC0); } } sprite_input = NVFX_FP_OP_INPUT_SRC_TC(__builtin_ctz(~used_texcoords)); } fp->point_sprite_control |= (1 << (sprite_input - NVFX_FP_OP_INPUT_SRC_TC0 + 8)); } else fp->point_sprite_control = 0; for(i = 0; i < fp->num_slots; ++i) { unsigned generic = fp->slot_to_generic[i]; if((1 << generic) & sprite_coord_enable) { if(fp->slot_to_fp_input[i] != sprite_input) goto update_slots; } else { unsigned char slot_mask = vp->generic_to_fp_input[generic]; if((slot_mask >> 4) & (slot_mask ^ fp->slot_to_fp_input[i])) goto update_slots; } } if(0) { update_slots: /* optimization: we start updating from the slot we found the first difference in */ for(; i < fp->num_slots; ++i) { unsigned generic = fp->slot_to_generic[i]; if((1 << generic) & sprite_coord_enable) fp->slot_to_fp_input[i] = sprite_input; else fp->slot_to_fp_input[i] = vp->generic_to_fp_input[generic] & 0xf; } if(nvfx->is_nv4x) { fp->or = 0; for(i = 0; i < fp->num_slots; ++i) { unsigned fp_input = fp->slot_to_fp_input[i]; if(fp_input == NVFX_FP_OP_INPUT_SRC_TC(8)) fp->or |= (1 << 12); else if(fp_input == NVFX_FP_OP_INPUT_SRC_TC(9)) fp->or |= (1 << 13); else if(fp_input != 0xf) fp->or |= (1 << (fp_input - NVFX_FP_OP_INPUT_SRC_TC0 + 14)); } } fp->progs_left_with_obsolete_slot_assignments = fp->progs; goto update; } } /* We must update constants even on "just" fragprog changes, because * we don't check whether the current constant buffer matches the latest * one bound to this fragment program. * Doing such a check would likely be a pessimization. */ if (nvfx->dirty & (NVFX_NEW_FRAGCONST | NVFX_NEW_FRAGPROG)) { int offset; uint32_t* fpmap; update: ++fp->bo_prog_idx; if(fp->bo_prog_idx >= fp->progs_per_bo) { if(fp->fpbo && !nouveau_bo_busy(fp->fpbo->next->bo, NOUVEAU_BO_WR)) { fp->fpbo = fp->fpbo->next; } else { struct nvfx_fragment_program_bo* fpbo = os_malloc_aligned(sizeof(struct nvfx_fragment_program) + (fp->prog_size + 8) * fp->progs_per_bo, 16); uint8_t* map; uint8_t* buf; fpbo->slots = (unsigned char*)&fpbo->insn[(fp->prog_size) * fp->progs_per_bo]; memset(fpbo->slots, 0, 8 * fp->progs_per_bo); if(fp->fpbo) { fpbo->next = fp->fpbo->next; fp->fpbo->next = fpbo; } else fpbo->next = fpbo; fp->fpbo = fpbo; fpbo->bo = 0; fp->progs += fp->progs_per_bo; fp->progs_left_with_obsolete_slot_assignments += fp->progs_per_bo; nouveau_bo_new(nvfx->screen->base.device, NOUVEAU_BO_VRAM | NOUVEAU_BO_MAP, 64, fp->prog_size * fp->progs_per_bo, &fpbo->bo); nouveau_bo_map(fpbo->bo, NOUVEAU_BO_NOSYNC); map = fpbo->bo->map; buf = (uint8_t*)fpbo->insn; for(unsigned i = 0; i < fp->progs_per_bo; ++i) { memcpy(buf, fp->insn, fp->insn_len * 4); nvfx_fp_memcpy(map, fp->insn, fp->insn_len * 4); map += fp->prog_size; buf += fp->prog_size; } } fp->bo_prog_idx = 0; } offset = fp->bo_prog_idx * fp->prog_size; fpmap = (uint32_t*)((char*)fp->fpbo->bo->map + offset); if(nvfx->constbuf[PIPE_SHADER_FRAGMENT]) { struct pipe_resource* constbuf = nvfx->constbuf[PIPE_SHADER_FRAGMENT]; uint32_t* map = (uint32_t*)nvfx_buffer(constbuf)->data; uint32_t* fpmap = (uint32_t*)((char*)fp->fpbo->bo->map + offset); uint32_t* buf = (uint32_t*)((char*)fp->fpbo->insn + offset); int i; for (i = 0; i < fp->nr_consts; ++i) { unsigned off = fp->consts[i].offset; unsigned idx = fp->consts[i].index * 4; /* TODO: is checking a good idea? */ if(memcmp(&buf[off], &map[idx], 4 * sizeof(uint32_t))) { memcpy(&buf[off], &map[idx], 4 * sizeof(uint32_t)); nvfx_fp_memcpy(&fpmap[off], &map[idx], 4 * sizeof(uint32_t)); } } } /* we only do this if we aren't sure that all program versions have the * current slot assignments, otherwise we just update constants for speed */ if(fp->progs_left_with_obsolete_slot_assignments) { unsigned char* fpbo_slots = &fp->fpbo->slots[fp->bo_prog_idx * 