/* * Copyright 2012 Nouveau Project * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: Christoph Bumiller */ #include "nvc0_context.h" #include "nve4_compute.h" #include "nv50/codegen/nv50_ir_driver.h" #ifdef DEBUG static void nve4_compute_dump_launch_desc(const struct nve4_cp_launch_desc *); #endif int nve4_screen_compute_setup(struct nvc0_screen *screen, struct nouveau_pushbuf *push) { struct nouveau_device *dev = screen->base.device; struct nouveau_object *chan = screen->base.channel; unsigned i; int ret; uint32_t obj_class; switch (dev->chipset & 0xf0) { case 0xf0: obj_class = NVF0_COMPUTE_CLASS; /* GK110 */ break; case 0xe0: obj_class = NVE4_COMPUTE_CLASS; /* GK104 */ break; default: NOUVEAU_ERR("unsupported chipset: NV%02x\n", dev->chipset); return -1; } ret = nouveau_object_new(chan, 0xbeef00c0, obj_class, NULL, 0, &screen->compute); if (ret) { NOUVEAU_ERR("Failed to allocate compute object: %d\n", ret); return ret; } ret = nouveau_bo_new(dev, NOUVEAU_BO_VRAM, 0, NVE4_CP_PARAM_SIZE, NULL, &screen->parm); if (ret) return ret; BEGIN_NVC0(push, SUBC_COMPUTE(NV01_SUBCHAN_OBJECT), 1); PUSH_DATA (push, screen->compute->oclass); BEGIN_NVC0(push, NVE4_COMPUTE(TEMP_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->tls->offset); PUSH_DATA (push, screen->tls->offset); /* No idea why there are 2. Divide size by 2 to be safe. * Actually this might be per-MP TEMP size and looks like I'm only using * 2 MPs instead of all 8. */ BEGIN_NVC0(push, NVE4_COMPUTE(MP_TEMP_SIZE_HIGH(0)), 3); PUSH_DATAh(push, screen->tls->size / screen->mp_count); PUSH_DATA (push, screen->tls->size / screen->mp_count); PUSH_DATA (push, 0xff); BEGIN_NVC0(push, NVE4_COMPUTE(MP_TEMP_SIZE_HIGH(1)), 3); PUSH_DATAh(push, screen->tls->size / screen->mp_count); PUSH_DATA (push, screen->tls->size / screen->mp_count); PUSH_DATA (push, 0xff); /* Unified address space ? Who needs that ? Certainly not OpenCL. * * FATAL: Buffers with addresses inside [0x1000000, 0x3000000] will NOT be * accessible. We cannot prevent that at the moment, so expect failure. */ BEGIN_NVC0(push, NVE4_COMPUTE(LOCAL_BASE), 1); PUSH_DATA (push, 1 << 24); BEGIN_NVC0(push, NVE4_COMPUTE(SHARED_BASE), 1); PUSH_DATA (push, 2 << 24); BEGIN_NVC0(push, NVE4_COMPUTE(CODE_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->text->offset); PUSH_DATA (push, screen->text->offset); BEGIN_NVC0(push, SUBC_COMPUTE(0x0310), 1); PUSH_DATA (push, (obj_class >= NVF0_COMPUTE_CLASS) ? 0x400 : 0x300); /* NOTE: these do not affect the state used by the 3D object */ BEGIN_NVC0(push, NVE4_COMPUTE(TIC_ADDRESS_HIGH), 3); PUSH_DATAh(push, screen->txc->offset); PUSH_DATA (push, screen->txc->offset); PUSH_DATA (push, NVC0_TIC_MAX_ENTRIES - 1); BEGIN_NVC0(push, NVE4_COMPUTE(TSC_ADDRESS_HIGH), 3); PUSH_DATAh(push, screen->txc->offset + 65536); PUSH_DATA (push, screen->txc->offset + 65536); PUSH_DATA (push, NVC0_TSC_MAX_ENTRIES - 1); if (obj_class >= NVF0_COMPUTE_CLASS) { BEGIN_NVC0(push, SUBC_COMPUTE(0x0248), 1); PUSH_DATA (push, 0x100); BEGIN_NIC0(push, SUBC_COMPUTE(0x0248), 63); for (i = 63; i >= 1; --i) PUSH_DATA(push, 0x38000 | i); IMMED_NVC0(push, SUBC_COMPUTE(NV50_GRAPH_SERIALIZE), 