/* * Copyright 2008 Ben Skeggs * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/u_inlines.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "nv50_context.h" #define NV50_SU_MAX_TEMP 127 #define NV50_SU_MAX_ADDR 4 //#define NV50_PROGRAM_DUMP /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */ /* ARL - gallium craps itself on progs/vp/arl.txt * * MSB - Like MAD, but MUL+SUB * - Fuck it off, introduce a way to negate args for ops that * support it. * * Look into inlining IMMD for ops other than MOV (make it general?) * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD, * but can emit to P_TEMP first - then MOV later. NVIDIA does this * * In ops such as ADD it's possible to construct a bad opcode in the !is_long() * case, if the emit_src() causes the inst to suddenly become long. * * Verify half-insns work where expected - and force disable them where they * don't work - MUL has it forcibly disabled atm as it fixes POW.. * * FUCK! watch dst==src vectors, can overwrite components that are needed. * ie. SUB R0, R0.yzxw, R0 * * Things to check with renouveau: * FP attr/result assignment - how? * attrib * - 0x16bc maps vp output onto fp hpos * - 0x16c0 maps vp output onto fp col0 * result * - colr always 0-3 * - depr always 4 * 0x16bc->0x16e8 --> some binding between vp/fp regs * 0x16b8 --> VP output count * * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005 * "MOV rcol.x, fcol.y" = 0x00000004 * 0x19a8 --> as above but 0x00000100 and 0x00000000 * - 0x00100000 used when KIL used * 0x196c --> as above but 0x00000011 and 0x00000000 * * 0x1988 --> 0xXXNNNNNN * - XX == FP high something */ struct nv50_reg { enum { P_TEMP, P_ATTR, P_RESULT, P_CONST, P_IMMD, P_ADDR } type; int index; int hw; int mod; int rhw; /* result hw for FP outputs, or interpolant index */ int acc; /* instruction where this reg is last read (first insn == 1) */ int vtx; /* vertex index, for GP inputs (TGSI Dimension.Index) */ int indirect[2]; /* index into pc->addr, or -1 */ ubyte buf_index; /* c{0 .. 15}[] or g{0 .. 15}[] */ }; #define NV50_MOD_NEG 1 #define NV50_MOD_ABS 2 #define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS) #define NV50_MOD_SAT 4 #define NV50_MOD_I32 8 /* NV50_MOD_I32 is used to indicate integer mode for neg/abs */ /* STACK: Conditionals and loops have to use the (per warp) stack. * Stack entries consist of an entry type (divergent path, join at), * a mask indicating the active threads of the warp, and an address. * MPs can store 12 stack entries internally, if we need more (and * we probably do), we have to create a stack buffer in VRAM. */ /* impose low limits for now */ #define NV50_MAX_COND_NESTING 4 #define NV50_MAX_LOOP_NESTING 3 #define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2 struct nv50_pc { struct nv50_program *p; /* hw resources */ struct nv50_reg *r_temp[NV50_SU_MAX_TEMP]; struct nv50_reg r_addr[NV50_SU_MAX_ADDR]; /* tgsi resources */ struct nv50_reg *temp; int temp_nr; struct nv50_reg *attr; int attr_nr; struct nv50_reg *result; int result_nr; struct nv50_reg *param; int param_nr; struct nv50_reg *immd; uint32_t *immd_buf; int immd_nr; struct nv50_reg **addr; int addr_nr; struct nv50_reg *sysval; int sysval_nr; struct nv50_reg *temp_temp[16]; struct nv50_program_exec *temp_temp_exec[16]; unsigned temp_temp_nr; /* broadcast and destination replacement regs */ struct nv50_reg *r_brdc; struct nv50_reg *r_dst[4]; struct nv50_reg reg_instances[16]; unsigned reg_instance_nr; unsigned interp_mode[32]; /* perspective interpolation registers */ struct nv50_reg *iv_p; struct nv50_reg *iv_c; struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING]; struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING]; struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING]; int if_lvl, loop_lvl; unsigned loop_pos[NV50_MAX_LOOP_NESTING]; unsigned *insn_pos; /* actual program offset of each TGSI insn */ boolean in_subroutine; /* current instruction and total number of insns */ unsigned insn_cur; unsigned insn_nr; boolean allow32; uint8_t edgeflag_out; }; static struct nv50_reg *get_address_reg(struct nv50_pc *, struct nv50_reg *); static INLINE void ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw) { reg->type = type; reg->index = index; reg->hw = hw; reg->mod = 0; reg->rhw = -1; reg->vtx = -1; reg->acc = 0; reg->indirect[0] = reg->indirect[1] = -1; reg->buf_index = (type == P_CONST) ? 1 : 0; } static INLINE unsigned popcnt4(uint32_t val) { static const unsigned cnt[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; return cnt[val & 0xf]; } static void terminate_mbb(struct nv50_pc *pc) { int i; /* remove records of temporary address register values */ for (i = 0; i < NV50_SU_MAX_ADDR; ++i) if (pc->r_addr[i].index < 0) pc->r_addr[i].acc = 0; } static void alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg) { int i = 0; if (reg->type == P_RESULT) { if (pc->p->cfg.high_result < (reg->hw + 1)) pc->p->cfg.high_result = reg->hw + 1; } if (reg->type != P_TEMP) return; if (reg->hw >= 0) { /*XXX: do this here too to catch FP temp-as-attr usage.. * not clean, but works */ if (pc->p->cfg.high_temp < (reg->hw + 1)) pc->p->cfg.high_temp = reg->hw + 1; return; } if (reg->rhw != -1) { /* try to allocate temporary with index rhw first */ if (!(pc->r_temp[reg->rhw])) { pc->r_temp[reg->rhw] = reg; reg->hw = reg->rhw; if (pc->p->cfg.high_temp < (reg->rhw + 1)) pc->p->cfg.high_temp = reg->rhw + 1; return; } /* make sure we don't get things like $r0 needs to go * in $r1 and $r1 in $r0 */ i = pc->result_nr * 4; } for (; i < NV50_SU_MAX_TEMP; i++) { if (!(pc->r_temp[i])) { pc->r_temp[i] = reg; reg->hw = i; if (pc->p->cfg.high_temp < (i + 1)) pc->p->cfg.high_temp = i + 1; return; } } NOUVEAU_ERR("out of registers\n"); abort(); } static INLINE struct nv50_reg * reg_instance(struct nv50_pc *pc, struct nv50_reg *reg) { struct nv50_reg *ri; assert(pc->reg_instance_nr < 16); ri = &pc->reg_instances[pc->reg_instance_nr++]; if (reg) { alloc_reg(pc, reg); *ri = *reg; reg->indirect[0] = reg->indirect[1] = -1; reg->mod = 0; } return ri; } /* XXX: For shaders that aren't executed linearly (e.g. shaders that * contain loops), we need to assign all hw regs to TGSI TEMPs early, * lest we risk temp_temps overwriting regs alloc'd "later". */ static struct nv50_reg * alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst) { struct nv50_reg *r; int i; if (dst && dst->type == P_TEMP && dst->hw == -1) return dst; for (i = 0; i < NV50_SU_MAX_TEMP; i++) { if (!pc->r_temp[i]) { r = MALLOC_STRUCT(nv50_reg); ctor_reg(r, P_TEMP, -1, i); pc->r_temp[i] = r; return r; } } NOUVEAU_ERR("out of registers\n"); abort(); return NULL; } /* release the hardware resource held by r */ static void release_hw(struct nv50_pc *pc, struct nv50_reg *r) { assert(r->type == P_TEMP); if (r->hw == -1) return; assert(pc->r_temp[r->hw] == r); pc->r_temp[r->hw] = NULL; r->acc = 0; if (r->index == -1) FREE(r); } static void free_temp(struct nv50_pc *pc, struct nv50_reg *r) { if (r->index == -1) { unsigned hw = r->hw; FREE(pc->r_temp[hw]); pc->r_temp[hw] = NULL; } } static int alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx) { int i; if ((idx + 4) >= NV50_SU_MAX_TEMP) return 1; if (pc->r_temp[idx] || pc->r_temp[idx + 1] || pc->r_temp[idx + 2] || pc->r_temp[idx + 3]) return alloc_temp4(pc, dst, idx + 4); for (i = 0; i < 4; i++) { dst[i] = MALLOC_STRUCT(nv50_reg); ctor_reg(dst[i], P_TEMP, -1, idx + i); pc->r_temp[idx + i] = dst[i]; } return 0; } static void free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4]) { int i; for (i = 0; i < 4; i++) free_temp(pc, reg[i]); } static struct nv50_reg * temp_temp(struct nv50_pc *pc, struct nv50_program_exec *e) { if (pc->temp_temp_nr >= 16) assert(0); pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL); pc->temp_temp_exec[pc->temp_temp_nr] = e; return pc->temp_temp[pc->temp_temp_nr++]; } /* This *must* be called for all nv50_program_exec that have been * given as argument to temp_temp, or the temps will be leaked ! */ static void kill_temp_temp(struct nv50_pc *pc, struct nv50_program_exec *e) { int i; for (i = 0; i < pc->temp_temp_nr; i++) if (pc->temp_temp_exec[i] == e) free_temp(pc, pc->temp_temp[i]); if (!e) pc->temp_temp_nr = 0; } static int ctor_immd_4u32(struct nv50_pc *pc, uint32_t x, uint32_t y, uint32_t z, uint32_t w) { unsigned size = pc->immd_nr * 4 * sizeof(uint32_t); pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t)); pc->immd_buf[(pc->immd_nr * 4) + 0] = x; pc->immd_buf[(pc->immd_nr * 4) + 1] = y; pc->immd_buf[(pc->immd_nr * 4) + 2] = z; pc->immd_buf[(pc->immd_nr * 4) + 3] = w; return pc->immd_nr++; } static INLINE int ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w) { return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w)); } static struct nv50_reg * alloc_immd(struct nv50_pc *pc, float f) { struct nv50_reg *r = MALLOC_STRUCT(nv50_reg); unsigned hw; for (hw = 0; hw < pc->immd_nr * 4; hw++) if (pc->immd_buf[hw] == fui(f)) break; if (hw == pc->immd_nr * 4) hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4; ctor_reg(r, P_IMMD, -1, hw); return r; } static struct nv50_program_exec * exec(struct nv50_pc *pc) { struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec); e->param.index = -1; return e; } static void emit(struct nv50_pc *pc, struct nv50_program_exec *e) { struct nv50_program *p = pc->p; if (p->exec_tail) p->exec_tail->next = e; if (!p->exec_head) p->exec_head = e; p->exec_tail = e; p->exec_size += (e->inst[0] & 1) ? 2 : 1; kill_temp_temp(pc, e); } static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *); static boolean is_long(struct nv50_program_exec *e) { if (e->inst[0] & 1) return TRUE; return FALSE; } static boolean is_immd(struct nv50_program_exec *e) { if (is_long(e) && (e->inst[1] & 3) == 3) return TRUE; return FALSE; } static boolean is_join(struct nv50_program_exec *e) { if (is_long(e) && (e->inst[1] & 3) == 2) return TRUE; return FALSE; } static INLINE boolean is_control_flow(struct nv50_program_exec *e) { return (e->inst[0] & 2); } static INLINE void set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx, struct nv50_program_exec *e) { assert(!is_immd(e)); set_long(pc, e); e->inst[1] &= ~((0x1f << 7) | (0x3 << 12)); e->inst[1] |= (pred << 7) | (idx << 12); } static INLINE void set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx, struct nv50_program_exec *e) { set_long(pc, e); e->inst[1] &= ~((0x3 << 4) | (1 << 6)); e->inst[1] |= (idx << 4) | (on << 6); } static INLINE void set_long(struct nv50_pc *pc, struct nv50_program_exec *e) { if (is_long(e)) return; e->inst[0] |= 1; set_pred(pc, 0xf, 0, e); set_pred_wr(pc, 0, 0, e); } static INLINE void set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e) { if (dst->type == P_RESULT) { set_long(pc, e); e->inst[1] |= 0x00000008; } alloc_reg(pc, dst); if (dst->hw > 63) set_long(pc, e); e->inst[0] |= (dst->hw << 2); } static INLINE void set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e) { set_long(pc, e); /* XXX: can't be predicated - bits overlap; cases where both * are required should be avoided by using pc->allow32 */ set_pred(pc, 0, 0, e); set_pred_wr(pc, 0, 0, e); e->inst[1] |= 0x00000002 | 0x00000001; e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16; e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2; } static INLINE void set_addr(struct nv50_program_exec *e, struct nv50_reg *a) { assert(a->type == P_ADDR); assert(!(e->inst[0] & 0x0c000000)); assert(!