#include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_util.h" #include "pipe/p_shader_tokens.h" #include "tgsi/util/tgsi_parse.h" #include "tgsi/util/tgsi_util.h" #include "nv30_context.h" #define SWZ_X 0 #define SWZ_Y 1 #define SWZ_Z 2 #define SWZ_W 3 #define MASK_X 1 #define MASK_Y 2 #define MASK_Z 4 #define MASK_W 8 #define MASK_ALL (MASK_X|MASK_Y|MASK_Z|MASK_W) #define DEF_SCALE NV30_FP_OP_DST_SCALE_1X #define DEF_CTEST NV30_FP_OP_COND_TR #include "nv30_shader.h" #define swz(s,x,y,z,w) nv30_sr_swz((s), SWZ_##x, SWZ_##y, SWZ_##z, SWZ_##w) #define neg(s) nv30_sr_neg((s)) #define abs(s) nv30_sr_abs((s)) #define scale(s,v) nv30_sr_scale((s), NV30_FP_OP_DST_SCALE_##v) #define MAX_CONSTS 128 #define MAX_IMM 32 struct nv30_fpc { struct nv30_fragment_program *fp; uint attrib_map[PIPE_MAX_SHADER_INPUTS]; int high_temp; int temp_temp_count; int num_regs; uint depth_id; uint colour_id; unsigned inst_offset; struct { int pipe; float vals[4]; } consts[MAX_CONSTS]; int nr_consts; struct nv30_sreg imm[MAX_IMM]; unsigned nr_imm; }; static INLINE struct nv30_sreg temp(struct nv30_fpc *fpc) { int idx; idx = fpc->temp_temp_count++; idx += fpc->high_temp + 1; return nv30_sr(NV30SR_TEMP, idx); } static INLINE struct nv30_sreg constant(struct nv30_fpc *fpc, int pipe, float vals[4]) { int idx; if (fpc->nr_consts == MAX_CONSTS) assert(0); idx = fpc->nr_consts++; fpc->consts[idx].pipe = pipe; if (pipe == -1) memcpy(fpc->consts[idx].vals, vals, 4 * sizeof(float)); return nv30_sr(NV30SR_CONST, idx); } #define arith(cc,s,o,d,m,s0,s1,s2) \ nv30_fp_arith((cc), (s), NV30_FP_OP_OPCODE_##o, \ (d), (m), (s0), (s1), (s2)) #define tex(cc,s,o,u,d,m,s0,s1,s2) \ nv30_fp_tex((cc), (s), NV30_FP_OP_OPCODE_##o, (u), \ (d), (m), (s0), none, none) static void grow_insns(struct nv30_fpc *fpc, int size) { struct nv30_fragment_program *fp = fpc->fp; fp->insn_len += size; fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len); } static void emit_src(struct nv30_fpc *fpc, int pos, struct nv30_sreg src) { struct nv30_fragment_program *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; uint32_t sr = 0; switch (src.type) { case NV30SR_INPUT: sr |= (NV30_FP_REG_TYPE_INPUT << NV30_FP_REG_TYPE_SHIFT); hw[0] |= (src.index << NV30_FP_OP_INPUT_SRC_SHIFT); break; case NV30SR_OUTPUT: sr |= NV30_FP_REG_SRC_HALF; /* fall-through */ case NV30SR_TEMP: sr |= (NV30_FP_REG_TYPE_TEMP << NV30_FP_REG_TYPE_SHIFT); sr |= (src.index << NV30_FP_REG_SRC_SHIFT); break; case NV30SR_CONST: grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; if (fpc->consts[src.index].pipe >= 0) { struct nv30_fragment_program_data *fpd; fp->consts = realloc(fp->consts, ++fp->nr_consts * sizeof(*fpd)); fpd = &fp->consts[fp->nr_consts - 1]; fpd->offset = fpc->inst_offset + 4; fpd->index = fpc->consts[src.index].pipe; memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4); } else { memcpy(&fp->insn[fpc->inst_offset + 4], fpc->consts[src.index].vals, sizeof(uint32_t) * 4); } sr |= (NV30_FP_REG_TYPE_CONST << NV30_FP_REG_TYPE_SHIFT); break; case NV30SR_NONE: sr |= (NV30_FP_REG_TYPE_INPUT << NV30_FP_REG_TYPE_SHIFT); break; default: assert(0); } if (src.negate) sr |= NV30_FP_REG_NEGATE; if (src.abs) hw[1] |= (1 << (29 + pos)); sr |= ((src.swz[0] << NV30_FP_REG_SWZ_X_SHIFT) | (src.swz[1] << NV30_FP_REG_SWZ_Y_SHIFT) | (src.swz[2] << NV30_FP_REG_SWZ_Z_SHIFT) | (src.swz[3] << NV30_FP_REG_SWZ_W_SHIFT)); hw[pos + 1] |= sr; } static void emit_dst(struct nv30_fpc *fpc, struct nv30_sreg dst) { struct nv30_fragment_program *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; switch (dst.type) { case NV30SR_TEMP: if (fpc->num_regs < (dst.index + 1)) fpc->num_regs = dst.index + 1; break; case NV30SR_OUTPUT: if (dst.index == 1) { fp->fp_control |= 0xe; } else { hw[0] |= NV30_FP_OP_OUT_REG_HALF; } break; case NV30SR_NONE: hw[0] |= (1 << 30); break; default: assert(0); } hw[0] |= (dst.index << NV30_FP_OP_OUT_REG_SHIFT); } static void nv30_fp_arith(struct nv30_fpc *fpc, int sat, int op, struct nv30_sreg dst, int mask, struct nv30_sreg s0, struct nv30_sreg s1, struct nv30_sreg s2) { struct nv30_fragment_program *fp = fpc->fp; uint32_t *hw; fpc->inst_offset = fp->insn_len; grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; memset(hw, 0, sizeof(uint32_t) * 4); if (op == NV30_FP_OP_OPCODE_KIL) fp->fp_control |= NV34TCL_FP_CONTROL_USES_KIL; hw[0] |= (op << NV30_FP_OP_OPCODE_SHIFT); hw[0] |= (mask << NV30_FP_OP_OUTMASK_SHIFT); hw[2] |= (dst.dst_scale << NV30_FP_OP_DST_SCALE_SHIFT); if (sat) hw[0] |= NV30_FP_OP_OUT_SAT; if (dst.cc_update) hw[0] |= NV30_FP_OP_COND_WRITE_ENABLE; hw[1] |= (dst.cc_test << NV30_FP_OP_COND_SHIFT); hw[1] |= ((dst.cc_swz[0] << NV30_FP_OP_COND_SWZ_X_SHIFT) | (dst.cc_swz[1] << NV30_FP_OP_COND_SWZ_Y_SHIFT) | (dst.cc_swz[2] << NV30_FP_OP_COND_SWZ_Z_SHIFT) | (dst.cc_swz[3] << NV30_FP_OP_COND_SWZ_W_SHIFT)); emit_dst(fpc, dst); emit_src(fpc, 0, s0); emit_src(fpc, 1, s1); emit_src(fpc, 2, s2); } static void nv30_fp_tex(struct nv30_fpc *fpc, int sat, int op, int unit, struct nv30_sreg dst, int mask, struct nv30_sreg s0, struct nv30_sreg s1, struct nv30_sreg s2) { struct nv30_fragment_program *fp = fpc->fp; nv30_fp_arith(fpc, sat, op, dst, mask, s0, s1, s2); fp->insn[fpc->inst_offset] |= (unit << NV30_FP_OP_TEX_UNIT_SHIFT); fp->samplers |= (1 << unit); } static INLINE struct nv30_sreg tgsi_src(struct nv30_fpc *fpc, const struct tgsi_full_src_register *fsrc) { struct nv30_sreg src; switch (fsrc->SrcRegister.File) { case TGSI_FILE_INPUT: src = nv30_sr(NV30SR_INPUT, fpc->attrib_map[fsrc->SrcRegister.Index]); break; case TGSI_FILE_CONSTANT: src = constant(fpc, fsrc->SrcRegister.Index, NULL); break; case TGSI_FILE_IMMEDIATE: assert(fsrc->SrcRegister.Index < fpc->nr_imm); src = fpc->imm[fsrc->SrcRegister.Index]; break; case TGSI_FILE_TEMPORARY: src = nv30_sr(NV30SR_TEMP, fsrc->SrcRegister.Index + 1); if (fpc->high_temp < src.index) fpc->high_temp = src.index; break; /* This is clearly insane, but gallium hands us