0); IMMED_NVC0(push, SUBC_COMPUTE(0x518), 0); } BEGIN_NVC0(push, NVE4_COMPUTE(TEX_CB_INDEX), 1); PUSH_DATA (push, 0); /* does not interefere with 3D */ if (obj_class >= NVF0_COMPUTE_CLASS) IMMED_NVC0(push, SUBC_COMPUTE(0x02c4), 1); /* MS sample coordinate offsets: these do not work with _ALT modes ! */ BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->parm->offset + NVE4_CP_INPUT_MS_OFFSETS); PUSH_DATA (push, screen->parm->offset + NVE4_CP_INPUT_MS_OFFSETS); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 64); PUSH_DATA (push, 1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 17); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); PUSH_DATA (push, 0); /* 0 */ PUSH_DATA (push, 0); PUSH_DATA (push, 1); /* 1 */ PUSH_DATA (push, 0); PUSH_DATA (push, 0); /* 2 */ PUSH_DATA (push, 1); PUSH_DATA (push, 1); /* 3 */ PUSH_DATA (push, 1); PUSH_DATA (push, 2); /* 4 */ PUSH_DATA (push, 0); PUSH_DATA (push, 3); /* 5 */ PUSH_DATA (push, 0); PUSH_DATA (push, 2); /* 6 */ PUSH_DATA (push, 1); PUSH_DATA (push, 3); /* 7 */ PUSH_DATA (push, 1); #ifdef DEBUG BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->parm->offset + NVE4_CP_INPUT_TRAP_INFO_PTR); PUSH_DATA (push, screen->parm->offset + NVE4_CP_INPUT_TRAP_INFO_PTR); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 28); PUSH_DATA (push, 1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 8); PUSH_DATA (push, 1); PUSH_DATA (push, screen->parm->offset + NVE4_CP_PARAM_TRAP_INFO); PUSH_DATAh(push, screen->parm->offset + NVE4_CP_PARAM_TRAP_INFO); PUSH_DATA (push, screen->tls->offset); PUSH_DATAh(push, screen->tls->offset); PUSH_DATA (push, screen->tls->size / 2); /* MP TEMP block size */ PUSH_DATA (push, screen->tls->size / 2 / 64); /* warp TEMP block size */ PUSH_DATA (push, 0); /* warp cfstack size */ #endif BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CB); return 0; } static void nve4_compute_validate_surfaces(struct nvc0_context *nvc0) { struct nvc0_screen *screen = nvc0->screen; struct nouveau_pushbuf *push = nvc0->base.pushbuf; struct nv50_surface *sf; struct nv04_resource *res; uint32_t mask; unsigned i; const unsigned t = 1; mask = nvc0->surfaces_dirty[t]; while (mask) { i = ffs(mask) - 1; mask &= ~(1 << i); /* * NVE4's surface load/store instructions receive all the information * directly instead of via binding points, so we have to supply them. */ BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->parm->offset + NVE4_CP_INPUT_SUF(i)); PUSH_DATA (push, screen->parm->offset + NVE4_CP_INPUT_SUF(i)); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 64); PUSH_DATA (push, 1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 17); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); nve4_set_surface_info(push, nvc0->surfaces[t][i], screen); sf = nv50_surface(nvc0->surfaces[t][i]); if (sf) { res = nv04_resource(sf->base.texture); if (sf->base.writable) BCTX_REFN(nvc0->bufctx_cp, CP_SUF, res, RDWR); else BCTX_REFN(nvc0->bufctx_cp, CP_SUF, res, RD); } } if (nvc0->surfaces_dirty[t]) { BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CB); } /* re-reference non-dirty surfaces */ mask = nvc0->surfaces_valid[t] & ~nvc0->surfaces_dirty[t]; while (mask) { i = ffs(mask) - 1; mask &= ~(1 << i); sf = nv50_surface(nvc0->surfaces[t][i]); res = nv04_resource(sf->base.texture); if (sf->base.writable) BCTX_REFN(nvc0->bufctx_cp, CP_SUF, res, RDWR); else BCTX_REFN(nvc0->bufctx_cp, CP_SUF, res, RD); } nvc0->surfaces_dirty[t] = 0; } /* Thankfully, textures with samplers follow the normal rules. */ static void nve4_compute_validate_samplers(struct nvc0_context *nvc0) { boolean need_flush = nve4_validate_tsc(nvc0, 5); if (need_flush) { BEGIN_NVC0(nvc0->base.pushbuf, NVE4_COMPUTE(TSC_FLUSH), 1); PUSH_DATA (nvc0->base.pushbuf, 0); } } /* (Code duplicated at bottom for various non-convincing reasons. * E.g. we might want to use the COMPUTE subchannel to upload TIC/TSC * entries to avoid a subchannel switch. * Same for texture cache flushes. * Also, the bufctx differs, and more IFs in the 3D version looks ugly.) */ static void nve4_compute_validate_textures(struct nvc0_context *); static void nve4_compute_set_tex_handles(struct nvc0_context *nvc0) { struct nouveau_pushbuf *push = nvc0->base.pushbuf; uint64_t address; const unsigned s = nvc0_shader_stage(PIPE_SHADER_COMPUTE); unsigned i, n; uint32_t dirty = nvc0->textures_dirty[s] | nvc0->samplers_dirty[s]; if (!dirty) return; i = ffs(dirty) - 1; n = util_logbase2(dirty) + 1 - i; assert(n); address = nvc0->screen->parm->offset + NVE4_CP_INPUT_TEX(i); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, address); PUSH_DATA (push, address); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, n * 4); PUSH_DATA (push, 0x1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 1 + n); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); PUSH_DATAp(push, &nvc0->tex_handles[s][i], n); BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CB); nvc0->textures_dirty[s] = 0; nvc0->samplers_dirty[s] = 0; } static boolean nve4_compute_validate_program(struct nvc0_context *nvc0) { struct nvc0_program *prog = nvc0->compprog; if (prog->mem) return TRUE; if (!prog->translated) { prog->translated = nvc0_program_translate( prog, nvc0->screen->base.device->chipset); if (!prog->translated) return FALSE; } if (unlikely(!prog->code_size)) return FALSE; if (likely(prog->code_size)) { if (nvc0_program_upload_code(nvc0, prog)) { struct nouveau_pushbuf *push = nvc0->base.pushbuf; BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CODE); return TRUE; } } return FALSE; } static boolean nve4_compute_state_validate(struct nvc0_context *nvc0) { if (!nve4_compute_validate_program(nvc0)) return FALSE; if (nvc0->dirty_cp & NVC0_NEW_CP_TEXTURES) nve4_compute_validate_textures(nvc0); if (nvc0->dirty_cp & NVC0_NEW_CP_SAMPLERS) nve4_compute_validate_samplers(nvc0); if (nvc0->dirty_cp & (NVC0_NEW_CP_TEXTURES | NVC0_NEW_CP_SAMPLERS)) nve4_compute_set_tex_handles(nvc0); if (nvc0->dirty_cp & NVC0_NEW_CP_SURFACES) nve4_compute_validate_surfaces(nvc0); if (nvc0->dirty_cp & NVC0_NEW_CP_GLOBALS) nvc0_validate_global_residents(nvc0, nvc0->bufctx_cp, NVC0_BIND_CP_GLOBAL); nvc0_bufctx_fence(nvc0, nvc0->bufctx_cp, FALSE); nouveau_pushbuf_bufctx(nvc0->base.pushbuf, nvc0->bufctx_cp); if (unlikely(nouveau_pushbuf_validate(nvc0->base.pushbuf))) return