/* * Copyright 2010 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __NV50_COMPILER_H__ #define __NV50_COMPILER_H__ #include "nv50_debug.h" #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_memory.h" #define NV_OP_PHI 0 #define NV_OP_EXTRACT 1 #define NV_OP_COMBINE 2 #define NV_OP_LDA 3 #define NV_OP_STA 4 #define NV_OP_MOV 5 #define NV_OP_ADD 6 #define NV_OP_SUB 7 #define NV_OP_NEG 8 #define NV_OP_MUL 9 #define NV_OP_MAD 10 #define NV_OP_CVT 11 #define NV_OP_SAT 12 #define NV_OP_NOT 13 #define NV_OP_AND 14 #define NV_OP_OR 15 #define NV_OP_XOR 16 #define NV_OP_SHL 17 #define NV_OP_SHR 18 #define NV_OP_RCP 19 #define NV_OP_UNDEF 20 #define NV_OP_RSQ 21 #define NV_OP_LG2 22 #define NV_OP_SIN 23 #define NV_OP_COS 24 #define NV_OP_EX2 25 #define NV_OP_PRESIN 26 #define NV_OP_PREEX2 27 #define NV_OP_MIN 28 #define NV_OP_MAX 29 #define NV_OP_SET 30 #define NV_OP_SAD 31 #define NV_OP_KIL 32 #define NV_OP_BRA 33 #define NV_OP_CALL 34 #define NV_OP_RET 35 #define NV_OP_BREAK 36 #define NV_OP_BREAKADDR 37 #define NV_OP_JOINAT 38 #define NV_OP_TEX 39 #define NV_OP_TXB 40 #define NV_OP_TXL 41 #define NV_OP_TXF 42 #define NV_OP_TXQ 43 #define NV_OP_DFDX 44 #define NV_OP_DFDY 45 #define NV_OP_QUADOP 46 #define NV_OP_LINTERP 47 #define NV_OP_PINTERP 48 #define NV_OP_ABS 49 #define NV_OP_CEIL 50 #define NV_OP_FLOOR 51 #define NV_OP_TRUNC 52 #define NV_OP_NOP 53 #define NV_OP_SELECT 54 #define NV_OP_EXPORT 55 #define NV_OP_JOIN 56 #define NV_OP_ROUND 57 #define NV_OP_COUNT 58 #define NV_FILE_GPR 0 #define NV_FILE_OUT 1 #define NV_FILE_ADDR 2 #define NV_FILE_FLAGS 3 #define NV_FILE_IMM 16 #define NV_FILE_MEM_S 32 #define NV_FILE_MEM_P 33 #define NV_FILE_MEM_V 34 #define NV_FILE_MEM_L 48 #define NV_FILE_MEM_G(i) (64 + i) #define NV_FILE_MEM_C(i) (80 + i) #define NV_MOD_NEG 1 #define NV_MOD_ABS 2 #define NV_MOD_NOT 4 #define NV_MOD_SAT 8 #define NV_TYPE_U8 0x00 #define NV_TYPE_S8 0x01 #define NV_TYPE_U16 0x02 #define NV_TYPE_S16 0x03 #define NV_TYPE_U32 0x04 #define NV_TYPE_S32 0x05 #define NV_TYPE_P32 0x07 #define NV_TYPE_F32 0x09 #define NV_TYPE_F64 0x0b #define NV_TYPE_VEC(x, n) (NV_TYPE_##x | (n << 4)) #define NV_TYPE_LO 0x00 #define NV_TYPE_HI 0x80 #define NV_TYPE_ANY 0xff #define NV_TYPE_ISINT(t) ((t) <= 5) #define NV_TYPE_ISFLT(t) ((t) & 0x08) /* $cX registers contain 4 bits: OCSZ (Z is bit 0) */ #define NV_CC_FL 0x0 #define NV_CC_LT 0x1 #define NV_CC_EQ 0x2 #define NV_CC_LE 0x3 #define NV_CC_GT 0x4 #define NV_CC_NE 0x5 #define NV_CC_GE 0x6 #define NV_CC_U 0x8 #define NV_CC_TR 0xf #define NV_CC_O 0x10 #define NV_CC_C 0x11 #define NV_CC_A 0x12 #define NV_CC_S 0x13 #define NV_PC_MAX_INSTRUCTIONS 2048 #define NV_PC_MAX_VALUES (NV_PC_MAX_INSTRUCTIONS * 4) #define NV_PC_MAX_BASIC_BLOCKS 1024 static INLINE boolean nv_is_vector_op(uint opcode) { return (opcode >= NV_OP_TEX) && (opcode <= NV_OP_TXQ); } static INLINE uint nv_type_order(ubyte type) { switch (type & 0xf) { case NV_TYPE_U8: case NV_TYPE_S8: return 0; case NV_TYPE_U16: case NV_TYPE_S16: return 1; case NV_TYPE_U32: case NV_TYPE_F32: case NV_TYPE_S32: case NV_TYPE_P32: return 2; case NV_TYPE_F64: return 3; } assert(0); return 0; } static INLINE uint nv_type_sizeof(ubyte type) { if (type & 0xf0) return (1 << nv_type_order(type)) * (type >> 4); return 1 << nv_type_order(type); } static INLINE uint nv_type_sizeof_base(ubyte type) { return 1 << nv_type_order(type); } struct nv_reg { int id; ubyte file; ubyte type; /* type of generating instruction's result */ ubyte as_type; /* default type for new references to this value */ union { float f32; double f64; int32_t