shaders like this. * Luckily fragprog results are just temp regs.. */ case TGSI_FILE_OUTPUT: if (fsrc->SrcRegister.Index == fpc->colour_id) return nv30_sr(NV30SR_OUTPUT, 0); else return nv30_sr(NV30SR_OUTPUT, 1); break; default: NOUVEAU_ERR("bad src file\n"); break; } src.abs = fsrc->SrcRegisterExtMod.Absolute; src.negate = fsrc->SrcRegister.Negate; src.swz[0] = fsrc->SrcRegister.SwizzleX; src.swz[1] = fsrc->SrcRegister.SwizzleY; src.swz[2] = fsrc->SrcRegister.SwizzleZ; src.swz[3] = fsrc->SrcRegister.SwizzleW; return src; } static INLINE struct nv30_sreg tgsi_dst(struct nv30_fpc *fpc, const struct tgsi_full_dst_register *fdst) { int idx; switch (fdst->DstRegister.File) { case TGSI_FILE_OUTPUT: if (fdst->DstRegister.Index == fpc->colour_id) return nv30_sr(NV30SR_OUTPUT, 0); else return nv30_sr(NV30SR_OUTPUT, 1); break; case TGSI_FILE_TEMPORARY: idx = fdst->DstRegister.Index + 1; if (fpc->high_temp < idx) fpc->high_temp = idx; return nv30_sr(NV30SR_TEMP, idx); case TGSI_FILE_NULL: return nv30_sr(NV30SR_NONE, 0); default: NOUVEAU_ERR("bad dst file %d\n", fdst->DstRegister.File); return nv30_sr(NV30SR_NONE, 0); } } static INLINE int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= MASK_W; return mask; } static boolean src_native_swz(struct nv30_fpc *fpc, const struct tgsi_full_src_register *fsrc, struct nv30_sreg *src) { const struct nv30_sreg none = nv30_sr(NV30SR_NONE, 0); struct nv30_sreg tgsi = tgsi_src(fpc, fsrc); uint mask = 0, zero_mask = 0, one_mask = 0, neg_mask = 0; uint neg[4] = { fsrc->SrcRegisterExtSwz.NegateX, fsrc->SrcRegisterExtSwz.NegateY, fsrc->SrcRegisterExtSwz.NegateZ, fsrc->SrcRegisterExtSwz.NegateW }; uint c; for (c = 0; c < 4; c++) { switch (tgsi_util_get_full_src_register_extswizzle(fsrc, c)) { case TGSI_EXTSWIZZLE_X: case TGSI_EXTSWIZZLE_Y: case TGSI_EXTSWIZZLE_Z: case TGSI_EXTSWIZZLE_W: mask |= (1 << c); break; case TGSI_EXTSWIZZLE_ZERO: zero_mask |= (1 << c); tgsi.swz[c] = SWZ_X; break; case TGSI_EXTSWIZZLE_ONE: one_mask |= (1 << c); tgsi.swz[c] = SWZ_X; break; default: assert(0); } if (!tgsi.negate && neg[c]) neg_mask |= (1 << c); } if (mask == MASK_ALL && !neg_mask) return TRUE; *src = temp(fpc); if (mask) arith(fpc, 0, MOV, *src, mask, tgsi, none, none); if (zero_mask) arith(fpc, 0, SFL, *src, zero_mask, *src, none, none); if (one_mask) arith(fpc, 0, STR, *src, one_mask, *src, none, none); if (neg_mask) { struct nv30_sreg one = temp(fpc); arith(fpc, 0, STR, one, neg_mask, one, none, none); arith(fpc, 0, MUL, *src, neg_mask, *src, neg(one), none); } return FALSE; } static boolean nv30_fragprog_parse_instruction(struct nv30_fpc *fpc, const struct tgsi_full_instruction *finst) { const struct nv30_sreg none = nv30_sr(NV30SR_NONE, 0); struct nv30_sreg src[3], dst, tmp; int mask, sat, unit = 0; int ai = -1, ci = -1; int i; if (finst->Instruction.Opcode == TGSI_OPCODE_END) return TRUE; fpc->temp_temp_count = 0; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->FullSrcRegisters[i]; if (fsrc->SrcRegister.