/* * Copyright 2011 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "nv50/codegen/nv50_ir.h" #include "nv50/codegen/nv50_ir_build_util.h" #include "nv50_ir_target_nvc0.h" #include namespace nv50_ir { #define QOP_ADD 0 #define QOP_SUBR 1 #define QOP_SUB 2 #define QOP_MOV2 3 // UL UR LL LR #define QUADOP(q, r, s, t) \ ((QOP_##q << 6) | (QOP_##r << 4) | \ (QOP_##s << 2) | (QOP_##t << 0)) class NVC0LegalizeSSA : public Pass { private: virtual bool visit(BasicBlock *); virtual bool visit(Function *); // we want to insert calls to the builtin library only after optimization void handleDIV(Instruction *); // integer division, modulus void handleRCPRSQ(Instruction *); // double precision float recip/rsqrt private: BuildUtil bld; }; void NVC0LegalizeSSA::handleDIV(Instruction *i) { FlowInstruction *call; int builtin; Value *def[2]; bld.setPosition(i, false); def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0); def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0); switch (i->dType) { case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break; case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break; default: return; } call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL); bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]); bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2); bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0); call->fixed = 1; call->absolute = call->builtin = 1; call->target.builtin = builtin; delete_Instruction(prog, i); } void NVC0LegalizeSSA::handleRCPRSQ(Instruction *i) { // TODO } bool NVC0LegalizeSSA::visit(Function *fn) { bld.setProgram(fn->getProgram()); return true; } bool NVC0LegalizeSSA::visit(BasicBlock *bb) { Instruction *next; for (Instruction *i = bb->getEntry(); i; i = next) { next = i->next; if (i->dType == TYPE_F32) continue; switch (i->op) { case OP_DIV: case OP_MOD: handleDIV(i); break; case OP_RCP: case OP_RSQ: if (i->dType == TYPE_F64) handleRCPRSQ(i); break; default: break; } } return true; } class NVC0LegalizePostRA : public Pass { public: NVC0LegalizePostRA(const Program *); private: virtual bool visit(Function *); virtual bool visit(BasicBlock *); void replaceZero(Instruction *); bool tryReplaceContWithBra(BasicBlock *); void propagateJoin(BasicBlock *); struct TexUse { TexUse(Instruction *use, const Instruction *tex) : insn(use), tex(tex), level(-1) { } Instruction *insn; const Instruction *tex; // or split / mov int level; }; struct Limits { Limits() { } Limits(int min, int max) : min(min), max(max) { } int min, max; }; bool insertTextureBarriers(Function *); inline bool insnDominatedBy(const Instruction *, const Instruction *) const; void findFirstUses(const Instruction *tex, const Instruction *def, std::list&); void findOverwritingDefs(const Instruction *tex, Instruction *insn, const BasicBlock *term, std::list&); void addTexUse(std::list&, Instruction *, const Instruction *); const Instruction *recurseDef(const Instruction *); private: LValue *rZero; LValue *carry; const bool needTexBar; }; NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog) : needTexBar(prog->getTarget()->getChipset() >= 0xe0) { } bool NVC0LegalizePostRA::insnDominatedBy(const Instruction *later, const Instruction *early) const { if (early->bb == later->bb) return early->serial < later->serial; return later->bb->dominatedBy(early->bb); } void NVC0LegalizePostRA::addTexUse(std::list &uses, Instruction *usei, const Instruction *insn) { bool add = true; for (std::list::iterator it = uses.begin(); it != uses.end();) { if (insnDominatedBy(usei, it->insn)) { add = false; break; } if (insnDominatedBy(it->insn, usei)) it = uses.erase(it); else ++it; } if (add) uses.push_back(TexUse(usei, insn)); } void NVC0LegalizePostRA::findOverwritingDefs(const Instruction *texi, Instruction *insn, const BasicBlock *term, std::list &uses) { while (insn->op == OP_MOV && insn->getDef(0)->equals(insn->getSrc(0))) insn = insn->getSrc(0)->getUniqueInsn(); if (!insn || !insn->bb->reachableBy(texi->bb, term)) return; switch (insn->op) { /* Values not connected to the tex's definition through any of these should * not be conflicting. */ case OP_SPLIT: case OP_MERGE: case OP_PHI: case OP_UNION: /* recurse again */ for (int s = 0; insn->srcExists(s); ++s) findOverwritingDefs(texi, insn->getSrc(s)->getUniqueInsn(), term, uses); break; default: // if (!isTextureOp(insn->op)) // TODO: are TEXes always ordered ? addTexUse(uses, insn, texi); break; } } void NVC0LegalizePostRA::findFirstUses(const Instruction *texi, const Instruction *insn, std::list &uses) { for (int d = 0; insn->defExists(d); ++d) { Value *v = insn->getDef(d); for (Value::UseIterator u = v->uses.begin(); u != v->uses.end(); ++u) { Instruction *usei = (*u)->getInsn(); if (usei->op == OP_PHI || usei->op == OP_UNION) { // need a barrier before WAW cases for (int s = 0; usei->srcExists(s); ++s) { Instruction *defi = usei->getSrc(s)->getUniqueInsn(); if (defi && &usei->src(s) != *u) findOverwritingDefs(texi, defi, usei->bb, uses); } } if (usei->op == OP_SPLIT || usei->op == OP_MERGE || usei->op == OP_PHI || usei->op == OP_UNION) { // these uses don't manifest in the machine code findFirstUses(texi, usei, uses); } else if (usei->op == OP_MOV && usei->getDef(0)->equals(usei->getSrc(0)) && usei->subOp != NV50_IR_SUBOP_MOV_FINAL) { findFirstUses(texi, usei, uses); } else { addTexUse(uses, usei, insn); } } } } // Texture barriers: // This pass is a bit long and ugly and can probably be optimized. // // 1. obtain a list of TEXes and their outputs' first use(s) // 2. calculate the barrier level of each first use (minimal number of TEXes, // over all paths, between the TEX and the use in question) // 3. for each barrier, if all paths from the source TEX to that barrier // contain a barrier of lesser level, it can be culled bool NVC0LegalizePostRA::insertTextureBarriers(Function *fn) { std::list *uses; std::vector texes; std::vector bbFirstTex; std::vector bbFirstUse; std::vector texCounts; std::vector useVec; ArrayList insns; fn->orderInstructions(insns); texCounts.resize(fn->allBBlocks.getSize(), 0); bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize()); bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize()); // tag BB CFG nodes by their id for later for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) { BasicBlock *bb = reinterpret_cast(i.get()); if (bb) bb->cfg.tag = bb->getId(); } // gather the first uses for each TEX for (int i = 0; i < insns.getSize(); ++i) { Instruction *tex = reinterpret_cast(insns.get(i)); if (isTextureOp(tex->op)) { texes.push_back(tex); if (!texCounts.at(tex->bb->getId())) bbFirstTex[tex->bb->getId()] = texes.size() - 1; texCounts[tex->bb->getId()]++; } } insns.clear(); if (texes.empty()) return false; uses = new std::list[texes.size()]; if (!uses) return false; for (size_t i = 0; i < texes.size(); ++i) findFirstUses(texes[i], texes[i], uses[i]); // determine the barrier level at each use for (size_t i = 0; i < texes.size(); ++i) { for (std::list::iterator u = uses[i].begin(); u != uses[i].end(); ++u) { BasicBlock *tb = texes[i]->bb; BasicBlock *ub = u->insn->bb; if (tb == ub) { u->level = 0; for (size_t j = i + 1; j < texes.size() && texes[j]->bb == tb && texes[j]->serial < u->insn->serial; ++j) u->level++; } else { u->level = fn->cfg.findLightestPathWeight(&tb->cfg, &ub->cfg, texCounts); if (u->level < 0) { WARN("Failed to find path TEX -> TEXBAR\n"); u->level = 0; continue; } // this counted all TEXes in the origin block, correct that u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */; // and did not count the TEXes in the destination block, add those for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() && texes[j]->bb == ub && texes[j]->serial < u->insn->serial; ++j) u->level++; } assert(u->level >= 0); useVec.push_back(*u); } } delete[] uses; uses = NULL; // insert the barriers for (size_t i = 0; i < useVec.size(); ++i) { Instruction *prev = useVec[i].insn->prev; if (useVec[i].level < 0) continue; if (prev && prev->op == OP_TEXBAR) { if (prev->subOp > useVec[i].level) prev->subOp = useVec[i].level; prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0)); } else { Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE); bar->fixed = 1; bar->subOp = useVec[i].level; // make use explicit to ease latency calculation bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0)); useVec[i].insn->bb->insertBefore(useVec[i].insn, bar); } } if (fn->getProgram()->optLevel < 3) { if (uses) delete[] uses; return true; } std::vector limitT, limitB, limitS; // entry, exit, single limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0)); limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0)); limitS.resize(fn->allBBlocks.getSize()); // cull unneeded barriers (should do that earlier, but for simplicity) IteratorRef bi = fn->cfg.iteratorCFG(); // first calculate min/max outstanding TEXes for each BB for (bi->reset(); !bi->end(); bi->next()) { Graph::Node *n = reinterpret_cast(bi->get()); BasicBlock *bb = BasicBlock::get(n); int min = 0; int max = std::numeric_limits::max(); for (Instruction *i = bb->getFirst(); i; i = i->next) { if (isTextureOp(i->op)) { min++; if (max < std::numeric_limits::max()) max++; } else if (i->op == OP_TEXBAR) { min = MIN2(min, i->subOp); max = MIN2(max, i->subOp); } } // limits when looking at an isolated block limitS[bb->getId()].min = min; limitS[bb->getId()].max = max; } // propagate the min/max values for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) { for (bi->reset(); !bi->end(); bi->next()) { Graph::Node *n = reinterpret_cast(bi->get()); BasicBlock *bb = BasicBlock::get(n); const int bbId = bb->getId(); for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) { BasicBlock *in = BasicBlock::get(ei.getNode()); const int inId = in->getId(); limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min); limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max); } // I just hope this is correct ... if (limitS[bbId].max == std::numeric_limits::max()) { // no barrier limitB[bbId].min = limitT[bbId].min + limitS[bbId].min; limitB[bbId].max = limitT[bbId].max + limitS[bbId].min; } else { // block contained a barrier limitB[bbId].min = MIN2(limitS[bbId].max, limitT[bbId].min + limitS[bbId].min); limitB[bbId].max = MIN2(limitS[bbId].max, limitT[bbId].max + limitS[bbId].min); } } } // finally delete unnecessary barriers for (bi->reset(); !bi->end(); bi->next()) { Graph::Node *n = reinterpret_cast(bi->get()); BasicBlock *bb = BasicBlock::get(n); Instruction *prev = NULL; Instruction *next; int max = limitT[bb->getId()].max; for (Instruction *i = bb->getFirst(); i; i = next) { next = i->next; if (i->op == OP_TEXBAR) { if (i->subOp >= max) { delete_Instruction(prog, i); } else { max = i->subOp; if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) { delete_Instruction(prog, prev); prev = NULL; } } } else if (isTextureOp(i->op)) { max++; } if (!i->isNop()) prev = i; } } if (uses) delete[] uses; return true; } bool NVC0LegalizePostRA::visit(Function *fn) { if (needTexBar) insertTextureBarriers(fn); rZero = new_LValue(fn, FILE_GPR); carry = new_LValue(fn, FILE_FLAGS); rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR); carry->reg.data.id = 0; return true; } void NVC0LegalizePostRA::replaceZero(Instruction *i) { for (int s = 0; i->srcExists(s); ++s) { if (s == 2 && i->op == OP_SUCLAMP) continue; ImmediateValue *imm = i->getSrc(s)->asImm(); if (imm && imm->reg.data.u64 == 0) i->setSrc(s, rZero); } } // replace CONT with BRA for single unconditional continue bool NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb) { if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT) return false; Graph::EdgeIterator ei = bb->cfg.incident(); if (ei.getType() != Graph::Edge::BACK) ei.next(); if (ei.getType() != Graph::Edge::BACK) return false; BasicBlock *contBB = BasicBlock::get(ei.getNode()); if (!contBB->getExit() || contBB->getExit()->op != OP_CONT || contBB->getExit()->getPredicate()) return false; contBB->getExit()->op = OP_BRA; bb->remove(bb->getEntry()); // delete PRECONT ei.next(); assert(ei.end() || ei.getType() != Graph::Edge::BACK); return true; } // replace branches to join blocks with join ops void NVC0LegalizePostRA::propagateJoin(BasicBlock *bb) { if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit) return; for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) { BasicBlock *in = BasicBlock::get(ei.getNode()); Instruction *exit = in->getExit(); if (!exit) { in->insertTail(new FlowInstruction(func, OP_JOIN, bb)); // there should always be a terminator instruction WARN("inserted missing terminator in BB:%i\n", in->getId()); } else if (exit->op == OP_BRA) { exit->op = OP_JOIN; exit->asFlow()->limit = 1; // must-not-propagate marker } } bb->remove(bb->getEntry()); } bool NVC0LegalizePostRA::visit(BasicBlock *bb) { Instruction *i, *next; // remove pseudo operations and non-fixed no-ops, split 64 bit operations for (i = bb->getFirst(); i; i = next) { next = i->next; if (i->op == OP_EMIT || i->op == OP_RESTART) { if (!i->getDef(0)->refCount()) i->setDef(0, NULL); if (i->src(0).getFile() == FILE_IMMEDIATE) i->setSrc(0, rZero); // initial value must be 0 } else if (i->isNop()) { bb->remove(i); } else { // TODO: Move this to before register allocation for operations that // need the $c register ! if (typeSizeof(i->dType) == 8) { Instruction *hi; hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry); if (hi) next = hi; } if (i->op != OP_MOV && i->op != OP_PFETCH) replaceZero(i); } } if (!bb->getEntry()) return true; if (!tryReplaceContWithBra(bb)) propagateJoin(bb); return true; } class NVC0LoweringPass : public Pass { public: NVC0LoweringPass(Program *); private: virtual bool visit(Function *); virtual bool visit(BasicBlock *); virtual bool visit(Instruction *); bool handleRDSV(Instruction *); bool handleWRSV(Instruction *); bool handleEXPORT(Instruction *); bool handleOUT(Instruction *); bool handleDIV(Instruction *); bool handleMOD(Instruction *); bool handleSQRT(Instruction *); bool handlePOW(Instruction *); bool handleTEX(TexInstruction *); bool handleTXD(TexInstruction *); bool handleTXQ(TexInstruction *); bool handleManualTXD(TexInstruction *); bool handleATOM(Instruction *); bool handleCasExch(Instruction *, bool needCctl); void handleSurfaceOpNVE4(TexInstruction *); void checkPredicate(Instruction *); void readTessCoord(LValue *dst, int c); Value *loadResInfo32(Value *ptr, uint32_t off); Value *loadMsInfo32(Value *ptr, uint32_t off); Value *loadTexHandle(Value *ptr, unsigned int slot); void adjustCoordinatesMS(TexInstruction *); void processSurfaceCoordsNVE4(TexInstruction *); private: const Target *const targ; BuildUtil bld; Symbol *gMemBase; LValue *gpEmitAddress; }; NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget()) { bld.setProgram(prog); gMemBase = NULL; } bool NVC0LoweringPass::visit(Function *fn) { if (prog->getType() == Program::TYPE_GEOMETRY) { assert(!strncmp(fn->getName(), "MAIN", 4)); // TODO: when we generate actual functions pass this value along somehow bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false); gpEmitAddress = bld.loadImm(NULL, 0)->asLValue(); if (fn->cfgExit) { bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false); bld.mkMovToReg(0, gpEmitAddress); } } return true; } bool NVC0LoweringPass::visit(BasicBlock *bb) { return true; } inline Value * NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot) { uint8_t b = prog->driver->io.resInfoCBSlot; uint32_t off = prog->driver->io.texBindBase + slot * 4; return bld. mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr); } // move array source to first slot, convert to u16, add indirections bool NVC0LoweringPass::handleTEX(TexInstruction *i) { const int dim = i->tex.target.getDim() + i->tex.target.isCube(); const int arg = i->tex.target.getArgCount(); const int lyr = arg - (i->tex.target.isMS() ? 2 : 1); if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET) { if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) { WARN("indirect TEX not implemented\n"); } if (i->tex.r == i->tex.s) { i->tex.r += prog->driver->io.texBindBase / 4; i->tex.s = 0; // only a single cX[] value possible here } else { Value *hnd = bld.getScratch(); Value *rHnd = loadTexHandle(NULL, i->tex.r); Value *sHnd = loadTexHandle(NULL, i->tex.s); bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd); i->tex.r = 0; // not used for indirect tex i->tex.s = 0; i->setIndirectR(hnd); } if (i->tex.target.isArray()) { LValue *layer = new_LValue(func, FILE_GPR); Value *src = i->getSrc(lyr); const int sat = (i->op == OP_TXF) ? 1 : 0; DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32; bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat; for (int s = dim; s >= 1; --s) i->setSrc(s, i->getSrc(s - 1)); i->setSrc(0, layer); } } else // (nvc0) generate and move the tsc/tic/array source to the front if (dim != arg || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) { LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL; for (int s = dim; s >= 1; --s) i->setSrc(s, i->getSrc(s - 1)); i->setSrc(0, arrayIndex); Value *ticRel = i->getIndirectR(); Value *tscRel = i->getIndirectS(); if (arrayIndex) { int sat = (i->op == OP_TXF) ? 1 : 0; DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32; bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat; } else { bld.loadImm(src, 0); } if (ticRel) { i->setSrc(i->tex.rIndirectSrc, NULL); bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src); } if (tscRel) { i->setSrc(i->tex.sIndirectSrc, NULL); bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src); } i->setSrc(0, src); } // offset is last source (lod 1st, dc 2nd) if (i->tex.useOffsets) { uint32_t value = 0; int n, c; int s = i->srcCount(0xff, true); if (i->srcExists(s)) // move potential predicate out of the way i->moveSources(s, 1); for (n = 0; n < i->tex.useOffsets; ++n) for (c = 0; c < 3; ++c) value |= (i->tex.offset[n][c] & 0xf) << (n * 12 + c * 4); i->setSrc(s, bld.loadImm(NULL, value)); } if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET) { // // If TEX requires more than 4 sources, the 2nd register tuple must be // aligned to 4, even if it consists of just a single 4-byte register. // // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case. // int s = i->srcCount(0xff, true); if (s > 4 && s < 7) { if (i->srcExists(s)) // move potential predicate out of the way i->moveSources(s, 7 - s); while (s < 7) i->setSrc(s++, bld.loadImm(NULL, 0)); } } return true; } bool NVC0LoweringPass::handleManualTXD(TexInstruction *i) { static const uint8_t qOps[4][2] = { { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3 }; Value *def[4][4]; Value *crd[3]; Instruction *tex; Value *zero = bld.loadImm(bld.getSSA(), 0); int l, c; const int dim = i->tex.target.getDim(); i->op = OP_TEX; // no need to clone dPdx/dPdy later for (c = 0; c < dim; ++c) crd[c] = bld.getScratch(); bld.mkOp(OP_QUADON, TYPE_NONE, NULL); for (l = 0; l < 4; ++l) { // mov coordinates from lane l to all lanes for (c = 0; c < dim; ++c) bld.mkQuadop(0x00, crd[c], l, i->getSrc(c), zero); // add dPdx from lane l to lanes dx for (c = 0; c < dim; ++c) bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]); // add dPdy from lane l to lanes dy for (c = 0; c < dim; ++c) bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]); // texture bld.insert(tex = cloneForward(func, i)); for (c = 0; c < dim; ++c) tex->setSrc(c, crd[c]); // save results for (c = 0; i->defExists(c); ++c) { Instruction *mov; def[c][l] = bld.getSSA(); mov = bld.mkMov(def[c][l], tex->getDef(c)); mov->fixed = 1; mov->lanes = 1 << l; } } bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL); for (c = 