#include "pipe/p_context.h" #include "pipe/p_state.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "translate/translate.h" #include "nvc0_context.h" #include "nvc0_resource.h" #include "nvc0_3d.xml.h" struct push_context { struct nouveau_channel *chan; void *idxbuf; uint32_t vertex_words; uint32_t packet_vertex_limit; struct translate *translate; boolean primitive_restart; boolean need_vertex_id; uint32_t prim; uint32_t restart_index; uint32_t instance_id; struct { int buffer; float value; uint8_t *data; unsigned offset; unsigned stride; } edgeflag; }; static void init_push_context(struct nvc0_context *nvc0, struct push_context *ctx) { struct pipe_vertex_element *ve; ctx->chan = nvc0->screen->base.channel; ctx->translate = nvc0->vertex->translate; if (likely(nvc0->vertex->num_elements < 32)) ctx->need_vertex_id = nvc0->vertprog->vp.need_vertex_id; else ctx->need_vertex_id = FALSE; ctx->edgeflag.buffer = -1; ctx->edgeflag.value = 0.5f; if (unlikely(nvc0->vertprog->vp.edgeflag < PIPE_MAX_ATTRIBS)) { ve = &nvc0->vertex->element[nvc0->vertprog->vp.edgeflag].pipe; ctx->edgeflag.buffer = ve->vertex_buffer_index; ctx->edgeflag.offset = ve->src_offset; ctx->packet_vertex_limit = 1; } else { ctx->packet_vertex_limit = nvc0->vertex->vtx_per_packet_max; if (unlikely(ctx->need_vertex_id)) ctx->packet_vertex_limit = 1; } ctx->vertex_words = nvc0->vertex->vtx_size; } static INLINE void set_edgeflag(struct push_context *ctx, unsigned vtx_id) { float f = *(float *)(ctx->edgeflag.data + vtx_id * ctx->edgeflag.stride); if (ctx->edgeflag.value != f) { ctx->edgeflag.value = f; IMMED_RING(ctx->chan, RING_3D(EDGEFLAG_ENABLE), f ? 1 : 0); } } static INLINE void set_vertexid(struct push_context *ctx, uint32_t vtx_id) { #if 0 BEGIN_RING(ctx->chan, RING_3D(VERTEX_ID), 1); /* broken on nvc0 */ #else BEGIN_RING(ctx->chan, RING_3D(VERTEX_DATA), 1); /* as last attribute */ #endif OUT_RING (ctx->chan, vtx_id); } static INLINE unsigned prim_restart_search_i08(uint8_t *elts, unsigned push, uint8_t index) { unsigned i; for (i = 0; i < push; ++i) if (elts[i] == index) break; return i; } static INLINE unsigned prim_restart_search_i16(uint16_t *elts, unsigned push, uint16_t index) { unsigned i; for (i = 0; i < push; ++i) if (elts[i] == index) break; return i; } static INLINE unsigned prim_restart_search_i32(uint32_t *elts, unsigned push, uint32_t index) { unsigned i; for (i = 0; i < push; ++i) if (elts[i] == index) break; return i; } static void emit_vertices_i08(struct push_context *ctx, unsigned start, unsigned count) { uint8_t *restrict elts = (uint8_t *)ctx->idxbuf + start; while (count) { unsigned push = MIN2(count, ctx->packet_vertex_limit); unsigned size, nr; nr = push; if (ctx->primitive_restart) nr = prim_restart_search_i08(elts, push, ctx->restart_index); if (unlikely(ctx->edgeflag.buffer >= 0) && likely(nr)) set_edgeflag(ctx, elts[0]); size = ctx->vertex_words * nr; BEGIN_RING_NI(ctx->chan, RING_3D(VERTEX_DATA), size); ctx->translate->run_elts8(ctx->translate, elts, nr, ctx->instance_id, ctx->chan->cur); ctx->chan->cur += size; if (unlikely(ctx->need_vertex_id) && likely(size)) set_vertexid(ctx, elts[0]); count -= nr; elts += nr; if (nr != push) { count--; elts++; BEGIN_RING(ctx->chan, RING_3D(VERTEX_END_GL), 2); OUT_RING (ctx->chan, 