(e->inst[1] & 0x00000004)); e->inst[0] |= (a->hw & 3) << 26; e->inst[1] |= a->hw & 4; } static void emit_arl(struct nv50_pc *, struct nv50_reg *, struct nv50_reg *, uint8_t); static void emit_shl_imm(struct nv50_pc *, struct nv50_reg *, struct nv50_reg *, int); static void emit_mov_from_addr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[1] = 0x40000000; set_long(pc, e); set_dst(pc, dst, e); set_addr(e, src); emit(pc, e); } static void emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, uint16_t src1_val) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xd0000000 | (src1_val << 9); e->inst[1] = 0x20000000; set_long(pc, e); e->inst[0] |= dst->hw << 2; if (src0) /* otherwise will add to $a0, which is always 0 */ set_addr(e, src0); emit(pc, e); } #define INTERP_LINEAR 0 #define INTERP_FLAT 1 #define INTERP_PERSPECTIVE 2 #define INTERP_CENTROID 4 /* interpolant index has been stored in dst->rhw */ static void emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv, unsigned mode) { assert(dst->rhw != -1); struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0x80000000; set_dst(pc, dst, e); e->inst[0] |= (dst->rhw << 16); if (mode & INTERP_FLAT) { e->inst[0] |= (1 << 8); } else { if (mode & INTERP_PERSPECTIVE) { e->inst[0] |= (1 << 25); alloc_reg(pc, iv); e->inst[0] |= (iv->hw << 9); } if (mode & INTERP_CENTROID) e->inst[0] |= (1 << 24); } emit(pc, e); } static void set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s, struct nv50_program_exec *e) { set_long(pc, e); e->param.index = src->hw & 127; e->param.shift = s; e->param.mask = m << (s % 32); if (src->hw < 0 || src->hw > 127) /* need (additional) address reg */ set_addr(e, get_address_reg(pc, src)); else if (src->acc < 0) { assert(src->type == P_CONST); set_addr(e, pc->addr[src->indirect[0]]); } e->inst[1] |= (src->buf_index << 22); } /* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */ static void emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x10000000; if (!pc->allow32) set_long(pc, e); set_dst(pc, dst, e); if (!is_long(e) && src->type == P_IMMD) { set_immd(pc, src, e); /*XXX: 32-bit, but steals part of "half" reg space - need to * catch and handle this case if/when we do half-regs */ } else if (src->type == P_IMMD || src->type == P_CONST) { set_long(pc, e); set_data(pc, src, 0x7f, 9, e); e->inst[1] |= 0x20000000; /* mov from c[] */ } else { if (src->type == P_ATTR) { set_long(pc, e); e->inst[1] |= 0x00200000; if (src->vtx >= 0) { /* indirect (vertex base + c) load from p[] */ e->inst[0] |= 0x01800000; set_addr(e, get_address_reg(pc, src)); } } alloc_reg(pc, src); if (src->hw > 63) set_long(pc, e); e->inst[0] |= (src->hw << 9); } if (is_long(e) && !is_immd(e)) { e->inst[1] |= 0x04000000; /* 32-bit */ e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */ if (!(e->inst[1] & 0x20000000)) e->inst[1] |= 0x00030000; /* lane mask 2:3 */ } else e->inst[0] |= 0x00008000; emit(pc, e); } static INLINE void emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f) { struct nv50_reg *imm = alloc_immd(pc, f); emit_mov(pc, dst, imm); FREE(imm); } /* Assign the hw of the discarded temporary register src * to the tgsi register dst and free src. */ static void assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { assert(src->index == -1 && src->hw != -1); if (pc->if_lvl || pc->loop_lvl || (dst->type != P_TEMP) || (src->hw < pc->result_nr * 4 && pc->p->type == PIPE_SHADER_FRAGMENT) || pc->p->info.opcode_count[TGSI_OPCODE_CAL] || pc->p->info.opcode_count[TGSI_OPCODE_BRA]) { emit_mov(pc, dst, src); free_temp(pc, src); return; } if (dst->hw != -1) pc->r_temp[dst->hw] = NULL; pc->r_temp[src->hw] = dst; dst->hw = src->hw; FREE(src); } static void emit_nop(struct nv50_pc *pc) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xf0000000; set_long(pc, e); e->inst[1] = 0xe0000000; emit(pc, e); } static boolean check_swap_src_0_1(struct nv50_pc *pc, struct nv50_reg **s0, struct nv50_reg **s1) { struct nv50_reg *src0 = *s0, *src1 = *s1; if (src0->type == P_CONST) { if (src1->type != P_CONST) { *s0 = src1; *s1 = src0; return TRUE; } } else if (src1->type == P_ATTR) { if (src0->type != P_ATTR) { *s0 = src1; *s1 = src0; return TRUE; } } return FALSE; } static void set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { struct nv50_reg *temp; if (src->type != P_TEMP) { temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } alloc_reg(pc, src); if (src->hw > 63) set_long(pc, e); e->inst[0] |= (src->hw << 9); } static void set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { if (src->type == P_ATTR) { set_long(pc, e); e->inst[1] |= 0x00200000; if (src->vtx >= 0) { e->inst[0] |= 0x01800000; /* src from p[] */ set_addr(e, get_address_reg(pc, src)); } } else if (src->type == P_CONST || src->type == P_IMMD) { struct nv50_reg *temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } alloc_reg(pc, src); if (src->hw > 63) set_long(pc, e); e->inst[0] |= (src->hw << 9); } static void set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { if (src->type == P_ATTR) { struct nv50_reg *temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } else if (src->type == P_CONST || src->type == P_IMMD) { if (e->inst[0] & 0x01800000) { struct nv50_reg *temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } else { assert(!(e->inst[0] & 0x00800000)); set_data(pc, src, 0x7f, 16, e); e->inst[0] |= 0x00800000; } } alloc_reg(pc, src); if (src->hw > 63) set_long(pc, e); e->inst[0] |= ((src->hw & 127) << 16); } static void set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { set_long(pc, e); if (src->type == P_ATTR) { struct nv50_reg *temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } else if (src->type == P_CONST || src->type == P_IMMD) { if (e->inst[0] & 0x01800000) { struct nv50_reg *temp = temp_temp(pc, e); emit_mov(pc, temp, src); src = temp; } else { assert(!(e->inst[0] & 0x01000000)); set_data(pc, src, 0x7f, 32+14, e); e->inst[0] |= 0x01000000; } } alloc_reg(pc, src); e->inst[1] |= ((src->hw & 127) << 14); } static void set_half_src(struct nv50_pc *pc, struct nv50_reg *src, int lh, struct nv50_program_exec *e, int pos) { struct nv50_reg *r = src; alloc_reg(pc, r); if (r->type != P_TEMP) { r = temp_temp(pc, e); emit_mov(pc, r, src); } if (r->hw > (NV50_SU_MAX_TEMP / 2)) { NOUVEAU_ERR("out of low GPRs\n"); abort(); } e->inst[pos / 32] |= ((src->hw * 2) + lh) << (pos % 32); } static void emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred) { struct nv50_program_exec *e = exec(pc); assert(dst->type == P_TEMP); e->inst[1] = 0x20000000 | (pred << 12); set_long(pc, e); set_dst(pc, dst, e); emit(pc, e); } static void emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x000001fc; e->inst[1] = 0xa0000008; set_long(pc, e); set_pred_wr(pc, 1, pred, e); set_src_0_restricted(pc, src, e); emit(pc, e); } static void emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xc0000000; if (!pc->allow32) set_long(pc, e); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); if (src1->type == P_IMMD && !is_long(e)) { if (src0->mod ^ src1->mod) e->inst[0] |= 0x00008000; set_immd(pc, src1, e); } else { set_src_1(pc, src1, e); if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) { if (is_long(e)) e->inst[1] |= 0x08000000; else e->inst[0] |= 0x00008000; } } emit(pc, e); } static void emit_add(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xb0000000; alloc_reg(pc, src1); check_swap_src_0_1(pc, &src0, &src1); if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) { set_long(pc, e); e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) | ((src1->mod & NV50_MOD_NEG) << 27); } set_dst(pc, dst, e); set_src_0(pc, src0, e); if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e)) set_src_2(pc, src1, e); else if (src1->type == P_IMMD) set_immd(pc, src1, e); else set_src_1(pc, src1, e); emit(pc, e); } static void emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src, uint8_t s) { struct nv50_program_exec *e = exec(pc); set_long(pc, e); e->inst[1] |= 0xc0000000; e->inst[0] |= dst->hw << 2; e->inst[0] |= s << 16; /* shift left */ set_src_0(pc, src, e); emit(pc, e); } static boolean address_reg_suitable(struct nv50_reg *a, struct nv50_reg *r) { if (!r) return FALSE; if (r->vtx != a->vtx) return FALSE; if (r->vtx >= 0) return (r->indirect[1] == a->indirect[1]); if (r->hw < a->rhw || (r->hw - a->rhw) >= 128) return FALSE; if (a->index >= 0) return (a->index == r->indirect[0]); return (a->indirect[0] == r->indirect[0]); } static void load_vertex_base(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *a, int shift) { struct nv50_reg mem, *temp; ctor_reg(&mem, P_ATTR, -1, dst->vtx); assert(dst->type == P_ADDR); if (!a) { emit_arl(pc, dst, &mem, 0); return; } temp = alloc_temp(pc, NULL); if (shift) { emit_mov_from_addr(pc, temp, a); if (shift < 0) emit_shl_imm(pc, temp, temp, shift); emit_arl(pc, dst, temp, MAX2(shift, 0)); } emit_mov(pc, temp, &mem); set_addr(pc->p->exec_tail, dst); emit_arl(pc, dst, temp, 0); free_temp(pc, temp); } /* case (ref == NULL): allocate address register for TGSI_FILE_ADDRESS * case (vtx >= 0, acc >= 0): load vertex base from a[vtx * 4] to $aX * case (vtx >= 0, acc < 0): load vertex base from s[$aY + vtx * 4] to $aX * case (vtx < 0, acc >= 0): memory address too high to encode * case (vtx < 0, acc < 0): get source register for TGSI_FILE_ADDRESS */ static struct nv50_reg * get_address_reg(struct nv50_pc *pc, struct nv50_reg *ref) { int i; struct nv50_reg *a_ref, *a = NULL; for (i = 0; i < NV50_SU_MAX_ADDR; ++i) { if (pc->r_addr[i].acc == 0) a = &pc->r_addr[i]; /* an unused address reg */ else if (address_reg_suitable(&pc->r_addr[i], ref)) { pc->r_addr[i].acc = pc->insn_cur; return &pc->r_addr[i]; } else if (!a && pc->r_addr[i].index < 0 && pc->r_addr[i].acc < pc->insn_cur) a = &pc->r_addr[i]; } if (!a) { /* We'll be able to spill address regs when this * mess is replaced with a proper compiler ... */ NOUVEAU_ERR("out of address regs\n"); abort(); return NULL; } /* initialize and reserve for this TGSI instruction */ a->rhw = 0; a->index = a->indirect[0] = a->indirect[1] = -1; a->acc = pc->insn_cur; if (!ref) { a->vtx = -1; return a; } a->vtx = ref->vtx; /* now put in the correct value ... */ if (ref->vtx >= 0) { a->indirect[1] = ref->indirect[1]; /* For an indirect vertex index, we need to shift address right * by 2, the address register will contain vtx * 16, we need to * load from a[vtx * 4]. */ load_vertex_base(pc, a, (ref->acc < 0) ? pc->addr[ref->indirect[1]] : NULL, -2); } else { assert(ref->acc < 0 || ref->indirect[0] < 0); a->rhw = ref->hw & ~0x7f; a->indirect[0] = ref->indirect[0]; a_ref = (ref->acc < 0) ? pc->addr[ref->indirect[0]] : NULL; emit_add_addr_imm(pc, a, a_ref, a->rhw * 4); } return a; } #define NV50_MAX_F32 0x880 #define NV50_MAX_S32 0x08c #define NV50_MAX_U32 0x084 #define NV50_MIN_F32 0x8a0 #define NV50_MIN_S32 0x0ac #define NV50_MIN_U32 0x0a4 static void emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); set_long(pc, e); e->inst[0] |= 0x30000000 | ((sub & 0x800) << 20); e->inst[1] |= (sub << 24); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); if (src0->mod & NV50_MOD_ABS) e->inst[1] |= 0x00100000; if (src1->mod & NV50_MOD_ABS) e->inst[1] |= 0x00080000; emit(pc, e); } static INLINE void emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { src1->mod ^= NV50_MOD_NEG; emit_add(pc, dst, src0, src1); src1->mod ^= NV50_MOD_NEG; } static void emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, unsigned op) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xd0000000; set_long(pc, e); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR && op != TGSI_OPCODE_XOR) assert(!"invalid bit op"); assert(!