0; i->defExists(c); ++c) { Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c)); for (l = 0; l < 4; ++l) u->setSrc(l, def[c][l]); } i->bb->remove(i); return true; } bool NVC0LoweringPass::handleTXD(TexInstruction *txd) { int dim = txd->tex.target.getDim(); int arg = txd->tex.target.getArgCount(); handleTEX(txd); while (txd->srcExists(arg)) ++arg; txd->tex.derivAll = true; if (dim > 2 || txd->tex.target.isCube() || arg > 4 || txd->tex.target.isShadow()) return handleManualTXD(txd); for (int c = 0; c < dim; ++c) { txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]); txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]); txd->dPdx[c].set(NULL); txd->dPdy[c].set(NULL); } return true; } bool NVC0LoweringPass::handleTXQ(TexInstruction *txq) { // TODO: indirect resource/sampler index return true; } bool NVC0LoweringPass::handleATOM(Instruction *atom) { SVSemantic sv; switch (atom->src(0).getFile()) { case FILE_MEMORY_LOCAL: sv = SV_LBASE; break; case FILE_MEMORY_SHARED: sv = SV_SBASE; break; default: assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL); return true; } Value *base = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0)); Value *ptr = atom->getIndirect(0, 0); atom->setSrc(0, cloneShallow(func, atom->getSrc(0))); atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL; if (ptr) base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr); atom->setIndirect(0, 0, base); return true; } bool NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl) { if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS && cas->subOp != NV50_IR_SUBOP_ATOM_EXCH) return false; bld.setPosition(cas, true); if (needCctl) { Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0)); cctl->setIndirect(0, 0, cas->getIndirect(0, 0)); cctl->fixed = 1; cctl->subOp = NV50_IR_SUBOP_CCTL_IV; if (cas->isPredicated()) cctl->setPredicate(cas->cc, cas->getPredicate()); } if (cas->defExists(0) && cas->subOp == NV50_IR_SUBOP_ATOM_CAS) { // CAS is crazy. It's 2nd source is a double reg, and the 3rd source // should be set to the high part of the double reg or bad things will // happen elsewhere in the universe. // Also, it sometimes returns the new value instead of the old one // under mysterious circumstances. Value *dreg = bld.getSSA(8); bld.setPosition(cas, false); bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2)); cas->setSrc(1, dreg); } return true; } inline Value * NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off) { uint8_t b = prog->driver->io.resInfoCBSlot; off += prog->driver->io.suInfoBase; return bld. mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr); } inline Value * NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off) { uint8_t b = prog->driver->io.msInfoCBSlot; off += prog->driver->io.msInfoBase; return bld. mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr); } /* On nvc0, surface info is obtained via the surface binding points passed * to the SULD/SUST instructions. * On nve4, surface info is stored in c[] and is used by various special * instructions, e.g. for clamping coordiantes or generating an address. * They couldn't just have added an equivalent to TIC now, couldn't they ? */ #define NVE4_SU_INFO_ADDR 0x00 #define NVE4_SU_INFO_FMT 0x04 #define NVE4_SU_INFO_DIM_X 0x08 #define NVE4_SU_INFO_PITCH 0x0c #define NVE4_SU_INFO_DIM_Y 0x10 #define NVE4_SU_INFO_ARRAY 0x14 #define NVE4_SU_INFO_DIM_Z 0x18 #define NVE4_SU_INFO_UNK1C 0x1c #define NVE4_SU_INFO_WIDTH 0x20 #define NVE4_SU_INFO_HEIGHT 0x24 #define NVE4_SU_INFO_DEPTH 0x28 #define NVE4_SU_INFO_TARGET 0x2c #define NVE4_SU_INFO_CALL 0x30 #define NVE4_SU_INFO_RAW_X 0x34 #define NVE4_SU_INFO_MS_X 0x38 #define NVE4_SU_INFO_MS_Y 0x3c #define NVE4_SU_INFO__STRIDE 0x40 #define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8) #define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4) #define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4) static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c) { switch (su->tex.target.getEnum()) { case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1); case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_1D_ARRAY: return (c == 1) ? NV50_IR_SUBOP_SUCLAMP_PL(0, 2) : NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2); case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2); case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2); default: assert(0); return 0; } } void NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex) { const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE; const int arg = tex->tex.target.getArgCount(); if (tex->tex.target == TEX_TARGET_2D_MS) tex->tex.target = TEX_TARGET_2D; else if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY) tex->tex.target = TEX_TARGET_2D_ARRAY; else return; Value *x = tex->getSrc(0); Value *y = tex->getSrc(1); Value *s = tex->getSrc(arg - 1); Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA(); Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0)); Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1)); bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x); bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y); s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7)); s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3)); Value *dx = loadMsInfo32(ts, 0x0); Value *dy = loadMsInfo32(ts, 0x4); bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx); bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy); tex->setSrc(0, tx); tex->setSrc(1, ty); tex->moveSources(arg, -1); } // Sets 64-bit "generic address", predicate and format sources for SULD/SUST. // They're computed from the coordinates using the surface info in c[] space. void NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su) { Instruction *insn; const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP; const bool raw = su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB; const int idx = su->tex.r; const int dim = su->tex.target.getDim(); const int arg = dim + (su->tex.target.isArray() ? 1 : 0); const uint16_t base = idx * NVE4_SU_INFO__STRIDE; int c; Value *zero = bld.mkImm(0); Value *p1 = NULL; Value *v; Value *src[3]; Value *bf, *eau, *off; Value *addr, *pred; off = bld.getScratch(4); bf = bld.getScratch(4); addr = bld.getSSA(8); pred = bld.getScratch(1, FILE_PREDICATE); bld.setPosition(su, false); adjustCoordinatesMS(su); // calculate clamped coordinates for (c = 0; c < arg; ++c) { src[c] = bld.getScratch(); if (c == 0 && raw) v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X); else v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c)); bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero) ->subOp = getSuClampSubOp(su, c); } for (; c < 3; ++c) src[c] = zero; // set predicate output if (su->tex.target == TEX_TARGET_BUFFER) { src[0]->getInsn()->setFlagsDef(1, pred); } else if (su->tex.target.isArray()) { p1 = bld.getSSA(1, FILE_PREDICATE); src[dim]->getInsn()->setFlagsDef(1, p1); } // calculate pixel offset if (dim == 1) { if (su->tex.target != TEX_TARGET_BUFFER) bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff)); } else if (dim == 3) { v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C); bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1]) ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH); bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0]) ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l } else { assert(dim == 2); v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH); bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0]) ->subOp = su->tex.target.isArray() ? NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l } // calculate effective address part 1 if (su->tex.target == TEX_TARGET_BUFFER) { if (raw) { bf = src[0]; } else { v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT); bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero) ->subOp = NV50_IR_SUBOP_V1(7,6,8|2); } } else { Value *y = src[1]; Value *z = src[2]; uint16_t subOp = 0; switch (dim) { case 1: y = zero; z = zero; break; case 2: z = off; if (!su->tex.target.isArray()) { z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C); subOp = NV50_IR_SUBOP_SUBFM_3D; } break; default: subOp = NV50_IR_SUBOP_SUBFM_3D; assert(dim == 3); break; } insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z); insn->subOp = subOp; insn->setFlagsDef(1, pred); } // part 2 v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR); if (su->tex.target == TEX_TARGET_BUFFER) { eau = v; } else { eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v); } // add array layer offset if (su->tex.target.isArray()) { v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY); if (dim == 1) bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau) ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32 else bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau) ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32 // combine predicates assert(p1); bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1); } if (atom) { Value *lo = bf; if (su->tex.target == TEX_TARGET_BUFFER) { lo = zero; bld.mkMov(off, bf); } // bf == g[] address & 0xff // eau == g[] address >> 8 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau); bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau); } else if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) { // Convert from u32 to u8 address format, which is what the library code // doing SULDP currently uses. // XXX: can SUEAU do this ? // XXX: does it matter that we don't mask high bytes in bf ? // Grrr. bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8)); bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off); } bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau); if (atom && su->tex.target == TEX_TARGET_BUFFER) bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off); // let's just set it 0 for raw access