8]; for(unsigned i = 0; i < fp->num_slots; ++i) { unsigned value = fp->slot_to_fp_input[i];; if(value != fpbo_slots[i]) { unsigned* p = (unsigned*)fp->slot_relocations[i].data; unsigned* pend = (unsigned*)((char*)fp->slot_relocations[i].data + fp->slot_relocations[i].size); for(; p != pend; ++p) { unsigned off = *p; unsigned dw = fp->insn[off]; dw = (dw & ~NVFX_FP_OP_INPUT_SRC_MASK) | (value << NVFX_FP_OP_INPUT_SRC_SHIFT); nvfx_fp_memcpy(&fpmap[*p], &dw, sizeof(dw)); } fpbo_slots[i] = value; } } --fp->progs_left_with_obsolete_slot_assignments; } MARK_RING(chan, 8, 1); OUT_RING(chan, RING_3D(NV34TCL_FP_ACTIVE_PROGRAM, 1)); OUT_RELOC(chan, fp->fpbo->bo, offset, NOUVEAU_BO_VRAM | NOUVEAU_BO_GART | NOUVEAU_BO_RD | NOUVEAU_BO_LOW | NOUVEAU_BO_OR, NV34TCL_FP_ACTIVE_PROGRAM_DMA0, NV34TCL_FP_ACTIVE_PROGRAM_DMA1); OUT_RING(chan, RING_3D(NV34TCL_FP_CONTROL, 1)); OUT_RING(chan, fp->fp_control); if(!nvfx->is_nv4x) { OUT_RING(chan, RING_3D(NV34TCL_FP_REG_CONTROL, 1)); OUT_RING(chan, (1<<16)|0x4); OUT_RING(chan, RING_3D(NV34TCL_TX_UNITS_ENABLE, 1)); OUT_RING(chan, fp->samplers); } } { unsigned pointsprite_control = fp->point_sprite_control | nvfx->rasterizer->pipe.point_quad_rasterization; if(pointsprite_control != nvfx->hw_pointsprite_control) { WAIT_RING(chan, 2); OUT_RING(chan, RING_3D(NV34TCL_POINT_SPRITE, 1)); OUT_RING(chan, pointsprite_control); nvfx->hw_pointsprite_control = pointsprite_control; } } if(nvfx->is_nv4x) { unsigned vp_output = vp->or | fp->or; if(vp_output != nvfx->hw_vp_output) { WAIT_RING(chan, 2); OUT_RING(chan, RING_3D(NV40TCL_VP_RESULT_EN, 1)); OUT_RING(chan, vp_output); nvfx->hw_vp_output = vp_output; } } } void nvfx_fragprog_relocate(struct nvfx_context *nvfx) { struct nouveau_channel* chan = nvfx->screen->base.channel; struct nvfx_fragment_program *fp = nvfx->hw_fragprog; struct nouveau_bo* bo = fp->fpbo->bo; int offset = fp->bo_prog_idx * fp->prog_size; unsigned fp_flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_RD; // TODO: GART? fp_flags |= NOUVEAU_BO_DUMMY; MARK_RING(chan, 2, 2); OUT_RELOC(chan, bo, RING_3D(NV34TCL_FP_ACTIVE_PROGRAM, 1), fp_flags, 0, 0); OUT_RELOC(chan, bo, offset, fp_flags | NOUVEAU_BO_LOW | NOUVEAU_BO_OR, NV34TCL_FP_ACTIVE_PROGRAM_DMA0, NV34TCL_FP_ACTIVE_PROGRAM_DMA1); } void nvfx_fragprog_destroy(struct nvfx_context *nvfx, struct nvfx_fragment_program *fp) { unsigned i; struct nvfx_fragment_program_bo* fpbo = fp->fpbo; if(fpbo) { do { struct nvfx_fragment_program_bo* next = fpbo->next; nouveau_bo_unmap(fpbo->bo); nouveau_bo_ref(0, &fpbo->bo); free(fpbo); fpbo = next; } while(fpbo != fp->fpbo); } for(i = 0; i < 8; ++i) util_dynarray_fini(&fp->slot_relocations[i]); if (fp->insn_len) FREE(fp->insn); } static void * nvfx_fp_state_create(struct pipe_context *pipe, const struct pipe_shader_state *cso) { struct nvfx_pipe_fragment_program *pfp; pfp = CALLOC(1, sizeof(struct nvfx_pipe_fragment_program)); pfp->pipe.tokens = tgsi_dup_tokens(cso->tokens); tgsi_scan_shader(pfp->pipe.tokens, &pfp->info); return (void *)pfp; } static void nvfx_fp_state_bind(struct pipe_context *pipe, void *hwcso) { struct nvfx_context *nvfx = nvfx_context(pipe); nvfx->fragprog = hwcso; nvfx->dirty |= NVFX_NEW_FRAGPROG; } static void nvfx_fp_state_delete(struct pipe_context *pipe, void *hwcso) { struct nvfx_context *nvfx = nvfx_context(pipe); struct nvfx_pipe_fragment_program *pfp = hwcso; unsigned i; for(i = 0; i < Elements(pfp->fps); ++i) { nvfx_fragprog_destroy(nvfx, pfp->fps[i]); FREE(pfp->fps[i]); } FREE((void*)pfp->pipe.tokens); FREE(pfp); } void nvfx_init_fragprog_functions(struct nvfx_context *nvfx) { nvfx->pipe.create_fs_state = nvfx_fp_state_create; nvfx->pipe.bind_fs_state = nvfx_fp_state_bind; nvfx->pipe.delete_fs_state = nvfx_fp_state_delete; }