(src0->mod | src1->mod)); if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) { set_immd(pc, src1, e); if (op == TGSI_OPCODE_OR) e->inst[0] |= 0x0100; else if (op == TGSI_OPCODE_XOR) e->inst[0] |= 0x8000; } else { set_src_1(pc, src1, e); e->inst[1] |= 0x04000000; /* 32 bit */ if (op == TGSI_OPCODE_OR) e->inst[1] |= 0x4000; else if (op == TGSI_OPCODE_XOR) e->inst[1] |= 0x8000; } emit(pc, e); } static void emit_not(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xd0000000; e->inst[1] = 0x0402c000; set_long(pc, e); set_dst(pc, dst, e); set_src_1(pc, src, e); emit(pc, e); } static void emit_shift(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, unsigned dir) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x30000000; e->inst[1] = 0xc4000000; set_long(pc, e); set_dst(pc, dst, e); set_src_0(pc, src0, e); if (src1->type == P_IMMD) { e->inst[1] |= (1 << 20); e->inst[0] |= (pc->immd_buf[src1->hw] & 0x7f) << 16; } else set_src_1(pc, src1, e); if (dir != TGSI_OPCODE_SHL) e->inst[1] |= (1 << 29); if (dir == TGSI_OPCODE_ISHR) e->inst[1] |= (1 << 27); emit(pc, e); } static void emit_shl_imm(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src, int s) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x30000000; e->inst[1] = 0xc4100000; if (s < 0) { e->inst[1] |= 1 << 29; s = -s; } e->inst[1] |= ((s & 0x7f) << 16); set_long(pc, e); set_dst(pc, dst, e); set_src_0(pc, src, e); emit(pc, e); } static void emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xe0000000; check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); set_src_2(pc, src2, e); if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) e->inst[1] |= 0x04000000; if (src2->mod & NV50_MOD_NEG) e->inst[1] |= 0x08000000; emit(pc, e); } static INLINE void emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2) { src2->mod ^= NV50_MOD_NEG; emit_mad(pc, dst, src0, src1, src2); src2->mod ^= NV50_MOD_NEG; } #define NV50_FLOP_RCP 0 #define NV50_FLOP_RSQ 2 #define NV50_FLOP_LG2 3 #define NV50_FLOP_SIN 4 #define NV50_FLOP_COS 5 #define NV50_FLOP_EX2 6 /* rcp, rsqrt, lg2 support neg and abs */ static void emit_flop(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0x90000000; if (sub || src->mod) { set_long(pc, e); e->inst[1] |= (sub << 29); } set_dst(pc, dst, e); set_src_0_restricted(pc, src, e); assert(!src->mod || sub < 4); if (src->mod & NV50_MOD_NEG) e->inst[1] |= 0x04000000; if (src->mod & NV50_MOD_ABS) e->inst[1] |= 0x00100000; emit(pc, e); } static void emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xb0000000; set_dst(pc, dst, e); set_src_0(pc, src, e); set_long(pc, e); e->inst[1] |= (6 << 29) | 0x00004000; if (src->mod & NV50_MOD_NEG) e->inst[1] |= 0x04000000; if (src->mod & NV50_MOD_ABS) e->inst[1] |= 0x00100000; emit(pc, e); } static void emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xb0000000; set_dst(pc, dst, e); set_src_0(pc, src, e); set_long(pc, e); e->inst[1] |= (6 << 29); if (src->mod & NV50_MOD_NEG) e->inst[1] |= 0x04000000; if (src->mod & NV50_MOD_ABS) e->inst[1] |= 0x00100000; emit(pc, e); } #define CVT_RN (0x00 << 16) #define CVT_FLOOR (0x02 << 16) #define CVT_CEIL (0x04 << 16) #define CVT_TRUNC (0x06 << 16) #define CVT_SAT (0x08 << 16) #define CVT_ABS (0x10 << 16) #define CVT_X32_X32 0x04004000 #define CVT_X32_S32 0x04014000 #define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32) #define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32) #define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32) #define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32) #define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32) #define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32) #define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32) #define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32) #define CVT_NEG 0x20000000 #define CVT_RI 0x08000000 static void emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src, int wp, uint32_t cvn) { struct nv50_program_exec *e; e = exec(pc); if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG; if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS; e->inst[0] = 0xa0000000; e->inst[1] = cvn; set_long(pc, e); set_src_0(pc, src, e); if (wp >= 0) set_pred_wr(pc, 1, wp, e); if (dst) set_dst(pc, dst, e); else { e->inst[0] |= 0x000001fc; e->inst[1] |= 0x00000008; } emit(pc, e); } /* nv50 Condition codes: * 0x1 = LT * 0x2 = EQ * 0x3 = LE * 0x4 = GT * 0x5 = NE * 0x6 = GE * 0x7 = set condition code ? (used before bra.lt/le/gt/ge) * 0x8 = unordered bit (allows NaN) * * mode = 0x04 (u32), 0x0c (s32), 0x80 (f32) */ static void emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp, struct nv50_reg *src0, struct nv50_reg *src1, uint8_t mode) { static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 }; struct nv50_program_exec *e = exec(pc); struct nv50_reg *rdst; assert(ccode < 16); if (check_swap_src_0_1(pc, &src0, &src1)) ccode = cc_swapped[ccode & 7] | (ccode & 8); rdst = dst; if (dst && dst->type != P_TEMP) dst = alloc_temp(pc, NULL); set_long(pc, e); e->inst[0] |= 0x30000000 | (mode << 24); e->inst[1] |= 0x60000000 | (ccode << 14); if (wp >= 0) set_pred_wr(pc, 1, wp, e); if (dst) set_dst(pc, dst, e); else { e->inst[0] |= 0x000001fc; e->inst[1] |= 0x00000008; } set_src_0(pc, src0, e); set_src_1(pc, src1, e); emit(pc, e); if (rdst && mode == 0x80) /* convert to float ? */ emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32); if (rdst && rdst != dst) free_temp(pc, dst); } static INLINE void map_tgsi_setop_hw(unsigned op, uint8_t *cc, uint8_t *ty) { switch (op) { case TGSI_OPCODE_SLT: *cc = 0x1; *ty = 0x80; break; case TGSI_OPCODE_SGE: *cc = 0x6; *ty = 0x80; break; case TGSI_OPCODE_SEQ: *cc = 0x2; *ty = 0x80; break; case TGSI_OPCODE_SGT: *cc = 0x4; *ty = 0x80; break; case TGSI_OPCODE_SLE: *cc = 0x3; *ty = 0x80; break; case TGSI_OPCODE_SNE: *cc = 0xd; *ty = 0x80; break; case TGSI_OPCODE_ISLT: *cc = 0x1; *ty = 0x0c; break; case TGSI_OPCODE_ISGE: *cc = 0x6; *ty = 0x0c; break; case TGSI_OPCODE_USEQ: *cc = 0x2; *ty = 0x04; break; case TGSI_OPCODE_USGE: *cc = 0x6; *ty = 0x04; break; case TGSI_OPCODE_USLT: *cc = 0x1; *ty = 0x04; break; case TGSI_OPCODE_USNE: *cc = 0x5; *ty = 0x04; break; default: assert(0); return; } } static void emit_add_b32(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *rsrc1) { struct nv50_program_exec *e = exec(pc); struct nv50_reg *src1; e->inst[0] = 0x20000000; alloc_reg(pc, rsrc1); check_swap_src_0_1(pc, &src0, &rsrc1); src1 = rsrc1; if (src0->mod & rsrc1->mod & NV50_MOD_NEG) { src1 = temp_temp(pc, e); emit_cvt(pc, src1, rsrc1, -1, CVT_S32_S32); } if (!pc->allow32 || src1->hw > 63 || (src1->type != P_TEMP && src1->type != P_IMMD)) set_long(pc, e); set_dst(pc, dst, e); set_src_0(pc, src0, e); if (is_long(e)) { e->inst[1] |= 1 << 26; set_src_2(pc, src1, e); } else { e->inst[0] |= 0x8000; if (src1->type == P_IMMD) set_immd(pc, src1, e); else set_src_1(pc, src1, e); } if (src0->mod & NV50_MOD_NEG) e->inst[0] |= 1 << 28; else if (src1->mod & NV50_MOD_NEG) e->inst[0] |= 1 << 22; emit(pc, e); } static void emit_mad_u16(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, int lh_0, struct nv50_reg *src1, int lh_1, struct nv50_reg *src2) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x60000000; if (!pc->allow32) set_long(pc, e); set_dst(pc, dst, e); set_half_src(pc, src0, lh_0, e, 9); set_half_src(pc, src1, lh_1, e, 16); alloc_reg(pc, src2); if (is_long(e) || (src2->type != P_TEMP) || (src2->hw != dst->hw)) set_src_2(pc, src2, e); emit(pc, e); } static void emit_mul_u16(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, int lh_0, struct nv50_reg *src1, int lh_1) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x40000000; set_long(pc, e); set_dst(pc, dst, e); set_half_src(pc, src0, lh_0, e, 9); set_half_src(pc, src1, lh_1, e, 16); emit(pc, e); } static void emit_sad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0x50000000; if (!pc->allow32) set_long(pc, e); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); alloc_reg(pc, src2); if (is_long(e) || (src2->type != dst->type) || (src2->hw != dst->hw)) set_src_2(pc, src2, e); if (is_long(e)) e->inst[1] |= 0x0c << 24; else e->inst[0] |= 0x81 << 8; emit(pc, e); } static INLINE void emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI); } static void emit_pow(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *v, struct nv50_reg *e) { struct nv50_reg *temp = alloc_temp(pc, NULL); emit_flop(pc, NV50_FLOP_LG2, temp, v); emit_mul(pc, temp, temp, e); emit_preex2(pc, temp, temp); emit_flop(pc, NV50_FLOP_EX2, dst, temp); free_temp(pc, temp); } static INLINE void emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32); } static void emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask, struct nv50_reg **src) { struct nv50_reg *one = alloc_immd(pc, 1.0); struct nv50_reg *zero = alloc_immd(pc, 0.0); struct nv50_reg *neg128 = alloc_immd(pc, -127.999999); struct nv50_reg *pos128 = alloc_immd(pc, 127.999999); struct nv50_reg *tmp[4]; boolean allow32 = pc->allow32; pc->allow32 = FALSE; if (mask & (3 << 1)) { tmp[0] = alloc_temp(pc, NULL); emit_minmax(pc, NV50_MAX_F32, tmp[0], src[0], zero); } if (mask & (1 << 2)) { set_pred_wr(pc, 1, 0, pc->p->exec_tail); tmp[1] = temp_temp(pc, NULL); emit_minmax(pc, NV50_MAX_F32, tmp[1], src[1], zero); tmp[3] = temp_temp(pc, NULL); emit_minmax(pc, NV50_MAX_F32, tmp[3], src[3], neg128); emit_minmax(pc, NV50_MIN_F32, tmp[3], tmp[3], pos128); emit_pow(pc, dst[2], tmp[1], tmp[3]); emit_mov(pc, dst[2], zero); set_pred(pc, 3, 0, pc->p->exec_tail); } if (mask & (1 << 1)) assimilate_temp(pc, dst[1], tmp[0]); else if (mask & (1 << 2)) free_temp(pc, tmp[0]); pc->allow32 = allow32; /* do this last, in case src[i,j] == dst[0,3] */ if (mask & (1 << 0)) emit_mov(pc, dst[0], one); if (mask & (1 << 3)) emit_mov(pc, dst[3], one); FREE(pos128); FREE(neg128); FREE(zero); FREE(one); } static void emit_kil(struct nv50_pc *pc, struct nv50_reg *src) { struct nv50_program_exec *e; const int r_pred = 1; e = exec(pc); e->inst[0] = 0x00000002; /* discard */ set_long(pc, e); /* sets cond code to ALWAYS */ if (src) { set_pred(pc, 0x1 /* cc = LT */, r_pred, e); /* write to predicate reg */ emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32); } emit(pc, e); } static struct nv50_program_exec * emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc) { struct nv50_program_exec *e = exec(pc); e->inst[0] = (op << 28) | 2; set_long(pc, e); if (pred >= 0) set_pred(pc, cc, pred, e); emit(pc, e); return e; } static INLINE struct nv50_program_exec * emit_breakaddr(struct nv50_pc *pc) { return emit_control_flow(pc, 0x4, -1, 0); } static INLINE void emit_break(struct nv50_pc *pc, int pred, unsigned cc) { emit_control_flow(pc, 0x5, pred, cc); } static INLINE struct nv50_program_exec * emit_joinat(struct nv50_pc *pc) { return emit_control_flow(pc, 0xa, -1, 0); } static INLINE struct nv50_program_exec * emit_branch(struct nv50_pc *pc, int pred, unsigned cc) { return emit_control_flow(pc, 0x1, pred, cc); } static INLINE struct nv50_program_exec * emit_call(struct nv50_pc *pc, int pred, unsigned cc) { return emit_control_flow(pc, 0x2, pred, cc); } static INLINE void emit_ret(struct nv50_pc *pc, int pred, unsigned cc) { emit_control_flow(pc, 0x3, pred, cc); } static void emit_prim_cmd(struct nv50_pc *pc, unsigned cmd) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xf0000000 | (cmd << 9); e->inst[1] = 0xc0000000; set_long(pc, e); emit(pc, e); } #define QOP_ADD 0 #define QOP_SUBR 1 #define QOP_SUB 2 #define QOP_MOV_SRC1 3 /* For a quad of threads / top left, top right, bottom left, bottom right * pixels, do a different operation, and take src0 from a specific thread. */ static void emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0, struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop) { struct nv50_program_exec *e = exec(pc); e->inst[0] = 0xc0000000; e->inst[1] = 0x80000000; set_long(pc, e); e->inst[0] |= lane_src0 << 16; set_src_0(pc, src0, e); set_src_2(pc, src1, e); if (wp >= 0) set_pred_wr(pc, 1, wp, e); if (dst) set_dst(pc, dst, e); else { e->inst[0] |= 0x000001fc; e->inst[1] |= 0x00000008; } e->inst[0] |= (qop & 3) << 20; e->inst[1] |= (qop >> 2) << 22; emit(pc, e); } static void load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4], struct nv50_reg **src, unsigned arg, boolean proj) { int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod }; src[0]->mod |= NV50_MOD_ABS; src[1]->mod |= NV50_MOD_ABS; src[2]->mod |= NV50_MOD_ABS; emit_minmax(pc, NV50_MAX_F32, t[2], src[0], src[1]); emit_minmax(pc, NV50_MAX_F32, t[2], src[2], t[2]); src[0]->mod = mod[0]; src[1]->mod = mod[1]; src[2]->mod = mod[2]; if (proj && 0 /* looks more correct without this */) emit_mul(pc, t[2], t[2], src[3]); else if (arg == 4) /* there is no textureProj(samplerCubeShadow) */ emit_mov(pc, t[3], src[3]); emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]); emit_mul(pc, t[0], src[0], t[2]); emit_mul(pc, t[1], src[1], t[2]); emit_mul(pc, t[2], src[2], t[2]); } static void load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4], struct nv50_reg **src, unsigned dim, unsigned arg) { unsigned c, mode; if (src[0]->type == P_TEMP && src[0]->rhw != -1) { mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE; t[3]->rhw = src[3]->rhw; emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID)); emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]); for (c = 0; c < dim; ++c) { t[c]->rhw = src[c]->rhw; emit_interp(pc, t[c], t[3], mode); } if (arg != dim) { /* depth reference value */ t[dim]->rhw = src[2]->rhw; emit_interp(pc, t[dim], t[3], mode); } } else { /* XXX: for some reason the blob sometimes uses MAD * (mad f32 $rX $rY $rZ neg $r63) */ emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]); for (c = 0; c < dim; ++c) emit_mul(pc, t[c], src[c], t[3]); if (arg != dim) /* depth reference value */ emit_mul(pc, t[dim], src[2], t[3]); } } static