and hope it works v = raw ? bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT); // get rid of old coordinate sources, make space for fmt info and predicate su->moveSources(arg, 3 - arg); // set 64 bit address and 32-bit format sources su->setSrc(0, addr); su->setSrc(1, v); su->setSrc(2, pred); } void NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su) { processSurfaceCoordsNVE4(su); // Who do we hate more ? The person who decided that nvc0's SULD doesn't // have to support conversion or the person who decided that, in OpenCL, // you don't have to specify the format here like you do in OpenGL ? if (su->op == OP_SULDP) { // We don't patch shaders. Ever. // You get an indirect call to our library blob here. // But at least it's uniform. FlowInstruction *call; LValue *p[3]; LValue *r[5]; uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL; for (int i = 0; i < 4; ++i) (r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i; for (int i = 0; i < 3; ++i) (p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i; (r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4; bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8); bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8); bld.mkMov(p[0], su->getSrc(2), TYPE_U8); bld.mkMov(r[4], su->getSrc(0), TYPE_U64); bld.mkMov(r[2], su->getSrc(1), TYPE_U32); call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate()); call->indirect = 1; call->absolute = 1; call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.resInfoCBSlot, TYPE_U32, prog->driver->io.suInfoBase + base)); call->setSrc(1, r[2]); call->setSrc(2, r[4]); for (int i = 0; i < 3; ++i) call->setSrc(3 + i, p[i]); for (int i = 0; i < 4; ++i) { call->setDef(i, r[i]); bld.mkMov(su->getDef(i), r[i]); } call->setDef(4, p[1]); delete_Instruction(bld.getProgram(), su); } if (su->op == OP_SUREDB || su->op == OP_SUREDP) { // FIXME: for out of bounds access, destination value will be undefined ! Value *pred = su->getSrc(2); CondCode cc = CC_NOT_P; if (su->getPredicate()) { pred = bld.getScratch(1, FILE_PREDICATE); cc = su->cc; if (cc == CC_NOT_P) { bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2)); } else { bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2)); pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT); } } Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0)); red->subOp = su->subOp; if (!gMemBase) gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0); red->setSrc(0, gMemBase); red->setSrc(1, su->getSrc(3)); if (su->subOp == NV50_IR_SUBOP_ATOM_CAS) red->setSrc(2, su->getSrc(4)); red->setIndirect(0, 0, su->getSrc(0)); red->setPredicate(cc, pred); delete_Instruction(bld.getProgram(), su); handleCasExch(red, true); } else { su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8; } } bool NVC0LoweringPass::handleWRSV(Instruction *i) { Instruction *st; Symbol *sym; uint32_t addr; // must replace, $sreg are not writeable addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym()); if (addr >= 0x400) return false; sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr); st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0), i->getSrc(1)); st->perPatch = i->perPatch; bld.getBB()->remove(i); return true; } void NVC0LoweringPass::readTessCoord(LValue *dst, int c) { Value *laneid = bld.getSSA(); Value *x, *y; bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0)); if (c == 0) { x = dst; y = NULL; } else if (c == 1) { x = NULL; y = dst; } else { assert(c == 2); x = bld.getSSA(); y = bld.getSSA(); } if (x) bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid); if (y) bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid); if (c == 2) { bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y); bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst); } } bool NVC0LoweringPass::handleRDSV(Instruction *i) { Symbol *sym = i->getSrc(0)->asSym(); const SVSemantic sv = sym->reg.data.sv.sv; Value *vtx = NULL; Instruction *ld; uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym); if (addr >= 0x400) { // mov $sreg if (sym->reg.data.sv.index == 3) { // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID i->op = OP_MOV; i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0)); } return true; } switch (sv) { case SV_POSITION: assert(prog->getType() == Program::TYPE_FRAGMENT); bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL); break; case SV_FACE: { Value *face = i->getDef(0); bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL); if (i->dType == TYPE_F32) { bld.mkOp2(OP_AND, TYPE_U32, face, face, bld.mkImm(0x80000000)); bld.mkOp2(OP_XOR, TYPE_U32, face, face, bld.mkImm(0xbf800000)); } } break; case SV_TESS_COORD: assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL); readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index); break; case SV_NTID: case SV_NCTAID: case SV_GRIDID: assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise if (sym->reg.data.sv.index == 3) { i->op = OP_MOV; i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1)); return true; } addr += prog->driver->prop.cp.gridInfoBase; bld.mkLoad(TYPE_U32, i->getDef(0), bld.mkSymbol(FILE_MEMORY_CONST, 0, TYPE_U32, addr), NULL); break; default: if (prog->getType() == Program::TYPE_TESSELLATION_EVAL) vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0)); ld = bld.mkFetch(i->getDef(0), i->dType, FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx); ld->perPatch = i->perPatch; break; } bld.getBB()->remove(i); return true; } bool NVC0LoweringPass::handleDIV(Instruction *i) { if (!isFloatType(i->dType)) return true; bld.setPosition(i, false); Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(), i->getSrc(1)); i->op = OP_MUL; i->setSrc(1, rcp->getDef(0)); return true; } bool NVC0LoweringPass::handleMOD(Instruction *i) { if (i->dType != TYPE_F32) return true; LValue *value = bld.getScratch(); bld.mkOp1(OP_RCP, TYPE_F32, value, i->getSrc(1)); bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(0), value); bld.mkOp1(OP_TRUNC, TYPE_F32, value, value); bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(1), value); i->op = OP_SUB; i->setSrc(1, value); return true; } bool NVC0LoweringPass::handleSQRT(Instruction *i) { Instruction *rsq = bld.mkOp1(OP_RSQ, TYPE_F32, bld.getSSA(), i->getSrc(0)); i->op = OP_MUL; i->setSrc(1, rsq->getDef(0)); return true; } bool NVC0LoweringPass::handlePOW(Instruction *i) { LValue *val = bld.getScratch(); bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0)); bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1; bld.mkOp1(OP_PREEX2, TYPE_F32, val, val); i->op = OP_EX2; i->setSrc(0, val); i->setSrc(1, NULL); return true; } bool NVC0LoweringPass::handleEXPORT(Instruction *i) { if (prog->getType() == Program::TYPE_FRAGMENT) { int id = i->getSrc(0)->reg.data.offset / 4; if (i->src(0).isIndirect(0)) // TODO, ugly return false; i->op = OP_MOV; i->subOp = NV50_IR_SUBOP_MOV_FINAL; i->src(0).set(i->src(1)); i->setSrc(1, NULL); i->setDef(0, new_LValue(func, FILE_GPR)); i->getDef(0)->reg.data.id = id; prog->maxGPR = MAX2(prog->maxGPR, id); } else if (prog->getType() == Program::TYPE_GEOMETRY) { i->setIndirect(0, 1, gpEmitAddress); } return true; } bool NVC0LoweringPass::handleOUT(Instruction *i) { if (i->op == OP_RESTART && i->prev && i->prev->op == OP_EMIT) { i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART; delete_Instruction(prog, i); } else { assert(gpEmitAddress); i->setDef(0, gpEmitAddress); if (i->srcExists(0)) i->setSrc(1, i->getSrc(0)); i->setSrc(0, gpEmitAddress); } return true; } // Generate a binary predicate if an instruction is predicated by // e.g. an f32 value. void NVC0LoweringPass::checkPredicate(Instruction *insn) { Value *pred = insn->getPredicate(); Value *pdst; if (!pred || pred->reg.file == FILE_PREDICATE) return; pdst = new_LValue(func, FILE_PREDICATE); // CAUTION: don't use pdst->getInsn, the definition might not be unique, // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, bld.mkImm(0), pred); insn->setPredicate(insn->cc, pdst); } // // - add quadop dance for texturing // - put FP outputs in GPRs // - convert instruction sequences // bool NVC0LoweringPass::visit(Instruction *i) { bld.setPosition(i, false); if (i->cc != CC_ALWAYS) checkPredicate(i); switch (i->op) { case OP_TEX: case OP_TXB: case OP_TXL: case OP_TXF: case OP_TXG: return handleTEX(i->asTex()); case OP_TXD: return handleTXD(i->asTex()); case OP_TXQ: return handleTXQ(i->asTex()); case OP_EX2: bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0)); i->setSrc(0, i->getDef(0)); break; case OP_POW: return handlePOW(i); case OP_DIV: return handleDIV(i); case OP_MOD: return handleMOD(i); case OP_SQRT: return handleSQRT(i); case OP_EXPORT: return handleEXPORT(i); case OP_EMIT: case OP_RESTART: return handleOUT(i); case OP_RDSV: return handleRDSV(i); case OP_WRSV: return handleWRSV(i); case OP_LOAD: if (i->src(0).getFile() == FILE_SHADER_INPUT) { if (prog->getType() == Program::TYPE_COMPUTE) { i->getSrc(0)->reg.file = FILE_MEMORY_CONST; i->getSrc(0)->reg.fileIndex = 0; } else { i->op = OP_VFETCH; assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP } } break; case OP_ATOM: { const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL; handleATOM(i); handleCasExch(i, cctl); } break; case OP_SULDB: case OP_SULDP: case OP_SUSTB: case OP_SUSTP: case OP_SUREDB: case OP_SUREDP: if (targ->getChipset() >= NVISA_GK104_CHIPSET) handleSurfaceOpNVE4(i->asTex()); break; default: break; } return true; } bool TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const { if (stage == CG_STAGE_PRE_SSA) { NVC0LoweringPass pass(prog); return pass.run(prog, false, true); } else if (stage == CG_STAGE_POST_RA) { NVC0LegalizePostRA pass(prog); return pass.run(prog, false, true); } else if (stage == CG_STAGE_SSA) { NVC0LegalizeSSA pass; return pass.run(prog, false, true); } return false; } } // namespace nv50_ir