FALSE; if (unlikely(nvc0->state.flushed)) nvc0_bufctx_fence(nvc0, nvc0->bufctx_cp, TRUE); return TRUE; } static void nve4_compute_upload_input(struct nvc0_context *nvc0, const void *input, const uint *block_layout, const uint *grid_layout) { struct nvc0_screen *screen = nvc0->screen; struct nouveau_pushbuf *push = nvc0->base.pushbuf; struct nvc0_program *cp = nvc0->compprog; if (cp->parm_size) { BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->parm->offset); PUSH_DATA (push, screen->parm->offset); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, cp->parm_size); PUSH_DATA (push, 0x1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 1 + (cp->parm_size / 4)); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); PUSH_DATAp(push, input, cp->parm_size / 4); } BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, screen->parm->offset + NVE4_CP_INPUT_GRID_INFO(0)); PUSH_DATA (push, screen->parm->offset + NVE4_CP_INPUT_GRID_INFO(0)); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 7 * 4); PUSH_DATA (push, 0x1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 1 + 7); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); PUSH_DATAp(push, block_layout, 3); PUSH_DATAp(push, grid_layout, 3); PUSH_DATA (push, 0); BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CB); } static INLINE uint8_t nve4_compute_derive_cache_split(struct nvc0_context *nvc0, uint32_t shared_size) { if (shared_size > (32 << 10)) return NVC0_3D_CACHE_SPLIT_48K_SHARED_16K_L1; if (shared_size > (16 << 10)) return NVE4_3D_CACHE_SPLIT_32K_SHARED_32K_L1; return NVC1_3D_CACHE_SPLIT_16K_SHARED_48K_L1; } static void nve4_compute_setup_launch_desc(struct nvc0_context *nvc0, struct nve4_cp_launch_desc *desc, uint32_t label, const uint *block_layout, const uint *grid_layout) { const struct nvc0_screen *screen = nvc0->screen; const struct nvc0_program *cp = nvc0->compprog; unsigned i; nve4_cp_launch_desc_init_default(desc); desc->entry = nvc0_program_symbol_offset(cp, label); desc->griddim_x = grid_layout[0]; desc->griddim_y = grid_layout[1]; desc->griddim_z = grid_layout[2]; desc->blockdim_x = block_layout[0]; desc->blockdim_y = block_layout[1]; desc->blockdim_z = block_layout[2]; desc->shared_size = align(cp->cp.smem_size, 0x100); desc->local_size_p = align(cp->cp.lmem_size, 0x10); desc->local_size_n = 0; desc->cstack_size = 0x800; desc->cache_split = nve4_compute_derive_cache_split(nvc0, cp->cp.smem_size); desc->gpr_alloc = cp->num_gprs; desc->bar_alloc = cp->num_barriers; for (i = 0; i < 7; ++i) { const unsigned s = 5; if (nvc0->constbuf[s][i].u.buf) nve4_cp_launch_desc_set_ctx_cb(desc, i + 1, &nvc0->constbuf[s][i]); } nve4_cp_launch_desc_set_cb(desc, 0, screen->parm, 0, NVE4_CP_INPUT_SIZE); } static INLINE struct nve4_cp_launch_desc * nve4_compute_alloc_launch_desc(struct nouveau_context *nv, struct nouveau_bo **pbo, uint64_t *pgpuaddr) { uint8_t *ptr = nouveau_scratch_get(nv, 512, pgpuaddr, pbo); if (!ptr) return NULL; if (*pgpuaddr & 255) { unsigned adj = 256 - (*pgpuaddr & 255); ptr += adj; *pgpuaddr += adj; } return (struct nve4_cp_launch_desc *)ptr; } void nve4_launch_grid(struct pipe_context *pipe, const uint *block_layout, const uint *grid_layout, uint32_t label, const void *input) { struct nvc0_context *nvc0 = nvc0_context(pipe); struct nouveau_pushbuf *push = nvc0->base.pushbuf; struct nve4_cp_launch_desc *desc; uint64_t desc_gpuaddr; struct nouveau_bo *desc_bo; int ret; desc = nve4_compute_alloc_launch_desc(&nvc0->base, &desc_bo, &desc_gpuaddr); if (!desc) { ret = -1; goto out; } BCTX_REFN_bo(nvc0->bufctx_cp, CP_DESC, NOUVEAU_BO_GART | NOUVEAU_BO_RD, desc_bo); ret = !nve4_compute_state_validate(nvc0); if (ret) goto out; nve4_compute_setup_launch_desc(nvc0, desc, label, block_layout, grid_layout); #ifdef DEBUG if (debug_get_num_option("NV50_PROG_DEBUG", 0)) nve4_compute_dump_launch_desc(desc); #endif nve4_compute_upload_input(nvc0, input, block_layout, grid_layout); /* upload descriptor and flush */ #if 0 BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, desc_gpuaddr); PUSH_DATA (push, desc_gpuaddr); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 256); PUSH_DATA (push, 1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 1 + (256 / 4)); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x08 << 1)); PUSH_DATAp(push, (const uint32_t *)desc, 256 / 4); BEGIN_NVC0(push, NVE4_COMPUTE(FLUSH), 1); PUSH_DATA (push, NVE4_COMPUTE_FLUSH_CB | NVE4_COMPUTE_FLUSH_CODE); #endif BEGIN_NVC0(push, NVE4_COMPUTE(LAUNCH_DESC_ADDRESS), 1); PUSH_DATA (push, desc_gpuaddr >> 8); BEGIN_NVC0(push, NVE4_COMPUTE(LAUNCH), 1); PUSH_DATA (push, 0x3); BEGIN_NVC0(push, SUBC_COMPUTE(NV50_GRAPH_SERIALIZE), 1); PUSH_DATA (push, 0); out: if (ret) NOUVEAU_ERR("Failed to launch grid !\n"); nouveau_scratch_done(&nvc0->base); nouveau_bufctx_reset(nvc0->bufctx_cp, NVC0_BIND_CP_DESC); } #define NVE4_TIC_ENTRY_INVALID 0x000fffff static void nve4_compute_validate_textures(struct nvc0_context *nvc0) { struct nouveau_bo *txc = nvc0->screen->txc; struct nouveau_pushbuf *push = nvc0->base.pushbuf; const unsigned s = 5; unsigned i; uint32_t commands[2][NVE4_CP_INPUT_TEX_MAX]; unsigned n[2] = { 0, 0 }; for (i = 0; i < nvc0->num_textures[s]; ++i) { struct nv50_tic_entry *tic = nv50_tic_entry(nvc0->textures[s][i]); struct nv04_resource *res; const boolean dirty = !!(nvc0->textures_dirty[s] & (1 << i)); if (!tic) { nvc0->tex_handles[s][i] |= NVE4_TIC_ENTRY_INVALID; continue; } res = nv04_resource(tic->pipe.texture); if (tic->id < 0) { tic->id = nvc0_screen_tic_alloc(nvc0->screen, tic); PUSH_SPACE(push, 16); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_DST_ADDRESS_HIGH), 2); PUSH_DATAh(push, txc->offset + (tic->id * 32)); PUSH_DATA (push, txc->offset + (tic->id * 32)); BEGIN_NVC0(push, NVE4_COMPUTE(UPLOAD_LINE_LENGTH_IN), 2); PUSH_DATA (push, 32); PUSH_DATA (push, 1); BEGIN_1IC0(push, NVE4_COMPUTE(UPLOAD_EXEC), 9); PUSH_DATA (push, NVE4_COMPUTE_UPLOAD_EXEC_LINEAR | (0x20 << 1)); PUSH_DATAp(push, &tic->tic[0], 8); commands[0][n[0]++] = (tic->id << 4) | 1; } else if (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) { commands[1][n[1]++] = (tic->id << 4) | 1; } nvc0->screen->tic.lock[tic->id / 32] |= 1 << (tic->id % 32); res->status &= ~NOUVEAU_BUFFER_STATUS_GPU_WRITING; res->status |= NOUVEAU_BUFFER_STATUS_GPU_READING; nvc0->tex_handles[s][i] &= ~NVE4_TIC_ENTRY_INVALID; nvc0->tex_handles[s][i] |= tic->id; if (dirty) BCTX_REFN(nvc0->bufctx_cp, CP_TEX(i), res, RD); } for (; i < nvc0->state.num_textures[s]; ++i) nvc0->tex_handles[s][i] |= NVE4_TIC_ENTRY_INVALID; if (n[0]) { BEGIN_NIC0(push, NVE4_COMPUTE(TIC_FLUSH), n[0]); PUSH_DATAp(push, commands[0], n[0]); } if (n[1]) { BEGIN_NIC0(push, NVE4_COMPUTE(TEX_CACHE_CTL), n[1]); PUSH_DATAp(push, commands[1], n[1]); } nvc0->state.num_textures[s] = nvc0->num_textures[s]; } #ifdef DEBUG static const char *nve4_cache_split_name(unsigned value) { switch (value) { case NVC1_3D_CACHE_SPLIT_16K_SHARED_48K_L1: return "16K_SHARED_48K_L1"; case NVE4_3D_CACHE_SPLIT_32K_SHARED_32K_L1: return "32K_SHARED_32K_L1"; case NVC0_3D_CACHE_SPLIT_48K_SHARED_16K_L1: return "48K_SHARED_16K_L1"; default: return "(invalid)"; } } static void nve4_compute_dump_launch_desc(const struct nve4_cp_launch_desc *desc) { const uint32_t *data = (const uint32_t *)desc; unsigned i; boolean zero = FALSE; debug_printf("COMPUTE LAUNCH DESCRIPTOR:\n"); for (i = 0; i < sizeof(*desc); i += 4) { if (data[i / 4]) { debug_printf("[%x]: 0x%08x\n", i, data[i / 4]); zero = FALSE; } else if (!zero) { debug_printf("...\n"); zero = TRUE; } } debug_printf("entry = 0x%x\n", desc->entry); debug_printf("grid dimensions = %ux%ux%u\n", desc->griddim_x, desc->griddim_y, desc->griddim_z); debug_printf("block dimensions = %ux%ux%u\n", desc->blockdim_x, desc->blockdim_y, desc->blockdim_z); debug_printf("s[] size: 0x%x\n", desc->shared_size); debug_printf("l[] size: -0x%x / +0x%x\n", desc->local_size_n, desc->local_size_p); debug_printf("stack size: 0x%x\n", desc->cstack_size); debug_printf("barrier count: %u\n", desc->bar_alloc); debug_printf("$r count: %u\n", desc->gpr_alloc); debug_printf("cache split: %s\n", nve4_cache_split_name(desc->cache_split)); for (i = 0; i < 8; ++i) { uint64_t address; uint32_t size = desc->cb[i].size; boolean valid = !!(desc->cb_mask & (1 << i)); address = ((uint64_t)desc->cb[i].address_h << 32) | desc->cb[i].address_l; if (!valid && !address && !size) continue; debug_printf("CB[%u]: address = 0x%"PRIx64", size 0x%x%s\n", i, address, size, valid ? "" : " (invalid)"); } } #endif #ifdef NOUVEAU_NVE4_MP_TRAP_HANDLER static void nve4_compute_trap_info(struct nvc0_context *nvc0) { struct nvc0_screen *screen = nvc0->screen; struct nouveau_bo *bo = screen->parm; int ret, i; volatile struct nve4_mp_trap_info *info; uint8_t *map; ret = nouveau_bo_map(bo, NOUVEAU_BO_RDWR, nvc0->base.client); if (ret) return; map = (uint8_t *)bo->map; info = (volatile struct nve4_mp_trap_info *)(map + NVE4_CP_PARAM_TRAP_INFO); if (info->lock) { debug_printf("trapstat = %08x\n", info->trapstat); debug_printf("warperr = %08x\n", info->warperr); debug_printf("PC = %x\n", info->pc); debug_printf("tid = %u %u %u\n", info->tid[0], info->tid[1], info->tid[2]); debug_printf("ctaid = %u %u %u\n", info->ctaid[0], info->ctaid[1], info->ctaid[2]); for (i = 0; i <= 63; ++i) debug_printf("$r%i = %08x\n", i, info->r[i]); for (i = 0; i <= 6; ++i) debug_printf("$p%i = %i\n", i, (info->flags >> i) & 1); debug_printf("$c = %x\n", info->flags >> 12); } info->lock = 0; } #endif