INLINE void get_tex_dim(unsigned type, unsigned *dim, unsigned *arg) { switch (type) { case TGSI_TEXTURE_1D: *arg = *dim = 1; break; case TGSI_TEXTURE_SHADOW1D: *dim = 1; *arg = 2; break; case TGSI_TEXTURE_UNKNOWN: case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: *arg = *dim = 2; break; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: *dim = 2; *arg = 3; break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: *dim = *arg = 3; break; default: assert(0); break; } } /* We shouldn't execute TEXLOD if any of the pixels in a quad have * different LOD values, so branch off groups of equal LOD. */ static void emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod, struct nv50_reg *src, struct nv50_program_exec *tex) { struct nv50_program_exec *join_at; unsigned i, target = pc->p->exec_size + 9 * 2; if (pc->p->type != PIPE_SHADER_FRAGMENT) { emit(pc, tex); return; } pc->allow32 = FALSE; /* Subtract lod of each pixel from lod of top left pixel, jump * texlod insn if result is 0, then repeat for 2 other pixels. */ join_at = emit_joinat(pc); emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55); emit_branch(pc, 0, 2)->param.index = target; for (i = 1; i < 4; ++i) { emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55); emit_branch(pc, 0, 2)->param.index = target; } emit_mov(pc, tlod, src); /* target */ emit(pc, tex); /* texlod */ join_at->param.index = target + 2 * 2; JOIN_ON(emit_nop(pc)); /* join _after_ tex */ } static void emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg, struct nv50_program_exec *tex) { struct nv50_program_exec *e; struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL); int r_pred = 0; unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 }; pc->allow32 = FALSE; ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4); /* Subtract bias value of thread i from bias values of each thread, * store result in r_pred, and set bit i in r_bits if result was 0. */ assert(arg < 4); for (i = 0; i < 4; ++i, ++imm_1248.hw) { emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55); emit_mov(pc, r_bits, &imm_1248); set_pred(pc, 2, r_pred, pc->p->exec_tail); } emit_mov_to_pred(pc, r_pred, r_bits); /* The lanes of a quad are now grouped by the bit in r_pred they have * set. Put the input values for TEX into a new register set for each * group and execute TEX only for a specific group. * We cannot use the same register set for each group because we need * the derivatives, which are implicitly calculated, to be correct. */ for (i = 1; i < 4; ++i) { alloc_temp4(pc, t123[i], 0); for (c = 0; c <= arg; ++c) emit_mov(pc, t123[i][c], t[c]); *(e = exec(pc)) = *(tex); e->inst[0] &= ~0x01fc; set_dst(pc, t123[i][0], e); set_pred(pc, cc[i], r_pred, e); emit(pc, e); } /* finally TEX on the original regs (where we kept the input) */ set_pred(pc, cc[0], r_pred, tex); emit(pc, tex); /* put the 3 * n other results into regs for lane 0 */ n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc)); for (i = 1; i < 4; ++i) { for (c = 0; c < n; ++c) { emit_mov(pc, t[c], t123[i][c]); set_pred(pc, cc[i], r_pred, pc->p->exec_tail); } free_temp4(pc, t123[i]); } emit_nop(pc); free_temp(pc, r_bits); } static void emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask, struct nv50_reg **src, unsigned unit, unsigned type, boolean proj, int bias_lod) { struct nv50_reg *t[4]; struct nv50_program_exec *e; unsigned c, dim, arg; /* t[i] must be within a single 128 bit super-reg */ alloc_temp4(pc, t, 0); e = exec(pc); e->inst[0] = 0xf0000000; set_long(pc, e); set_dst(pc, t[0], e); /* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */ e->inst[0] |= (unit << 9) /* | (unit << 17) */; /* live flag (don't set if TEX results affect input to another TEX): */ /* e->inst[0] |= 0x00000004; */ get_tex_dim(type, &dim, &arg); if (type == TGSI_TEXTURE_CUBE) { e->inst[0] |= 0x08000000; load_cube_tex_coords(pc, t, src, arg, proj); } else if (proj) load_proj_tex_coords(pc, t, src, dim, arg); else { for (c = 0; c < dim; c++) emit_mov(pc, t[c], src[c]); if (arg != dim) /* depth reference value (always src.z here) */ emit_mov(pc, t[dim], src[2]); } e->inst[0] |= (mask & 0x3) << 25; e->inst[1] |= (mask & 0xc) << 12; if (!bias_lod) { e->inst[0] |= (arg - 1) << 22; emit(pc, e); } else if (bias_lod < 0) { assert(pc->p->type == PIPE_SHADER_FRAGMENT); e->inst[0] |= arg << 22; e->inst[1] |= 0x20000000; /* texbias */ emit_mov(pc, t[arg], src[3]); emit_texbias_sequence(pc, t, arg, e); } else { e->inst[0] |= arg << 22; e->inst[1] |= 0x40000000; /* texlod */ emit_mov(pc, t[arg], src[3]); emit_texlod_sequence(pc, t[arg], src[3], e); } #if 1 c = 0; if (mask & 1) emit_mov(pc, dst[0], t[c++]); if (mask & 2) emit_mov(pc, dst[1], t[c++]); if (mask & 4) emit_mov(pc, dst[2], t[c++]); if (mask & 8) emit_mov(pc, dst[3], t[c]); free_temp4(pc, t); #else /* XXX: if p.e. MUL is used directly after TEX, it would still use * the texture coordinates, not the fetched values: latency ? */ for (c = 0; c < 4; c++) { if (mask & (1 << c)) assimilate_temp(pc, dst[c], t[c]); else free_temp(pc, t[c]); } #endif } static void emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); assert(src->type == P_TEMP); e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000; e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000; set_long(pc, e); set_dst(pc, dst, e); set_src_0(pc, src, e); set_src_2(pc, src, e); emit(pc, e); } static void emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); assert(src->type == P_TEMP); e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000; e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000; set_long(pc, e); set_dst(pc, dst, e); set_src_0(pc, src, e); set_src_2(pc, src, e); emit(pc, e); } static void convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e) { unsigned q = 0, m = ~0; assert(!is_long(e)); switch (e->inst[0] >> 28) { case 0x1: /* MOV */ q = 0x0403c000; m = 0xffff7fff; break; case 0x2: case 0x3: /* ADD, SUB, SUBR b32 */ m = ~(0x8000 | (127 << 16)); q = ((e->inst[0] & (~m)) >> 2) | (1 << 26); break; case 0x5: /* SAD */ m = ~(0x81 << 8); q = (0x0c << 24) | ((e->inst[0] & (0x7f << 2)) << 12); break; case 0x6: /* MAD u16 */ q = (e->inst[0] & (0x7f << 2)) << 12; break; case 0x8: /* INTERP (move centroid, perspective and flat bits) */ m = ~0x03000100; q = (e->inst[0] & (3 << 24)) >> (24 - 16); q |= (e->inst[0] & (1 << 8)) << (18 - 8); break; case 0x9: /* RCP */ break; case 0xB: /* ADD */ m = ~(127 << 16); q = ((e->inst[0] & (~m)) >> 2); break; case 0xC: /* MUL */ m = ~0x00008000; q = ((e->inst[0] & (~m)) << 12); break; case 0xE: /* MAD (if src2 == dst) */ q = ((e->inst[0] & 0x1fc) << 12); break; default: assert(0); break; } set_long(pc, e); pc->p->exec_size++; e->inst[0] &= m; e->inst[1] |= q; } /* Some operations support an optional negation flag. */ static int get_supported_mods(const struct tgsi_full_instruction *insn, int i) { switch (insn->Instruction.Opcode) { case TGSI_OPCODE_ADD: case TGSI_OPCODE_COS: case TGSI_OPCODE_DDX: case TGSI_OPCODE_DDY: case TGSI_OPCODE_DP3: case TGSI_OPCODE_DP4: case TGSI_OPCODE_EX2: case TGSI_OPCODE_KIL: case TGSI_OPCODE_LG2: case TGSI_OPCODE_MAD: case TGSI_OPCODE_MUL: case TGSI_OPCODE_POW: case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */ case TGSI_OPCODE_SCS: case TGSI_OPCODE_SIN: case TGSI_OPCODE_SUB: return NV50_MOD_NEG; case TGSI_OPCODE_MAX: case TGSI_OPCODE_MIN: case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */ return NV50_MOD_ABS; case TGSI_OPCODE_CEIL: case TGSI_OPCODE_FLR: case TGSI_OPCODE_TRUNC: return NV50_MOD_NEG | NV50_MOD_ABS; case TGSI_OPCODE_F2I: case TGSI_OPCODE_F2U: case TGSI_OPCODE_I2F: case TGSI_OPCODE_U2F: return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32; case TGSI_OPCODE_UADD: return NV50_MOD_NEG | NV50_MOD_I32; case TGSI_OPCODE_SAD: case TGSI_OPCODE_SHL: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_NOT: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_UMUL: case TGSI_OPCODE_USHR: return NV50_MOD_I32; default: return 0; } } /* Return a read mask for source registers deduced from opcode & write mask. */ static unsigned nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c) { unsigned x, mask = insn->Dst[0].Register.WriteMask; switch (insn->Instruction.Opcode) { case TGSI_OPCODE_COS: case TGSI_OPCODE_SIN: return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0); case TGSI_OPCODE_DP3: return 0x7; case TGSI_OPCODE_DP4: case TGSI_OPCODE_DPH: case TGSI_OPCODE_KIL: /* WriteMask ignored */ return 0xf; case TGSI_OPCODE_DST: return mask & (c ? 0xa : 0x6); case TGSI_OPCODE_EX2: case TGSI_OPCODE_EXP: case TGSI_OPCODE_LG2: case TGSI_OPCODE_LOG: case TGSI_OPCODE_POW: case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: case TGSI_OPCODE_SCS: return 0x1; case TGSI_OPCODE_IF: return 0x1; case TGSI_OPCODE_LIT: return 0xb; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: { const struct tgsi_instruction_texture *tex; assert(insn->Instruction.Texture); tex = &insn->Texture; mask = 0x7; if (insn->Instruction.Opcode != TGSI_OPCODE_TEX && insn->Instruction.Opcode != TGSI_OPCODE_TXD) mask |= 0x8; /* bias, lod or proj */ switch (tex->Texture) { case TGSI_TEXTURE_1D: mask &= 0x9; break; case TGSI_TEXTURE_SHADOW1D: mask &= 0x5; break; case TGSI_TEXTURE_2D: mask &= 0xb; break; default: break; } } return mask; case TGSI_OPCODE_XPD: x = 0; if (mask & 1) x |= 0x6; if (mask & 2) x |= 0x5; if (mask & 4) x |= 0x3; return x; default: break; } return mask; } static struct nv50_reg * tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst) { switch (dst->Register.File) { case TGSI_FILE_TEMPORARY: return &pc->temp[dst->Register.Index * 4 + c]; case TGSI_FILE_OUTPUT: return &pc->result[dst->Register.Index * 4 + c]; case TGSI_FILE_ADDRESS: { struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c]; if (!r) { r = get_address_reg(pc, NULL); r->index = dst->Register.Index * 4 + c; pc->addr[r->index] = r; } assert(r); return r; } case TGSI_FILE_NULL: return NULL; case TGSI_FILE_SYSTEM_VALUE: assert(pc->sysval[dst->Register.Index].type == P_RESULT); assert(c == 0); return &pc->sysval[dst->Register.Index]; default: break; } return NULL; } static struct nv50_reg * tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src, int mod) { struct nv50_reg *r = NULL; struct nv50_reg *temp = NULL; unsigned sgn, c, swz, cvn; if (src->Register.File != TGSI_FILE_CONSTANT) assert(!src->Register.Indirect); sgn = tgsi_util_get_full_src_register_sign_mode(src, chan); c = tgsi_util_get_full_src_register_swizzle(src, chan); switch (c) { case TGSI_SWIZZLE_X: case TGSI_SWIZZLE_Y: case TGSI_SWIZZLE_Z: case TGSI_SWIZZLE_W: switch (src->Register.File) { case TGSI_FILE_INPUT: r = &pc->attr[src->Register.Index * 4 + c]; if (!src->Dimension.Dimension) break; r = reg_instance(pc, r); r->vtx = src->Dimension.Index; if (!src->Dimension.Indirect) break; swz = tgsi_util_get_src_register_swizzle( &src->DimIndirect, 0); r->acc = -1; r->indirect[1] = src->DimIndirect.Index * 4 + swz; break; case TGSI_FILE_TEMPORARY: r = &pc->temp[src->Register.Index * 4 + c]; break; case TGSI_FILE_CONSTANT: if (!src->Register.Indirect) { r = &pc->param[src->Register.Index * 4 + c]; break; } /* Indicate indirection by setting r->acc < 0 and * use the index field to select the address reg. */ r = reg_instance(pc, NULL); ctor_reg(r, P_CONST, -1, src->Register.Index * 4 + c); swz = tgsi_util_get_src_register_swizzle( &src->Indirect, 0); r->acc = -1; r->indirect[0] = src->Indirect.Index * 4 + swz; break; case TGSI_FILE_IMMEDIATE: r = &pc->immd[src->Register.Index * 4 + c]; break; case TGSI_FILE_SAMPLER: return NULL; case TGSI_FILE_ADDRESS: r = pc->addr[src->Register.Index * 4 + c]; assert(r); break; case TGSI_FILE_SYSTEM_VALUE: assert(c == 0); r = &pc->sysval[src->Register.Index]; break; default: assert(0); break; } break; default: assert(0); break; } cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32; switch (sgn) { case TGSI_UTIL_SIGN_CLEAR: r->mod = NV50_MOD_ABS; break; case TGSI_UTIL_SIGN_SET: r->mod = NV50_MOD_NEG_ABS; break; case TGSI_UTIL_SIGN_TOGGLE: r->mod = NV50_MOD_NEG; break; default: assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP); break; } if ((r->mod & mod) != r->mod) { temp = temp_temp(pc, NULL); emit_cvt(pc, temp, r, -1, cvn); r->mod = 0; r = temp; } else r->mod |= mod & NV50_MOD_I32; assert(r); if (r->acc >= 0 && r->vtx < 0 && r != temp) return reg_instance(pc, r); /* will clear r->mod */ return r; } /* return TRUE for ops that produce only a single result */ static boolean is_scalar_op(unsigned op) { switch (op) { case TGSI_OPCODE_COS: case TGSI_OPCODE_DP2: case TGSI_OPCODE_DP3: case TGSI_OPCODE_DP4: case TGSI_OPCODE_DPH: case TGSI_OPCODE_EX2: case TGSI_OPCODE_LG2: case TGSI_OPCODE_POW: case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: case TGSI_OPCODE_SIN: /* case TGSI_OPCODE_KIL: case TGSI_OPCODE_LIT: case TGSI_OPCODE_SCS: */ return TRUE; default: return FALSE; } } /* Returns a bitmask indicating which dst components depend * on source s, component c (reverse of nv50_tgsi_src_mask). */ static unsigned nv50_tgsi_dst_revdep(unsigned op, int s, int c) { if (is_scalar_op(op)) return 0x1; switch (op) { case TGSI_OPCODE_DST: return (1 << c) & (s ? 