s32; uint32_t u32; } imm; }; struct nv_range { struct nv_range *next; int bgn; int end; }; struct nv_value { struct nv_reg reg; struct nv_instruction *insn; struct nv_value *join; int n; struct nv_range *livei; int refc; struct nv_value *next; struct nv_value *prev; }; struct nv_ref { struct nv_value *value; ubyte mod; ubyte typecast; ubyte flags; /* not used yet */ }; #define NV_REF_FLAG_REGALLOC_PRIV (1 << 0) struct nv_basic_block; struct nv_instruction { struct nv_instruction *next; struct nv_instruction *prev; uint opcode; int serial; struct nv_value *def[4]; struct nv_value *flags_def; struct nv_ref *src[6]; struct nv_ref *flags_src; struct nv_basic_block *bb; struct nv_basic_block *target; /* target block of control flow insn */ ubyte cc; unsigned set_cond : 4; unsigned fixed : 1; /* don't optimize away */ unsigned is_terminator : 1; unsigned is_join : 1; unsigned is_long : 1; /* for emission */ /* */ unsigned saturate : 1; unsigned centroid : 1; unsigned flat : 1; unsigned lanes : 4; unsigned tex_live : 1; /* */ ubyte tex_t; /* TIC binding */ ubyte tex_s; /* TSC binding */ unsigned tex_argc : 3; unsigned tex_cube : 1; unsigned tex_mask : 4; /* */ ubyte quadop; }; static INLINE int nvi_vector_size(struct nv_instruction *nvi) { int i; assert(nvi); for (i = 0; i < 4 && nvi->def[i]; ++i); return i; } #define CFG_EDGE_FORWARD 0 #define CFG_EDGE_BACK 1 #define CFG_EDGE_LOOP_ENTER 2 #define CFG_EDGE_LOOP_LEAVE 4 #define CFG_EDGE_FAKE 8 /* 'WALL' edge means where reachability check doesn't follow */ /* 'LOOP' edge means just having to do with loops */ #define IS_LOOP_EDGE(k) ((k) & 7) #define IS_WALL_EDGE(k) ((k) & 9) struct nv_basic_block { struct nv_instruction *entry; /* first non-phi instruction */ struct nv_instruction *exit; struct nv_instruction *phi; /* very first instruction */ int num_instructions; struct nv_basic_block *out[2]; /* no indirect branches -> 2 */ struct nv_basic_block *in[8]; /* hope that suffices */ uint num_in; ubyte out_kind[2]; ubyte in_kind[8]; int id; int subroutine; uint priv; /* reset to 0 after you're done */ uint pass_seq; uint32_t bin_pos; /* position, size in emitted code */ uint32_t bin_size; uint32_t live_set[NV_PC_MAX_VALUES / 32]; }; struct nv50_translation_info; struct nv_pc { struct nv_basic_block **root; struct nv_basic_block *current_block; struct nv_basic_block *parent_block; int loop_nesting_bound; uint pass_seq; struct nv_value values[NV_PC_MAX_VALUES]; struct nv_instruction instructions[NV_PC_MAX_INSTRUCTIONS]; struct nv_ref **refs; struct nv_basic_block *bb_list[NV_PC_MAX_BASIC_BLOCKS]; int num_values; int num_instructions; int num_refs; int num_blocks; int num_subroutines; int max_reg[4]; uint32_t *immd_buf; /* populated on emit */ unsigned immd_count; uint32_t *emit; unsigned bin_size; unsigned bin_pos; void *fixups; unsigned num_fixups; /* optimization enables */ boolean opt_reload_elim; }; void nvbb_insert_tail(struct nv_basic_block *, struct nv_instruction *); void nvi_insert_after(struct nv_instruction *, struct nv_instruction *); static INLINE struct nv_instruction * nv_alloc_instruction(struct nv_pc *pc, uint opcode) { struct nv_instruction *insn; insn = &pc->instructions[pc->num_instructions++]; assert(pc->num_instructions < NV_PC_MAX_INSTRUCTIONS); insn->cc = NV_CC_TR; insn->opcode = opcode; return insn; } static INLINE struct nv_instruction * new_instruction(struct nv_pc *pc, uint opcode) { struct nv_instruction *insn = nv_alloc_instruction(pc, opcode); nvbb_insert_tail(pc->current_block, insn); return insn; } static INLINE struct nv_instruction * new_instruction_at(struct nv_pc *pc, struct nv_instruction *at, uint opcode) { struct nv_instruction *insn = nv_alloc_instruction(pc, opcode); nvi_insert_after(at, insn); return insn; } static INLINE struct nv_value * new_value(struct nv_pc *pc, ubyte file, ubyte type) { struct nv_value *value = &pc->values[pc->num_values]; assert(pc->num_values < NV_PC_MAX_VALUES - 1); value->n = pc->num_values++; value->join = value; value->reg.id = -1; value->reg.file = file; value->reg.type = value->reg.as_type = type; return value; } static INLINE struct nv_value * new_value_like(struct nv_pc *pc, struct nv_value *like) { struct nv_value *val = new_value(pc, like->reg.file, like->reg.type); val->reg.as_type = like->reg.as_type; return val; } static INLINE struct nv_ref * new_ref(struct nv_pc *pc, struct nv_value *val) { int i; struct nv_ref *ref; if ((pc->num_refs % 64) == 0) { const unsigned old_size = pc->num_refs * sizeof(struct nv_ref *); const unsigned new_size = (pc->num_refs + 64) * sizeof(struct nv_ref *); pc->refs = REALLOC(pc->refs, old_size, new_size); ref = CALLOC(64, sizeof(struct nv_ref)); for (i = 0; i < 64; ++i) pc->refs[pc->num_refs + i] = &ref[i]; } ref = pc->refs[pc->num_refs++]; ref->value = val; ref->typecast = val->reg.as_type; ++val->refc; return ref; } static INLINE struct nv_basic_block * new_basic_block(struct nv_pc *pc) { struct nv_basic_block *bb; if (pc->num_blocks >= NV_PC_MAX_BASIC_BLOCKS) return NULL; bb = CALLOC_STRUCT(nv_basic_block); bb->id = pc->num_blocks; pc->bb_list[pc->num_blocks++] = bb; return bb; } static INLINE void nv_reference(struct nv_pc *pc, struct nv_ref **d, struct nv_value *s) { if (*d) --(*d)->value->refc; if (s) { if (!*d) *d = new_ref(pc, s); else { (*d)->value = s; ++(s->refc); } } else { *d = NULL; } } /* nv50_emit.c */ void nv50_emit_instruction(struct nv_pc *, struct nv_instruction *); unsigned nv50_inst_min_size(struct nv_instruction *); /* nv50_print.c */ const char *nv_opcode_name(uint opcode); void nv_print_instruction(struct nv_instruction *); /* nv50_pc.c */ void nv_print_function(struct nv_basic_block *root); void nv_print_program(struct nv_pc *); boolean nv_op_commutative(uint opcode); int nv50_indirect_opnd(struct nv_instruction *); boolean nv50_nvi_can_use_imm(struct nv_instruction *, int s); boolean nv50_nvi_can_predicate(struct nv_instruction *); boolean nv50_nvi_can_load(struct nv_instruction *, int s, struct nv_value *); boolean nv50_op_can_write_flags(uint opcode); ubyte nv50_supported_src_mods(uint opcode, int s); int nv_nvi_refcount(struct nv_instruction *); void nv_nvi_delete(struct nv_instruction *); void nv_nvi_permute(struct nv_instruction *, struct nv_instruction *); void nvbb_attach_block(struct nv_basic_block *parent, struct nv_basic_block *, ubyte edge_kind); boolean nvbb_dominated_by(struct nv_basic_block *, struct nv_basic_block *); boolean nvbb_reachable_by(struct nv_basic_block *, struct nv_basic_block *, struct nv_basic_block *); struct nv_basic_block *nvbb_dom_frontier(struct nv_basic_block *); int nvcg_replace_value(struct nv_pc *pc, struct nv_value *old_val, struct nv_value *new_val); struct nv_value *nvcg_find_immediate(struct nv_ref *); struct nv_value *nvcg_find_constant(struct nv_ref *); typedef void (*nv_pc_pass_func)(void *priv, struct nv_basic_block *b); void nv_pc_pass_in_order(struct nv_basic_block *, nv_pc_pass_func, void *); int nv_pc_exec_pass0(struct nv_pc *pc); int nv_pc_exec_pass1(struct nv_pc *pc); int nv_pc_exec_pass2(struct nv_pc *pc); int nv50_tgsi_to_nc(struct nv_pc *, struct nv50_translation_info *); #endif // NV50_COMPILER_H