0); OUT_RING (ctx->chan, NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_CONT | (ctx->prim & ~NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT)); } } } static void emit_vertices_i16(struct push_context *ctx, unsigned start, unsigned count) { uint16_t *restrict elts = (uint16_t *)ctx->idxbuf + start; while (count) { unsigned push = MIN2(count, ctx->packet_vertex_limit); unsigned size, nr; nr = push; if (ctx->primitive_restart) nr = prim_restart_search_i16(elts, push, ctx->restart_index); if (unlikely(ctx->edgeflag.buffer >= 0) && likely(nr)) set_edgeflag(ctx, elts[0]); size = ctx->vertex_words * nr; BEGIN_RING_NI(ctx->chan, RING_3D(VERTEX_DATA), size); ctx->translate->run_elts16(ctx->translate, elts, nr, ctx->instance_id, ctx->chan->cur); ctx->chan->cur += size; if (unlikely(ctx->need_vertex_id)) set_vertexid(ctx, elts[0]); count -= nr; elts += nr; if (nr != push) { count--; elts++; BEGIN_RING(ctx->chan, RING_3D(VERTEX_END_GL), 2); OUT_RING (ctx->chan, 0); OUT_RING (ctx->chan, NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_CONT | (ctx->prim & ~NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT)); } } } static void emit_vertices_i32(struct push_context *ctx, unsigned start, unsigned count) { uint32_t *restrict elts = (uint32_t *)ctx->idxbuf + start; while (count) { unsigned push = MIN2(count, ctx->packet_vertex_limit); unsigned size, nr; nr = push; if (ctx->primitive_restart) nr = prim_restart_search_i32(elts, push, ctx->restart_index); if (unlikely(ctx->edgeflag.buffer >= 0) && likely(nr)) set_edgeflag(ctx, elts[0]); size = ctx->vertex_words * nr; BEGIN_RING_NI(ctx->chan, RING_3D(VERTEX_DATA), size); ctx->translate->run_elts(ctx->translate, elts, nr, ctx->instance_id, ctx->chan->cur); ctx->chan->cur += size; if (unlikely(ctx->need_vertex_id)) set_vertexid(ctx, elts[0]); count -= nr; elts += nr; if (nr != push) { count--; elts++; BEGIN_RING(ctx->chan, RING_3D(VERTEX_END_GL), 2); OUT_RING (ctx->chan, 0); OUT_RING (ctx->chan, NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_CONT | (ctx->prim & ~NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT)); } } } static void emit_vertices_seq(struct push_context *ctx, unsigned start, unsigned count) { while (count) { unsigned push = MIN2(count, ctx->packet_vertex_limit); unsigned size = ctx->vertex_words * push; if (unlikely(ctx->edgeflag.buffer >= 0)) set_edgeflag(ctx, start); BEGIN_RING_NI(ctx->chan, RING_3D(VERTEX_DATA), size); ctx->translate->run(ctx->translate, start, push, ctx->instance_id, ctx->chan->cur); ctx->chan->cur += size; if (unlikely(ctx->need_vertex_id)) set_vertexid(ctx, start); count -= push; start += push; } } #define NVC0_PRIM_GL_CASE(n) \ case PIPE_PRIM_##n: return NVC0_3D_VERTEX_BEGIN_GL_PRIMITIVE_##n static INLINE unsigned nvc0_prim_gl(unsigned prim) { switch (prim) { NVC0_PRIM_GL_CASE(POINTS); NVC0_PRIM_GL_CASE(LINES); NVC0_PRIM_GL_CASE(LINE_LOOP); NVC0_PRIM_GL_CASE(LINE_STRIP); NVC0_PRIM_GL_CASE(TRIANGLES); NVC0_PRIM_GL_CASE(TRIANGLE_STRIP); NVC0_PRIM_GL_CASE(TRIANGLE_FAN); NVC0_PRIM_GL_CASE(QUADS); NVC0_PRIM_GL_CASE(QUAD_STRIP); NVC0_PRIM_GL_CASE(POLYGON); NVC0_PRIM_GL_CASE(LINES_ADJACENCY); NVC0_PRIM_GL_CASE(LINE_STRIP_ADJACENCY); NVC0_PRIM_GL_CASE(TRIANGLES_ADJACENCY); NVC0_PRIM_GL_CASE(TRIANGLE_STRIP_ADJACENCY); /* NVC0_PRIM_GL_CASE(PATCHES); */ default: return NVC0_3D_VERTEX_BEGIN_GL_PRIMITIVE_POINTS; break; } } void nvc0_push_vbo(struct nvc0_context *nvc0, const struct pipe_draw_info *info) { struct push_context ctx; unsigned i, index_size; unsigned inst_count = info->instance_count; unsigned vert_count = info->count; boolean apply_bias = info->indexed && info->index_bias; init_push_context(nvc0, &ctx); for (i = 0; i < nvc0->num_vtxbufs; ++i) { uint8_t *data; struct pipe_vertex_buffer *vb = &nvc0->vtxbuf[i]; struct nv04_resource *res = nv04_resource(vb->buffer); data = nouveau_resource_map_offset(&nvc0->base, res, vb->buffer_offset, NOUVEAU_BO_RD); if (apply_bias && likely(!(nvc0->vertex->instance_bufs & (1 << i)))) data += info->index_bias * vb->stride; ctx.translate->set_buffer(ctx.translate, i, data, vb->stride, ~0); if (unlikely(i == ctx.edgeflag.buffer)) { ctx.edgeflag.data = data + ctx.edgeflag.offset; ctx.edgeflag.stride = vb->stride; } } if (info->indexed) { ctx.idxbuf = nouveau_resource_map_offset(&nvc0->base, nv04_resource(nvc0->idxbuf.buffer), nvc0->idxbuf.offset, NOUVEAU_BO_RD); if (!ctx.idxbuf) return; index_size = nvc0->idxbuf.index_size; ctx.primitive_restart = info->primitive_restart; ctx.restart_index = info->restart_index; } else { ctx.idxbuf = NULL; index_size = 0; ctx.primitive_restart = FALSE; ctx.restart_index = 0; if (info->count_from_stream_output) { struct pipe_context *pipe = &nvc0->base.pipe; struct nvc0_so_target *targ; targ = nvc0_so_target(info->count_from_stream_output); pipe->get_query_result(pipe, targ->pq, TRUE, &vert_count); vert_count /= targ->stride; } } ctx.instance_id = info->start_instance; ctx.prim = nvc0_prim_gl(info->mode); if (unlikely(ctx.need_vertex_id)) { const unsigned a = nvc0->vertex->num_elements; BEGIN_RING(ctx.chan, RING_3D(VERTEX_ATTRIB_FORMAT(a)), 1); OUT_RING (ctx.chan, (a << NVC0_3D_VERTEX_ATTRIB_FORMAT_BUFFER__SHIFT) | NVC0_3D_VERTEX_ATTRIB_FORMAT_TYPE_FLOAT | NVC0_3D_VERTEX_ATTRIB_FORMAT_SIZE_32); BEGIN_RING(ctx.chan, RING_3D(VERTEX_ID_REPLACE), 1); OUT_RING (ctx.chan, (((0x80 + a * 0x10) / 4) << 4) | 1); } while (inst_count--) { BEGIN_RING(ctx.chan, RING_3D(VERTEX_BEGIN_GL), 1); OUT_RING (ctx.chan, ctx.prim); switch (index_size) { case 0: emit_vertices_seq(&ctx, info->start, vert_count); break; case 1: emit_vertices_i08(&ctx, info->start, vert_count); break; case 2: emit_vertices_i16(&ctx, info->start, vert_count); break; case 4: emit_vertices_i32(&ctx, info->start, vert_count); break; default: assert(0); break; } IMMED_RING(ctx.chan, RING_3D(VERTEX_END_GL), 0); ctx.instance_id++; ctx.prim |= NVC0_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT; } if (unlikely(ctx.edgeflag.value == 0.0f)) IMMED_RING(ctx.chan, RING_3D(EDGEFLAG_ENABLE), 1); if (unlikely(ctx.need_vertex_id)) { const unsigned a = nvc0->vertex->num_elements; IMMED_RING(ctx.chan, RING_3D(VERTEX_ID_REPLACE), 0); BEGIN_RING(ctx.chan, RING_3D(VERTEX_ATTRIB_FORMAT(a)), 1); OUT_RING (ctx.chan, NVC0_3D_VERTEX_ATTRIB_FORMAT_CONST | NVC0_3D_VERTEX_ATTRIB_FORMAT_TYPE_FLOAT | NVC0_3D_VERTEX_ATTRIB_FORMAT_SIZE_32); } if (info->indexed) nouveau_resource_unmap(nv04_resource(nvc0->idxbuf.buffer)); for (i = 0; i < nvc0->num_vtxbufs; ++i) nouveau_resource_unmap(nv04_resource(nvc0->vtxbuf[i].buffer)); }