0xa : 0x6); case TGSI_OPCODE_XPD: switch (c) { case 0: return 0x6; case 1: return 0x5; case 2: return 0x3; case 3: return 0x0; default: assert(0); return 0x0; } case TGSI_OPCODE_EXP: case TGSI_OPCODE_LOG: case TGSI_OPCODE_LIT: case TGSI_OPCODE_SCS: case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: /* these take care of dangerous swizzles themselves */ return 0x0; case TGSI_OPCODE_IF: case TGSI_OPCODE_KIL: /* don't call this function for these ops */ assert(0); return 0; default: /* linear vector instruction */ return (1 << c); } } static INLINE boolean has_pred(struct nv50_program_exec *e, unsigned cc) { if (!is_long(e) || is_immd(e)) return FALSE; return ((e->inst[1] & 0x780) == (cc << 7)); } /* on ENDIF see if we can do "@p0.neu single_op" instead of: * join_at ENDIF * @p0.eq bra ENDIF * single_op * ENDIF: nop.join */ static boolean nv50_kill_branch(struct nv50_pc *pc) { int lvl = pc->if_lvl; if (pc->if_insn[lvl]->next != pc->p->exec_tail) return FALSE; if (is_immd(pc->p->exec_tail)) return FALSE; /* if ccode == 'true', the BRA is from an ELSE and the predicate * reg may no longer be valid, since we currently always use $p0 */ if (has_pred(pc->if_insn[lvl], 0xf)) return FALSE; assert(pc->if_insn[lvl] && pc->if_join[lvl]); /* We'll use the exec allocated for JOIN_AT (we can't easily * access nv50_program_exec's prev). */ pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */ *pc->if_join[lvl] = *pc->p->exec_tail; FREE(pc->if_insn[lvl]); FREE(pc->p->exec_tail); pc->p->exec_tail = pc->if_join[lvl]; pc->p->exec_tail->next = NULL; set_pred(pc, 0xd, 0, pc->p->exec_tail); return TRUE; } static void nv50_fp_move_results(struct nv50_pc *pc) { struct nv50_reg reg; unsigned i; ctor_reg(®, P_TEMP, -1, -1); for (i = 0; i < pc->result_nr * 4; ++i) { if (pc->result[i].rhw < 0 || pc->result[i].hw < 0) continue; if (pc->result[i].rhw != pc->result[i].hw) { reg.hw = pc->result[i].rhw; emit_mov(pc, ®, &pc->result[i]); } } } static boolean nv50_program_tx_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *inst) { struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp; unsigned mask, sat, unit; int i, c; mask = inst->Dst[0].Register.WriteMask; sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE; memset(src, 0, sizeof(src)); for (c = 0; c < 4; c++) { if ((mask & (1 << c)) && !pc->r_dst[c]) dst[c] = tgsi_dst(pc, c, &inst->Dst[0]); else dst[c] = pc->r_dst[c]; rdst[c] = dst[c]; } for (i = 0; i < inst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fs = &inst->Src[i]; unsigned src_mask; int mod_supp; src_mask = nv50_tgsi_src_mask(inst, i); mod_supp = get_supported_mods(inst, i); if (fs->Register.File == TGSI_FILE_SAMPLER) unit = fs->Register.Index; for (c = 0; c < 4; c++) if (src_mask & (1 << c)) src[i][c] = tgsi_src(pc, c, fs, mod_supp); } brdc = temp = pc->r_brdc; if (brdc && brdc->type != P_TEMP) { temp = temp_temp(pc, NULL); if (sat) brdc = temp; } else if (sat) { for (c = 0; c < 4; c++) { if (!(mask & (1 << c)) || dst[c]->type == P_TEMP) continue; /* rdst[c] = dst[c]; */ /* done above */ dst[c] = temp_temp(pc, NULL); } } assert(brdc || !is_scalar_op(inst->Instruction.Opcode)); switch (inst->Instruction.Opcode) { case TGSI_OPCODE_ABS: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_ABS | CVT_F32_F32); } break; case TGSI_OPCODE_ADD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_add(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_AND: case TGSI_OPCODE_XOR: case TGSI_OPCODE_OR: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_bitop2(pc, dst[c], src[0][c], src[1][c], inst->Instruction.Opcode); } break; case TGSI_OPCODE_ARL: temp = temp_temp(pc, NULL); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, temp, src[0][c], -1, CVT_FLOOR | CVT_S32_F32); emit_arl(pc, dst[c], temp, 4); } break; case TGSI_OPCODE_BGNLOOP: pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc); pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size; terminate_mbb(pc); break; case TGSI_OPCODE_BGNSUB: assert(!pc->in_subroutine); pc->in_subroutine = TRUE; /* probably not necessary, but align to 8 byte boundary */ if (!is_long(pc->p->exec_tail)) convert_to_long(pc, pc->p->exec_tail); break; case TGSI_OPCODE_BRK: assert(pc->loop_lvl > 0); emit_break(pc, -1, 0); break; case TGSI_OPCODE_CAL: assert(inst->Label.Label < pc->insn_nr); emit_call(pc, -1, 0)->param.index = inst->Label.Label; /* replaced by actual offset in nv50_program_fixup_insns */ break; case TGSI_OPCODE_CEIL: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_CEIL | CVT_F32_F32 | CVT_RI); } break; case TGSI_OPCODE_CMP: pc->allow32 = FALSE; for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32); emit_mov(pc, dst[c], src[1][c]); set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */ emit_mov(pc, dst[c], src[2][c]); set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */ } break; case TGSI_OPCODE_CONT: assert(pc->loop_lvl > 0); emit_branch(pc, -1, 0)->param.index = pc->loop_pos[pc->loop_lvl - 1]; break; case TGSI_OPCODE_COS: if (mask & 8) { emit_precossin(pc, temp, src[0][3]); emit_flop(pc, NV50_FLOP_COS, dst[3], temp); if (!(mask &= 7)) break; if (temp == dst[3]) temp = brdc = temp_temp(pc, NULL); } emit_precossin(pc, temp, src[0][0]); emit_flop(pc, NV50_FLOP_COS, brdc, temp); break; case TGSI_OPCODE_DDX: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_ddx(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_DDY: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_ddy(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_DP3: emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, brdc, src[0][2], src[1][2], temp); break; case TGSI_OPCODE_DP4: emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, temp, src[0][2], src[1][2], temp); emit_mad(pc, brdc, src[0][3], src[1][3], temp); break; case TGSI_OPCODE_DPH: emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, temp, src[0][2], src[1][2], temp); emit_add(pc, brdc, src[1][3], temp); break; case TGSI_OPCODE_DST: if (mask & (1 << 1)) emit_mul(pc, dst[1], src[0][1], src[1][1]); if (mask & (1 << 2)) emit_mov(pc, dst[2], src[0][2]); if (mask & (1 << 3)) emit_mov(pc, dst[3], src[1][3]); if (mask & (1 << 0)) emit_mov_immdval(pc, dst[0], 1.0f); break; case TGSI_OPCODE_ELSE: emit_branch(pc, -1, 0); pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size; pc->if_insn[pc->if_lvl++] = pc->p->exec_tail; terminate_mbb(pc); break; case TGSI_OPCODE_EMIT: emit_prim_cmd(pc, 1); break; case TGSI_OPCODE_ENDIF: pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size; /* try to replace branch over 1 insn with a predicated insn */ if (nv50_kill_branch(pc) == TRUE) break; if (pc->if_join[pc->if_lvl]) { pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size; pc->if_join[pc->if_lvl] = NULL; } terminate_mbb(pc); /* emit a NOP as join point, we could set it on the next * one, but would have to make sure it is long and !immd */ JOIN_ON(emit_nop(pc)); break; case TGSI_OPCODE_ENDLOOP: emit_branch(pc, -1, 0)->param.index = pc->loop_pos[--pc->loop_lvl]; pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size; terminate_mbb(pc); break; case TGSI_OPCODE_ENDPRIM: emit_prim_cmd(pc, 2); break; case TGSI_OPCODE_ENDSUB: assert(pc->in_subroutine); terminate_mbb(pc); pc->in_subroutine = FALSE; break; case TGSI_OPCODE_EX2: emit_preex2(pc, temp, src[0][0]); emit_flop(pc, NV50_FLOP_EX2, brdc, temp); break; case TGSI_OPCODE_EXP: { struct nv50_reg *t[2]; assert(!temp); t[0] = temp_temp(pc, NULL); t[1] = temp_temp(pc, NULL); if (mask & 0x6) emit_mov(pc, t[0], src[0][0]); if (mask & 0x3) emit_flr(pc, t[1], src[0][0]); if (mask & (1 << 1)) emit_sub(pc, dst[1], t[0], t[1]); if (mask & (1 << 0)) { emit_preex2(pc, t[1], t[1]); emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]); } if (mask & (1 << 2)) { emit_preex2(pc, t[0], t[0]); emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]); } if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0f); } break; case TGSI_OPCODE_F2I: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_TRUNC | CVT_S32_F32); } break; case TGSI_OPCODE_F2U: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_TRUNC | CVT_U32_F32); } break; case TGSI_OPCODE_FLR: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_flr(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_FRC: temp = temp_temp(pc, NULL); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_flr(pc, temp, src[0][c]); emit_sub(pc, dst[c], src[0][c], temp); } break; case TGSI_OPCODE_I2F: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32); } break; case TGSI_OPCODE_IF: assert(pc->if_lvl < NV50_MAX_COND_NESTING); emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32); pc->if_join[pc->if_lvl] = emit_joinat(pc); pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);; terminate_mbb(pc); break; case TGSI_OPCODE_IMAX: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x08c, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_IMIN: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x0ac, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_INEG: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_S32_S32 | CVT_NEG); } break; case TGSI_OPCODE_KIL: assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]); emit_kil(pc, src[0][0]); emit_kil(pc, src[0][1]); emit_kil(pc, src[0][2]); emit_kil(pc, src[0][3]); break; case TGSI_OPCODE_KILP: emit_kil(pc, NULL); break; case TGSI_OPCODE_LIT: emit_lit(pc, &dst[0], mask, &src[0][0]); break; case TGSI_OPCODE_LG2: emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]); break; case TGSI_OPCODE_LOG: { struct nv50_reg *t[2]; t[0] = temp_temp(pc, NULL); if (mask & (1 << 1)) t[1] = temp_temp(pc, NULL); else t[1] = t[0]; emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32); emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]); if (mask & (1 << 2)) emit_mov(pc, dst[2], t[1]); emit_flr(pc, t[1], t[1]); if (mask & (1 << 0)) emit_mov(pc, dst[0], t[1]); if (mask & (1 << 1)) { t[1]->mod = NV50_MOD_NEG; emit_preex2(pc, t[1], t[1]); t[1]->mod = 0; emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]); emit_mul(pc, dst[1], t[0], t[1]); } if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0f); } break; case TGSI_OPCODE_LRP: temp = temp_temp(pc, NULL); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_sub(pc, temp, src[1][c], src[2][c]); emit_mad(pc, dst[c], temp, src[0][c], src[2][c]); } break; case TGSI_OPCODE_MAD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]); } break; case TGSI_OPCODE_MAX: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x880, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_MIN: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x8a0, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_MOV: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_MUL: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mul(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_NOT: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_not(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_POW: emit_pow(pc, brdc, src[0][0], src[1][0]); break; case TGSI_OPCODE_RCP: if (!sat && popcnt4(mask) == 1) brdc = dst[ffs(mask) - 1]; emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]); break; case TGSI_OPCODE_RET: if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine) nv50_fp_move_results(pc); emit_ret(pc, -1, 0); break; case TGSI_OPCODE_RSQ: if (!sat && popcnt4(mask) == 1) brdc = dst[ffs(mask) - 1]; src[0][0]->mod |= NV50_MOD_ABS; emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]); break; case TGSI_OPCODE_SAD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_sad(pc, dst[c], src[0][c], src[1][c], src[2][c]); } break; case TGSI_OPCODE_SCS: temp = temp_temp(pc, NULL); if (mask & 3) emit_precossin(pc, temp, src[0][0]); if (mask & (1 << 0)) emit_flop(pc, NV50_FLOP_COS, dst[0], temp); if (mask & (1 << 1)) emit_flop(pc, NV50_FLOP_SIN, dst[1], temp); if (mask & (1 << 2)) emit_mov_immdval(pc, dst[2], 0.0); if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0); break; case TGSI_OPCODE_SHL: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_USHR: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_shift(pc, dst[c], src[0][c], src[1][c], inst->Instruction.Opcode); } break; case TGSI_OPCODE_SIN: if (mask & 8) { emit_precossin(pc, temp, src[0][3]); emit_flop(pc, NV50_FLOP_SIN, dst[3], temp); if (!(mask &= 7)) break; if (temp == dst[3]) temp = brdc = temp_temp(pc, NULL); } emit_precossin(pc, temp, src[0][0]); emit_flop(pc, NV50_FLOP_SIN, brdc, temp); break; case TGSI_OPCODE_SLT: case TGSI_OPCODE_SGE: case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SGT: case TGSI_OPCODE_SLE: case TGSI_OPCODE_SNE: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: { uint8_t cc, ty; map_tgsi_setop_hw(inst->Instruction.Opcode, &cc, &ty); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_set(pc, cc, dst[c], -1, src[0][c], src[1][c], ty); } } break; case TGSI_OPCODE_SUB: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_sub(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_TEX: emit_tex(pc, dst, mask, src[0], unit, inst->Texture.Texture, FALSE, 0); break; case TGSI_OPCODE_TXB: emit_tex(pc, dst, mask, src[0], unit, inst->Texture.Texture, FALSE, -1); break; case TGSI_OPCODE_TXL: emit_tex(pc, dst, mask, src[0], unit, inst->Texture.Texture, FALSE, 1); break; case TGSI_OPCODE_TXP: emit_tex(pc, dst, mask, src[0], unit, inst->Texture.Texture, TRUE, 0); break; case TGSI_OPCODE_TRUNC: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_TRUNC | CVT_F32_F32 | CVT_RI); } break; case TGSI_OPCODE_U2F: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32); } break; case TGSI_OPCODE_UADD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_add_b32(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_UMAX: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x084, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_UMIN: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 0x0a4, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_UMAD: { assert(!temp); temp = temp_temp(pc, NULL); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mul_u16(pc, temp, src[0][c], 0, src[1][c], 1); emit_mad_u16(pc, temp, src[0][c], 1, src[1][c], 0, temp); emit_shl_imm(pc, temp, temp, 16); emit_mad_u16(pc, temp, src[0][c], 0, src[1][c], 0, temp); emit_add_b32(pc, dst[c], temp, src[2][c]); } } break; case TGSI_OPCODE_UMUL: { assert(!temp); temp = temp_temp(pc, NULL); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mul_u16(pc, temp, src[0][c], 0, src[1][c], 1); emit_mad_u16(pc, temp, src[0][c], 1, src[1][c], 0, temp); emit_shl_imm(pc, temp, temp, 16); emit_mad_u16(pc, dst[c], src[0][c], 0, src[1][c], 0, temp); } } break; case TGSI_OPCODE_XPD: temp = temp_temp(pc, NULL); if (mask & (1 << 0)) { emit_mul(pc, temp, src[0][2], src[1][1]); emit_msb(pc, dst[0], src[0][1], src[1][2], temp); } if (mask & (1 << 1)) { emit_mul(pc, temp, src[0][0], src[1][2]); emit_msb(pc, dst[1], src[0][2], src[1][0], temp); } if (mask & (1 << 2)) { emit_mul(pc, temp, src[0][1], src[1][0]); emit_msb(pc, dst[2], src[0][0], src[1][1], temp); } if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0); break; case TGSI_OPCODE_END: if (pc->p->type == PIPE_SHADER_FRAGMENT) nv50_fp_move_results(pc); /* last insn must be long so it can have the exit bit set */ if (!is_long(pc->p->exec_tail)) convert_to_long(pc, pc->p->exec_tail); else if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail) || is_control_flow(pc->p->exec_tail)) emit_nop(pc); pc->p->exec_tail->inst[1] |= 1; /* set exit bit */ terminate_mbb(pc); break; default: NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode); return FALSE; } if (brdc) { if (sat) emit_sat(pc, brdc, brdc); for (c = 0; c < 4; c++) if ((mask & (1 << c)) && dst[c] != brdc) emit_mov(pc, dst[c], brdc); } else if (sat) { for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; /* In this case we saturate later, and dst[c] won't * be another temp_temp (and thus lost), since rdst * already is TEMP (see above). */ if (rdst[c]->type == P_TEMP && rdst[c]->index < 0) continue; emit_sat(pc, rdst[c], dst[c]); } } kill_temp_temp(pc, NULL); pc->reg_instance_nr = 0; return TRUE; } static void prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn) { struct nv50_reg *r, *reg = NULL; const struct tgsi_full_src_register *src; const struct tgsi_dst_register *dst; unsigned i, c, k, mask; dst = &insn->Dst[0].Register; mask = dst->WriteMask; if (dst->File == TGSI_FILE_TEMPORARY) reg = pc->temp; else if (dst->File == TGSI_FILE_OUTPUT) { reg = pc->result; if (insn->Instruction.Opcode == TGSI_OPCODE_MOV && dst->Index == pc->edgeflag_out && insn->Src[0].Register.File == TGSI_FILE_INPUT) pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index; } if (reg) { for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; reg[dst->Index * 4 + c].acc = pc->insn_nr; } } for (i = 0; i < insn->Instruction.NumSrcRegs; i++) { src = &insn->Src[i]; if (src->Register.File == TGSI_FILE_TEMPORARY) reg = pc->temp; else if (src->Register.File == TGSI_FILE_INPUT) reg = pc->attr; else continue; mask = nv50_tgsi_src_mask(insn, i); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; k = tgsi_util_get_full_src_register_swizzle(src, c); r = ®[src->Register.Index * 4 + k]; /* If used before written, pre-allocate the reg, * lest we overwrite results from a subroutine. */ if (!r->acc && r->type == P_TEMP) alloc_reg(pc, r); r->acc = pc->insn_nr; } } } /* Returns a bitmask indicating which dst components need to be * written to temporaries first to avoid 'corrupting' sources. * * m[i] (out) indicate component to write in the i-th position * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source */ static unsigned nv50_revdep_reorder(unsigned m[4], unsigned rdep[4]) { unsigned i, c, x, unsafe = 0; for (c = 0; c < 4; c++) m[c] = c; /* Swap as long as a dst component written earlier is depended on * by one written later, but the next one isn't depended on by it. */ for (c = 0; c < 3; c++) { if (rdep[m[c + 1]] & (1 << m[c])) continue; /* if next one is depended on by us */ for (i = c + 1; i < 4; i++) /* if we are depended on by a later one */ if (rdep[m[c]] & (1 << m[i])) break; if (i == 4) continue; /* now, swap */ x = m[c]; m[c] = m[c + 1]; m[c + 1] = x; /* restart */ c = 0; } /* mark dependencies that could not be resolved by reordering */ for (i = 0; i < 3; ++i) for (c = i + 1; c < 4; ++c) if (rdep[m[i]] & (1 << m[c])) unsafe |= (1 << i); /* NOTE: $unsafe is with respect to order, not component */ return unsafe; } /* Select a suitable dst register for broadcasting scalar results, * or return NULL if we have to allocate an extra TEMP. * * If e.g. only 1 component is written, we may also emit the final * result to a write-only register. */ static struct nv50_reg * tgsi_broadcast_dst(struct nv50_pc *pc, const struct tgsi_full_dst_register *fd, unsigned mask) { if (fd->Register.File == TGSI_FILE_TEMPORARY) { int c = ffs(~mask & fd->Register.WriteMask); if (c) return tgsi_dst(pc, c - 1, fd); } else { int c = ffs(fd->Register.WriteMask) - 1; if ((1 << c) == fd->Register.WriteMask) return tgsi_dst(pc, c, fd); } return NULL; } /* Scan source swizzles and return a bitmask indicating dst regs that * also occur among the src regs, and fill rdep for nv50_revdep_reoder. */ static unsigned nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn, unsigned rdep[4]) { const struct tgsi_full_dst_register *fd = &insn->Dst[0]; const struct tgsi_full_src_register *fs; unsigned i, deqs = 0; for (i = 0; i < 4; ++i) rdep[i] = 0; for (i = 0; i < insn->Instruction.NumSrcRegs; i++) { unsigned chn, mask = nv50_tgsi_src_mask(insn, i); int ms = get_supported_mods(insn, i); fs = &insn->Src[i]; if (fs->Register.File != fd->Register.File || fs->Register.Index != fd->Register.Index) continue; for (chn = 0; chn < 4; ++chn) { unsigned s, c; if (!(mask & (1 << chn))) /* src is not read */ continue; c = tgsi_util_get_full_src_register_swizzle(fs, chn); s = tgsi_util_get_full_src_register_sign_mode(fs, chn); if (!(fd->Register.WriteMask & (1 << c))) continue; if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG)) continue; if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS)) continue; if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3)) continue; rdep[c] |= nv50_tgsi_dst_revdep( insn->Instruction.Opcode, i, chn); deqs |= (1 << c); } } return deqs; } static boolean nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok) { struct tgsi_full_instruction insn = tok->FullInstruction; const struct tgsi_full_dst_register *fd; unsigned i, deqs, rdep[4], m[4]; fd = &tok->FullInstruction.Dst[0]; deqs = nv50_tgsi_scan_swizzle(&insn, rdep); if (is_scalar_op(insn.Instruction.Opcode)) { pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs); if (!pc->r_brdc) pc->r_brdc = temp_temp(pc, NULL); return nv50_program_tx_insn(pc, &insn); } pc->r_brdc = NULL; if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3])) return nv50_program_tx_insn(pc, &insn); deqs = nv50_revdep_reorder(m, rdep); for (i = 0; i < 4; ++i) { assert(pc->r_dst[m[i]] == NULL); insn.Dst[0].Register.WriteMask = fd->Register.WriteMask & (1 << m[i]); if (!insn.Dst[0].Register.WriteMask) continue; if (deqs & (1 << i)) pc->r_dst[m[i]] = alloc_temp(pc, NULL); if (!nv50_program_tx_insn(pc, &insn)) return FALSE; } for (i = 0; i < 4; i++) { struct nv50_reg *reg = pc->r_dst[i]; if (!reg) continue; pc->r_dst[i] = NULL; if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE) emit_sat(pc, tgsi_dst(pc, i, fd), reg); else emit_mov(pc, tgsi_dst(pc, i, fd), reg); free_temp(pc, reg); } return TRUE; } static void load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg) { struct nv50_reg *iv, **ppiv; unsigned mode = pc->interp_mode[reg->index]; ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p; iv = *ppiv; if ((mode & INTERP_PERSPECTIVE) && !iv) { iv = *ppiv = alloc_temp(pc, NULL); iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1; emit_interp(pc, iv, NULL, mode & INTERP_CENTROID); emit_flop(pc, NV50_FLOP_RCP, iv, iv); /* XXX: when loading interpolants dynamically, move these * to the program head, or make sure it can't be skipped. */ } emit_interp(pc, reg, iv, mode); } /* The face input is always at v[255] (varying space), with a * value of 0 for back-facing, and 0xffffffff for front-facing. */ static void load_frontfacing(struct nv50_pc *pc, struct nv50_reg *sv) { struct nv50_reg *temp = alloc_temp(pc, NULL); int r_pred = 0; temp->rhw = 255; emit_interp(pc, temp, NULL, INTERP_FLAT); emit_cvt(pc, sv, temp, r_pred, CVT_ABS | CVT_F32_S32); emit_not(pc, temp, temp); set_pred(pc, 0x2, r_pred, pc->p->exec_tail); emit_cvt(pc, sv, temp, -1, CVT_F32_S32); set_pred(pc, 0x2, r_pred, pc->p->exec_tail); free_temp(pc, temp); } static void load_instance_id(struct nv50_pc *pc, unsigned index) { struct nv50_reg reg, mem; ctor_reg(®, P_TEMP, -1, -1); ctor_reg(&mem, P_CONST, -1, 24); /* startInstance */ mem.buf_index = 2; emit_add_b32(pc, ®, &pc->sysval[index], &mem); pc->sysval[index] = reg; } static void copy_semantic_info(struct nv50_program *p) { unsigned i, id; for (i = 0; i < p->cfg.in_nr; ++i) { id = p->cfg.in[i].id; p->cfg.in[i].sn = p->info.input_semantic_name[id]; p->cfg.in[i].si = p->info.input_semantic_index[id]; } for (i = 0; i < p->cfg.out_nr; ++i) { id = p->cfg.out[i].id; p->cfg.out[i].sn = p->info.output_semantic_name[id]; p->cfg.out[i].si = p->info.output_semantic_index[id]; } } static boolean nv50_program_tx_prep(struct nv50_pc *pc) { struct tgsi_parse_context tp; struct nv50_program *p = pc->p; boolean ret = FALSE; unsigned i, c, instance_id, vertex_id, flat_nr = 0; tgsi_parse_init(&tp, pc->p->pipe.tokens); while (!tgsi_parse_end_of_tokens(&tp)) { const union tgsi_full_token *tok = &tp.FullToken; tgsi_parse_token(&tp); switch (tok->Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { const struct tgsi_full_immediate *imm = &tp.FullToken.FullImmediate; ctor_immd_4f32(pc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); } break; case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *d; unsigned si, last, first, mode; d = &tp.FullToken.FullDeclaration; first = d->Range.First; last = d->Range.Last; switch (d->Declaration.File) { case TGSI_FILE_TEMPORARY: break; case TGSI_FILE_OUTPUT: if (!d->Declaration.Semantic || p->type == PIPE_SHADER_FRAGMENT) break; si = d->Semantic.Index; switch (d->Semantic.Name) { case TGSI_SEMANTIC_BCOLOR: p->cfg.two_side[si].hw = first; if (p->cfg.out_nr > first) p->cfg.out_nr = first; break; case TGSI_SEMANTIC_PSIZE: p->cfg.psiz = first; if (p->cfg.out_nr > first) p->cfg.out_nr = first; break; case TGSI_SEMANTIC_EDGEFLAG: pc->edgeflag_out = first; break; /* case TGSI_SEMANTIC_CLIP_DISTANCE: p->cfg.clpd = MIN2(p->cfg.clpd, first); break; */ default: break; } break; case TGSI_FILE_INPUT: { if (p->type != PIPE_SHADER_FRAGMENT) break; switch (d->Declaration.Interpolate) { case TGSI_INTERPOLATE_CONSTANT: mode = INTERP_FLAT; flat_nr++; break; case TGSI_INTERPOLATE_PERSPECTIVE: mode = INTERP_PERSPECTIVE; p->cfg.regs[1] |= 0x08 << 24; break; default: mode = INTERP_LINEAR; break; } if (d->Declaration.Centroid) mode |= INTERP_CENTROID; assert(last < 32); for (i = first; i <= last; i++) pc->interp_mode[i] = mode; } break; case TGSI_FILE_SYSTEM_VALUE: assert(d->Declaration.Semantic); switch (d->Semantic.Name) { case TGSI_SEMANTIC_FACE: assert(p->type == PIPE_SHADER_FRAGMENT); load_frontfacing(pc, &pc->sysval[first]); break; case TGSI_SEMANTIC_INSTANCEID: assert(p->type == PIPE_SHADER_VERTEX); instance_id = first; p->cfg.regs[0] |= (1 << 4); break; case TGSI_SEMANTIC_PRIMID: assert(p->type != PIPE_SHADER_VERTEX); p->cfg.prim_id = first; break; /* case TGSI_SEMANTIC_PRIMIDIN: assert(p->type == PIPE_SHADER_GEOMETRY); pc->sysval[first].hw = 6; p->cfg.regs[0] |= (1 << 8); break; case TGSI_SEMANTIC_VERTEXID: assert(p->type == PIPE_SHADER_VERTEX); vertex_id = first; p->cfg.regs[0] |= (1 << 12) | (1 << 0); break; */ } break; case TGSI_FILE_ADDRESS: case TGSI_FILE_CONSTANT: case TGSI_FILE_SAMPLER: break; default: NOUVEAU_ERR("bad decl file %d\n", d->Declaration.File); goto out_err; } } break; case TGSI_TOKEN_TYPE_INSTRUCTION: pc->insn_nr++; prep_inspect_insn(pc, &tok->FullInstruction); break; default: break; } } if (p->type == PIPE_SHADER_VERTEX || p->type == PIPE_SHADER_GEOMETRY) { int rid = 0; if (p->type == PIPE_SHADER_GEOMETRY) { for (i = 0; i < pc->attr_nr; ++i) { p->cfg.in[i].hw = rid; p->cfg.in[i].id = i; for (c = 0; c < 4; ++c) { int n = i * 4 + c; if (!pc->attr[n].acc) continue; pc->attr[n].hw = rid++; p->cfg.in[i].mask |= 1 << c; } } } else { for (i = 0; i < pc->attr_nr * 4; ++i) { if (pc->attr[i].acc) { pc->attr[i].hw = rid++; p->cfg.attr[i / 32] |= 1 << (i % 32); } } if (p->cfg.regs[0] & (1 << 0)) pc->sysval[vertex_id].hw = rid++; if (p->cfg.regs[0] & (1 << 4)) { pc->sysval[instance_id].hw = rid++; load_instance_id(pc, instance_id); } } for (i = 0, rid = 0; i < pc->result_nr; ++i) { p->cfg.out[i].hw = rid; p->cfg.out[i].id = i; for (c = 0; c < 4; ++c) { int n = i * 4 + c; if (!pc->result[n].acc) continue; pc->result[n].hw = rid++; p->cfg.out[i].mask |= 1 << c; } } if (p->cfg.prim_id < 0x40) { /* GP has to write to PrimitiveID */ ctor_reg(&pc->sysval[p->cfg.prim_id], P_RESULT, p->cfg.prim_id, rid); p->cfg.prim_id = rid++; } for (c = 0; c < 2; ++c) if (p->cfg.two_side[c].hw < 0x40) p->cfg.two_side[c] = p->cfg.out[ p->cfg.two_side[c].hw]; if (p->cfg.psiz < 0x40) p->cfg.psiz = p->cfg.out[p->cfg.psiz].hw; copy_semantic_info(p); } else if (p->type == PIPE_SHADER_FRAGMENT) { int rid, aid; unsigned n = 0, m = pc->attr_nr - flat_nr; pc->allow32 = TRUE; /* do we read FragCoord ? */ if (pc->attr_nr && p->info.input_semantic_name[0] == TGSI_SEMANTIC_POSITION) { /* select FCRD components we want accessible */ for (c = 0; c < 4; ++c) if (pc->attr[c].acc) p->cfg.regs[1] |= 1 << (24 + c); aid = 0; } else /* offset by 1 if FCRD.w is needed for pinterp */ aid = popcnt4(p->cfg.regs[1] >> 24); /* non-flat interpolants have to be mapped to * the lower hardware IDs, so sort them: */ for (i = 0; i < pc->attr_nr; i++) { if (pc->interp_mode[i] == INTERP_FLAT) p->cfg.in[m++].id = i; else { if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE)) p->cfg.in[n].linear = TRUE; p->cfg.in[n++].id = i; } } copy_semantic_info(p); for (n = 0; n < pc->attr_nr; ++n) { p->cfg.in[n].hw = rid = aid; i = p->cfg.in[n].id; if (p->info.input_semantic_name[n] == TGSI_SEMANTIC_FACE) { load_frontfacing(pc, &pc->attr[i * 4]); continue; } for (c = 0; c < 4; ++c) { if (!pc->attr[i * 4 + c].acc) continue; pc->attr[i * 4 + c].rhw = rid++; p->cfg.in[n].mask |= 1 << c; load_interpolant(pc, &pc->attr[i * 4 + c]); } aid += popcnt4(p->cfg.in[n].mask); } m = popcnt4(p->cfg.regs[1] >> 24); /* set count of non-position inputs and of non-flat * non-position inputs for FP_INTERPOLANT_CTRL */ p->cfg.regs[1] |= aid - m; if (flat_nr) { i = p->cfg.in[pc->attr_nr - flat_nr].hw; p->cfg.regs[1] |= (i - m) << 16; } else p->cfg.regs[1] |= p->cfg.regs[1] << 16; /* mark color semantic for light-twoside */ n = 0x80; for (i = 0; i < p->cfg.in_nr; i++) { if (p->cfg.in[i].sn == TGSI_SEMANTIC_COLOR) { n = MIN2(n, p->cfg.in[i].hw - m); p->cfg.two_side[p->cfg.in[i].si] = p->cfg.in[i]; p->cfg.regs[0] += /* increase colour count */ popcnt4(p->cfg.in[i].mask) << 16; } } if (n < 0x80) p->cfg.regs[0] += n; if (p->cfg.prim_id < 0x40) { pc->sysval[p->cfg.prim_id].rhw = rid++; emit_interp(pc, &pc->sysval[p->cfg.prim_id], NULL, INTERP_FLAT); /* increase FP_INTERPOLANT_CTRL_COUNT */ p->cfg.regs[1] += 1; } /* Initialize FP results: * FragDepth is always first TGSI and last hw output */ i = p->info.writes_z ? 4 : 0; for (rid = 0; i < pc->result_nr * 4; i++) pc->result[i].rhw = rid++; if (p->info.writes_z) pc->result[2].rhw = rid; p->cfg.high_result = rid; /* separate/different colour results for MRTs ? */ if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1) p->cfg.regs[2] |= 1; } if (pc->immd_nr) { int rid = 0; pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg)); if (!pc->immd) goto out_err; for (i = 0; i < pc->immd_nr; i++) { for (c = 0; c < 4; c++, rid++) ctor_reg(&pc->immd[rid], P_IMMD, i, rid); } } ret = TRUE; out_err: if (pc->iv_p) free_temp(pc, pc->iv_p); if (pc->iv_c) free_temp(pc, pc->iv_c); tgsi_parse_free(&tp); return ret; } static void free_nv50_pc(struct nv50_pc *pc) { if (pc->immd) FREE(pc->immd); if (pc->param) FREE(pc->param); if (pc->result) FREE(pc->result); if (pc->attr) FREE(pc->attr); if (pc->temp) FREE(pc->temp); if (pc->sysval) FREE(pc->sysval); if (pc->insn_pos) FREE(pc->insn_pos); FREE(pc); } static INLINE uint32_t nv50_map_gs_output_prim(unsigned pprim) { switch (pprim) { case PIPE_PRIM_POINTS: return NV50TCL_GP_OUTPUT_PRIMITIVE_TYPE_POINTS; case PIPE_PRIM_LINE_STRIP: return NV50TCL_GP_OUTPUT_PRIMITIVE_TYPE_LINE_STRIP; case PIPE_PRIM_TRIANGLE_STRIP: return NV50TCL_GP_OUTPUT_PRIMITIVE_TYPE_TRIANGLE_STRIP; default: NOUVEAU_ERR("invalid GS_OUTPUT_PRIMITIVE: %u\n", pprim); abort(); return 0; } } static boolean ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p) { int i, c; unsigned rtype[2] = { P_ATTR, P_RESULT }; pc->p = p; pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1; pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1; pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1; pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1; pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1; assert(pc->addr_nr <= 2); pc->sysval_nr = p->info.file_max[TGSI_FILE_SYSTEM_VALUE] + 1; p->cfg.high_temp = 4; p->cfg.two_side[0].hw = 0x40; p->cfg.two_side[1].hw = 0x40; p->cfg.prim_id = 0x40; p->cfg.edgeflag_in = pc->edgeflag_out = 0xff; for (i = 0; i < p->info.num_properties; ++i) { unsigned *data = &p->info.properties[i].data[0]; switch (p->info.properties[i].name) { case TGSI_PROPERTY_GS_OUTPUT_PRIM: p->cfg.prim_type = nv50_map_gs_output_prim(data[0]); break; case TGSI_PROPERTY_GS_MAX_VERTICES: p->cfg.vert_count = data[0]; break; default: break; } } switch (p->type) { case PIPE_SHADER_VERTEX: p->cfg.psiz = 0x40; p->cfg.clpd = 0x40; p->cfg.out_nr = pc->result_nr; break; case PIPE_SHADER_GEOMETRY: assert(p->cfg.prim_type); assert(p->cfg.vert_count); p->cfg.psiz = 0x80; p->cfg.clpd = 0x80; p->cfg.prim_id = 0x80; p->cfg.out_nr = pc->result_nr; p->cfg.in_nr = pc->attr_nr; p->cfg.two_side[0].hw = 0x80; p->cfg.two_side[1].hw = 0x80; break; case PIPE_SHADER_FRAGMENT: rtype[0] = rtype[1] = P_TEMP; p->cfg.regs[0] = 0x01000004; p->cfg.in_nr = pc->attr_nr; if (p->info.writes_z) { p->cfg.regs[2] |= 0x00000100; p->cfg.regs[3] |= 0x00000011; } if (p->info.uses_kill) p->cfg.regs[2] |= 0x00100000; break; } if (pc->temp_nr) { pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg)); if (!pc->temp) return FALSE; for (i = 0; i < pc->temp_nr * 4; ++i) ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1); } if (pc->attr_nr) { pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg)); if (!pc->attr) return FALSE; for (i = 0; i < pc->attr_nr * 4; ++i) ctor_reg(&pc->attr[i], rtype[0], i / 4, -1); } if (pc->result_nr) { unsigned nr = pc->result_nr * 4; pc->result = MALLOC(nr * sizeof(struct nv50_reg)); if (!pc->result) return FALSE; for (i = 0; i < nr; ++i) ctor_reg(&pc->result[i], rtype[1], i / 4, -1); } if (pc->param_nr) { int rid = 0; pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg)); if (!pc->param) return FALSE; for (i = 0; i < pc->param_nr; ++i) for (c = 0; c < 4; ++c, ++rid) ctor_reg(&pc->param[rid], P_CONST, i, rid); } if (pc->addr_nr) { pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *)); if (!pc->addr) return FALSE; } for (i = 0; i < NV50_SU_MAX_ADDR; ++i) ctor_reg(&pc->r_addr[i], P_ADDR, -1, i + 1); if (pc->sysval_nr) { pc->sysval = CALLOC(pc->sysval_nr, sizeof(struct nv50_reg *)); if (!pc->sysval) return FALSE; /* will only ever use SYSTEM_VALUE[i].x (hopefully) */ for (i = 0; i < pc->sysval_nr; ++i) ctor_reg(&pc->sysval[i], rtype[0], i, -1); } return TRUE; } static void nv50_program_fixup_insns(struct nv50_pc *pc) { struct nv50_program_exec *e, **bra_list; unsigned i, n, pos; bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *)); /* Collect branch instructions, we need to adjust their offsets * when converting 32 bit instructions to 64 bit ones */ for (n = 0, e = pc->p->exec_head; e; e = e->next) if (e->param.index >= 0 && !e->param.mask) bra_list[n++] = e; /* Make sure we don't have any single 32 bit instructions. */ for (e = pc->p->exec_head, pos = 0; e; e = e->next) { pos += is_long(e) ? 2 : 1; if ((pos & 1) && (!e->next || is_long(e->next))) { for (i = 0; i < n; ++i) if (bra_list[i]->param.index >= pos) bra_list[i]->param.index += 1; for (i = 0; i < pc->insn_nr; ++i) if (pc->insn_pos[i] >= pos) pc->insn_pos[i] += 1; convert_to_long(pc, e); ++pos; } } FREE(bra_list); if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL]) return; /* fill in CALL offsets */ for (e = pc->p->exec_head; e; e = e->next) { if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2) e->param.index = pc->insn_pos[e->param.index]; } } static boolean nv50_program_tx(struct nv50_program *p) { struct tgsi_parse_context parse; struct nv50_pc *pc; boolean ret; pc = CALLOC_STRUCT(nv50_pc); if (!pc) return FALSE; ret = ctor_nv50_pc(pc, p); if (ret == FALSE) goto out_cleanup; ret = nv50_program_tx_prep(pc); if (ret == FALSE) goto out_cleanup; pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned)); tgsi_parse_init(&parse, pc->p->pipe.tokens); while (!tgsi_parse_end_of_tokens(&parse)) { const union tgsi_full_token *tok = &parse.FullToken; /* previously allow32 was FALSE for first & last instruction */ pc->allow32 = TRUE; tgsi_parse_token(&parse); switch (tok->Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: pc->insn_pos[pc->insn_cur] = pc->p->exec_size; ++pc->insn_cur; ret = nv50_tgsi_insn(pc, tok); if (ret == FALSE) goto out_err; break; default: break; } } nv50_program_fixup_insns(pc); p->param_nr = pc->param_nr * 4; p->immd_nr = pc->immd_nr * 4; p->immd = pc->immd_buf; out_err: tgsi_parse_free(&parse); out_cleanup: free_nv50_pc(pc); return ret; } static void nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p) { if (nv50_program_tx(p) == FALSE) assert(0); p->translated = TRUE; } static void nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map, unsigned start, unsigned count, unsigned cbuf) { struct nouveau_channel *chan = nv50->screen->base.channel; struct nouveau_grobj *tesla = nv50->screen->tesla; while (count) { unsigned nr = count > 2047 ? 2047 : count; BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1); OUT_RING (chan, (cbuf << 0) | (start << 8)); BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr); OUT_RINGp (chan, map, nr); map += nr; start += nr; count -= nr; } } static void nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p) { struct pipe_screen *pscreen = nv50->pipe.screen; if (!p->data[0] && p->immd_nr) { struct nouveau_resource *heap = nv50->screen->immd_heap[0]; if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) { while (heap->next && heap->size < p->immd_nr) { struct nv50_program *evict = heap->next->priv; nouveau_resource_free(&evict->data[0]); } if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) assert(0); } /* immediates only need to be uploaded again when freed */ nv50_program_upload_data(nv50, p->immd, p->data[0]->start, p->immd_nr, NV50_CB_PMISC); } assert(p->param_nr <= 512); if (p->param_nr) { unsigned cb; uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type], PIPE_BUFFER_USAGE_CPU_READ); switch (p->type) { case PIPE_SHADER_GEOMETRY: cb = NV50_CB_PGP; break; case PIPE_SHADER_FRAGMENT: cb = NV50_CB_PFP; break; default: cb = NV50_CB_PVP; assert(p->type == PIPE_SHADER_VERTEX); break; } nv50_program_upload_data(nv50, map, 0, p->param_nr, cb); pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]); } } static void nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p) { struct nouveau_channel *chan = nv50->screen->base.channel; struct nv50_program_exec *e; uint32_t *up, i; boolean upload = FALSE; if (!p->bo) { nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100, p->exec_size * 4, &p->bo); upload = TRUE; } if (p->data[0] && p->data[0]->start != p->data_start[0]) upload = TRUE; if (!upload) return; up = MALLOC(p->exec_size * 4); for (i = 0, e = p->exec_head; e; e = e->next) { unsigned ei, ci, bs; if (e->param.index >= 0 && e->param.mask) { bs = (e->inst[1] >> 22) & 0x07; assert(bs < 2); ei = e->param.shift >> 5; ci = e->param.index; if (bs == 0) ci += p->data[bs]->start; e->inst[ei] &= ~e->param.mask; e->inst[ei] |= (ci << e->param.shift); } else if (e->param.index >= 0) { /* zero mask means param is a jump/branch offset */ assert(!(e->param.index & 1)); /* seem to be 8 byte steps */ ei = (e->param.index >> 1) + 0 /* START_ID */; e->inst[0] &= 0xf0000fff; e->inst[0] |= ei << 12; } up[i++] = e->inst[0]; if (is_long(e)) up[i++] = e->inst[1]; } assert(i == p->exec_size); if (p->data[0]) p->data_start[0] = p->data[0]->start; #ifdef NV50_PROGRAM_DUMP NOUVEAU_ERR("-------\n"); for (e = p->exec_head; e; e = e->next) { NOUVEAU_ERR("0x%08x\n", e->inst[0]); if (is_long(e)) NOUVEAU_ERR("0x%08x\n", e->inst[1]); } #endif nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM, NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144, up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0, 0, 0, p->exec_size * 4, 1, 1); FREE(up); } struct nouveau_stateobj * nv50_vertprog_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *p = nv50->vertprog; struct nouveau_stateobj *so; if (!p->translated) { nv50_program_validate(nv50, p); if (!p->translated) assert(0); } nv50_program_validate_data(nv50, p); nv50_program_validate_code(nv50, p); so = so_new(5, 7, 2); so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_LOW, 0, 0); so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2); so_data (so, p->cfg.attr[0]); so_data (so, p->cfg.attr[1]); so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1); so_data (so, p->cfg.high_result); so_method(so, tesla, NV50TCL_VP_REG_ALLOC_TEMP, 1); so_data (so, p->cfg.high_temp); so_method(so, tesla, NV50TCL_VP_START_ID, 1); so_data (so, 0); /* program start offset */ return so; } struct nouveau_stateobj * nv50_fragprog_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *p = nv50->fragprog; struct nouveau_stateobj *so; if (!p->translated) { nv50_program_validate(nv50, p); if (!p->translated) assert(0); } nv50_program_validate_data(nv50, p); nv50_program_validate_code(nv50, p); so = so_new(6, 7, 2); so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_LOW, 0, 0); so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1); so_data (so, p->cfg.high_temp); so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1); so_data (so, p->cfg.high_result); so_method(so, tesla, NV50TCL_FP_CONTROL, 1); so_data (so, p->cfg.regs[2]); so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1); so_data (so, p->cfg.regs[3]); so_method(so, tesla, NV50TCL_FP_START_ID, 1); so_data (so, 0); /* program start offset */ return so; } struct nouveau_stateobj * nv50_geomprog_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *p = nv50->geomprog; struct nouveau_stateobj *so; if (!p->translated) { nv50_program_validate(nv50, p); if (!p->translated) assert(0); } nv50_program_validate_data(nv50, p); nv50_program_validate_code(nv50, p); so = so_new(6, 7, 2); so_method(so, tesla, NV50TCL_GP_ADDRESS_HIGH, 2); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_LOW, 0, 0); so_method(so, tesla, NV50TCL_GP_REG_ALLOC_TEMP, 1); so_data (so, p->cfg.high_temp); so_method(so, tesla, NV50TCL_GP_REG_ALLOC_RESULT, 1); so_data (so, p->cfg.high_result); so_method(so, tesla, NV50TCL_GP_OUTPUT_PRIMITIVE_TYPE, 1); so_data (so, p->cfg.prim_type); so_method(so, tesla, NV50TCL_GP_VERTEX_OUTPUT_COUNT, 1); so_data (so, p->cfg.vert_count); so_method(so, tesla, NV50TCL_GP_START_ID, 1); so_data (so, 0); return so; } static uint32_t nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base) { struct nv50_program *vp; struct nv50_program *fp = nv50->fragprog; unsigned i, c, m = base; uint32_t origin = 0x00000010; vp = nv50->geomprog ? nv50->geomprog : nv50->vertprog; /* XXX: this might not work correctly in all cases yet - we'll * just assume that an FP generic input that is not written in * the VP is PointCoord. */ memset(pntc, 0, 8 * sizeof(uint32_t)); for (i = 0; i < fp->cfg.in_nr; i++) { unsigned j, n = popcnt4(fp->cfg.in[i].mask); if (fp->cfg.in[i].sn != TGSI_SEMANTIC_GENERIC) { m += n; continue; } for (j = 0; j < vp->cfg.out_nr; ++j) if (vp->cfg.out[j].sn == fp->cfg.in[i].sn && vp->cfg.out[j].si == fp->cfg.in[i].si) break; if (j < vp->info.num_outputs) { ubyte enable = (nv50->rasterizer->pipe.sprite_coord_enable >> vp->cfg.out[j].si) & 1; if (enable == 0) { m += n; continue; } } /* this is either PointCoord or replaced by sprite coords */ for (c = 0; c < 4; c++) { if (!(fp->cfg.in[i].mask & (1 << c))) continue; pntc[m / 8] |= (c + 1) << ((m % 8) * 4); ++m; } } return (nv50->rasterizer->pipe.sprite_coord_mode == PIPE_SPRITE_COORD_LOWER_LEFT ? 0 : origin); } static int nv50_vec4_map(uint32_t *map32, int mid, uint8_t zval, uint32_t lin[4], struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo) { int c; uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw; uint8_t *map = (uint8_t *)map32; for (c = 0; c < 4; ++c) { if (mf & 1) { if (fpi->linear == TRUE) lin[mid / 32] |= 1 << (mid % 32); if (mv & 1) map[mid] = oid; else map[mid] = (c == 3) ? (zval + 1) : zval; ++mid; } oid += mv & 1; mf >>= 1; mv >>= 1; } return mid; } struct nouveau_stateobj * nv50_fp_linkage_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *vp = nv50->vertprog; struct nv50_program *fp = nv50->fragprog; struct nouveau_stateobj *so; struct nv50_sreg4 dummy; int i, n, c, m = 0; uint32_t map[16], lin[4], reg[6], pcrd[8]; uint8_t zval = 0x40; if (nv50->geomprog) { vp = nv50->geomprog; zval = 0x80; } memset(map, 0, sizeof(map)); memset(lin, 0, sizeof(lin)); reg[1] = 0x00000004; /* low and high clip distance map ids */ reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */ reg[3] = 0x00000000; /* point size map id & enable */ reg[5] = 0x00000000; /* primitive ID map slot */ reg[0] = fp->cfg.regs[0]; /* colour semantic reg */ reg[4] = fp->cfg.regs[1]; /* interpolant info */ dummy.linear = FALSE; dummy.mask = 0xf; /* map all components of HPOS */ m = nv50_vec4_map(map, m, zval, lin, &dummy, &vp->cfg.out[0]); dummy.mask = 0x0; if (vp->cfg.clpd < 0x40) { for (c = 0; c < vp->cfg.clpd_nr; ++c) { map[m / 4] |= (vp->cfg.clpd + c) << ((m % 4) * 8); ++m; } reg[1] = (m << 8); } reg[0] |= m << 8; /* adjust BFC0 id */ /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */ if (nv50->rasterizer->pipe.light_twoside) { struct nv50_sreg4 *vpo = &vp->cfg.two_side[0]; struct nv50_sreg4 *fpi = &fp->cfg.two_side[0]; m = nv50_vec4_map(map, m, zval, lin, &fpi[0], &vpo[0]); m = nv50_vec4_map(map, m, zval, lin, &fpi[1], &vpo[1]); } reg[0] += m - 4; /* adjust FFC0 id */ reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */ for (i = 0; i < fp->cfg.in_nr; i++) { /* maybe even remove these from cfg.io */ if (fp->cfg.in[i].sn == TGSI_SEMANTIC_POSITION || fp->cfg.in[i].sn == TGSI_SEMANTIC_FACE) continue; for (n = 0; n < vp->cfg.out_nr; ++n) if (vp->cfg.out[n].sn == fp->cfg.in[i].sn && vp->cfg.out[n].si == fp->cfg.in[i].si) break; m = nv50_vec4_map(map, m, zval, lin, &fp->cfg.in[i], (n < vp->cfg.out_nr) ? &vp->cfg.out[n] : &dummy); } /* PrimitiveID either is replaced by the system value, or * written by the geometry shader into an output register */ if (fp->cfg.prim_id < 0x40) { map[m / 4] |= vp->cfg.prim_id << ((m % 4) * 8); reg[5] = m++; } if (nv50->rasterizer->pipe.point_size_per_vertex) { map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8); reg[3] = (m++ << 4) | 1; } /* now fill the stateobj (at most 28 so_data) */ so = so_new(10, 54, 0); n = (m + 3) / 4; assert(m <= 32); if (vp->type == PIPE_SHADER_GEOMETRY) { so_method(so, tesla, NV50TCL_GP_RESULT_MAP_SIZE, 1); so_data (so, m); so_method(so, tesla, NV50TCL_GP_RESULT_MAP(0), n); so_datap (so, map, n); } else { so_method(so, tesla, NV50TCL_VP_GP_BUILTIN_ATTR_EN, 1); so_data (so, vp->cfg.regs[0]); so_method(so, tesla, NV50TCL_MAP_SEMANTIC_4, 1); so_data (so, reg[5]); so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1); so_data (so, m); so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n); so_datap (so, map, n); } so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4); so_datap (so, reg, 4); so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1); so_data (so, reg[4]); so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4); so_datap (so, lin, 4); if (nv50->rasterizer->pipe.sprite_coord_enable) { so_method(so, tesla, NV50TCL_POINT_SPRITE_CTRL, 1); so_data (so, nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff)); so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8); so_datap (so, pcrd, 8); } so_method(so, tesla, NV50TCL_GP_ENABLE, 1); so_data (so, (vp->type == PIPE_SHADER_GEOMETRY) ? 1 : 0); return so; } static int construct_vp_gp_mapping(uint32_t *map32, int m, struct nv50_program *vp, struct nv50_program *gp) { uint8_t *map = (uint8_t *)map32; int i, j, c; for (i = 0; i < gp->cfg.in_nr; ++i) { uint8_t oid, mv = 0, mg = gp->cfg.in[i].mask; for (j = 0; j < vp->cfg.out_nr; ++j) { if (vp->cfg.out[j].sn == gp->cfg.in[i].sn && vp->cfg.out[j].si == gp->cfg.in[i].si) { mv = vp->cfg.out[j].mask; oid = vp->cfg.out[j].hw; break; } } for (c = 0; c < 4; ++c, mv >>= 1, mg >>= 1) { if (mg & mv & 1) map[m++] = oid; else if (mg & 1) map[m++] = (c == 3) ? 0x41 : 0x40; oid += mv & 1; } } return m; } struct nouveau_stateobj * nv50_gp_linkage_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nouveau_stateobj *so; struct nv50_program *vp = nv50->vertprog; struct nv50_program *gp = nv50->geomprog; uint32_t map[16]; int m = 0; if (!gp) return NULL; memset(map, 0, sizeof(map)); m = construct_vp_gp_mapping(map, m, vp, gp); so = so_new(3, 24 - 3, 0); so_method(so, tesla, NV50TCL_VP_GP_BUILTIN_ATTR_EN, 1); so_data (so, vp->cfg.regs[0] | gp->cfg.regs[0]); assert(m <= 32); so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1); so_data (so, m); m = (m + 3) / 4; so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), m); so_datap (so, map, m); return so; } void nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p) { while (p->exec_head) { struct nv50_program_exec *e = p->exec_head; p->exec_head = e->next; FREE(e); } p->exec_tail = NULL; p->exec_size = 0; nouveau_bo_ref(NULL, &p->bo); FREE(p->immd); nouveau_resource_free(&p->data[0]); p->translated = 0; }