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(fpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->FullSrcRegisters[i]; switch (fsrc->SrcRegister.File) { case TGSI_FILE_INPUT: case TGSI_FILE_CONSTANT: case TGSI_FILE_TEMPORARY: if (!src_native_swz(fpc, fsrc, &src[i])) continue; break; default: break; } switch (fsrc->SrcRegister.File) { case TGSI_FILE_INPUT: if (ai == -1 || ai == fsrc->SrcRegister.Index) { ai = fsrc->SrcRegister.Index; src[i] = tgsi_src(fpc, fsrc); } else { NOUVEAU_MSG("extra src attr %d\n", fsrc->SrcRegister.Index); src[i] = temp(fpc); arith(fpc, 0, MOV, src[i], MASK_ALL, tgsi_src(fpc, fsrc), none, none); } break; case TGSI_FILE_CONSTANT: case TGSI_FILE_IMMEDIATE: if (ci == -1 || ci == fsrc->SrcRegister.Index) { ci = fsrc->SrcRegister.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = temp(fpc); arith(fpc, 0, MOV, src[i], MASK_ALL, tgsi_src(fpc, fsrc), none, none); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; case TGSI_FILE_SAMPLER: unit = fsrc->SrcRegister.Index; break; case TGSI_FILE_OUTPUT: break; default: NOUVEAU_ERR("bad src file\n"); return FALSE; } } dst = tgsi_dst(fpc, &finst->FullDstRegisters[0]); mask = tgsi_mask(finst->FullDstRegisters[0].DstRegister.WriteMask); sat = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE); switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ABS: arith(fpc, sat, MOV, dst, mask, abs(src[0]), none, none); break; case TGSI_OPCODE_ADD: arith(fpc, sat, ADD, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_CMP: tmp = temp(fpc); arith(fpc, sat, MOV, dst, mask, src[2], none, none); tmp.cc_update = 1; arith(fpc, 0, MOV, tmp, 0xf, src[0], none, none); dst.cc_test = NV30_VP_INST_COND_LT; arith(fpc, sat, MOV, dst, mask, src[1], none, none); break; case TGSI_OPCODE_COS: arith(fpc, sat, COS, dst, mask, src[0], none, none); break; case TGSI_OPCODE_DP3: arith(fpc, sat, DP3, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_DP4: arith(fpc, sat, DP4, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_DPH: tmp = temp(fpc); arith(fpc, 0, DP3, tmp, MASK_X, src[0], src[1], none); arith(fpc, sat, ADD, dst, mask, swz(tmp, X, X, X, X), swz(src[1], W, W, W, W), none); break; case TGSI_OPCODE_DST: arith(fpc, sat, DST, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_EX2: arith(fpc, sat, EX2, dst, mask, src[0], none, none); break; case TGSI_OPCODE_FLR: arith(fpc, sat, FLR, dst, mask, src[0], none, none); break; case TGSI_OPCODE_FRC: arith(fpc, sat, FRC, dst, mask, src[0], none, none); break; case TGSI_OPCODE_KIL: arith(fpc, 0, KIL, none, 0, none, none, none); break; case TGSI_OPCODE_KILP: dst = nv30_sr(NV30SR_NONE, 0); dst.cc_update = 1; arith(fpc, 0, MOV, dst, MASK_ALL, src[0], none, none); dst.cc_update = 0; dst.cc_test = NV30_FP_OP_COND_LT; arith(fpc, 0, KIL, dst, 0, none, none, none); break; case TGSI_OPCODE_LG2: arith(fpc, sat, LG2, dst, mask, src[0], none, none); break; // case TGSI_OPCODE_LIT: case TGSI_OPCODE_LRP: tmp = temp(fpc); arith(fpc, 0, MAD, tmp, mask, neg(src[0]), src[2], src[2]); arith(fpc, sat, MAD, dst, mask, src[0], src[1], tmp); break; case TGSI_OPCODE_MAD: arith(fpc, sat, MAD, dst, mask, src[0], src[1], src[2]); break; case TGSI_OPCODE_MAX: arith(fpc, sat, MAX, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_MIN: arith(fpc, sat, MIN, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_MOV: arith(fpc, sat, MOV, dst, mask, src[0], none, none); break; case TGSI_OPCODE_MUL: arith(fpc, sat, MUL, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_POW: tmp = temp(fpc); arith(fpc, 0, LG2, tmp, MASK_X, swz(src[0], X, X, X, X), none, none); arith(fpc, 0, MUL, tmp, MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none); arith(fpc, sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none); break; case TGSI_OPCODE_RCP: arith(fpc, sat, RCP, dst, mask, src[0], none, none); break; case TGSI_OPCODE_RET: assert(0); break; case TGSI_OPCODE_RFL: tmp = temp(fpc); arith(fpc, 0, DP3, tmp, MASK_X, src[0], src[0], none); arith(fpc, 0, DP3, tmp, MASK_Y, src[0], src[1], none); arith(fpc, 0, DIV, scale(tmp, 2X), MASK_Z, swz(tmp, Y, Y, Y, Y), swz(tmp, X, X, X, X), none); arith(fpc, sat, MAD, dst, mask, swz(tmp, Z, Z, Z, Z), src[0], neg(src[1])); break; case TGSI_OPCODE_RSQ: tmp = temp(fpc); arith(fpc, 0, LG2, scale(tmp, INV_2X), MASK_X, abs(swz(src[0], X, X, X, X)), none, none); arith(fpc, sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none); break; case TGSI_OPCODE_SCS: if (mask & MASK_X) { arith(fpc, sat, COS, dst, MASK_X, swz(src[0], X, X, X, X), none, none); } if (mask & MASK_Y) { arith(fpc, sat, SIN, dst, MASK_Y, swz(src[0], X, X, X, X), none, none); } break; case TGSI_OPCODE_SIN: arith(fpc, sat, SIN, dst, mask, src[0], none, none); break; case TGSI_OPCODE_SGE: arith(fpc, sat, SGE, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_SLT: arith(fpc, sat, SLT, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_SUB: arith(fpc, sat, ADD, dst, mask, src[0], neg(src[1]), none); break; case TGSI_OPCODE_TEX: if (finst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide == TGSI_EXTSWIZZLE_W) { tex(fpc, sat, TXP, unit, dst, mask, src[0], none, none); } else tex(fpc, sat, TEX, unit, dst, mask, src[0], none, none); break; case TGSI_OPCODE_TXB: tex(fpc, sat, TXB, unit, dst, mask, src[0], none, none); break; case TGSI_OPCODE_XPD: tmp = temp(fpc); arith(fpc, 0, MUL, tmp, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none); arith(fpc, sat, MAD, dst, (mask & ~MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)); break; default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return FALSE; } return TRUE; } static boolean nv30_fragprog_parse_decl_attrib(struct nv30_fpc *fpc, const struct tgsi_full_declaration *fdec) { int hw; switch (fdec->Semantic.SemanticName) { case TGSI_SEMANTIC_POSITION: hw = NV30_FP_OP_INPUT_SRC_POSITION; break; case TGSI_SEMANTIC_COLOR: if (fdec->Semantic.SemanticIndex == 0) { hw = NV30_FP_OP_INPUT_SRC_COL0; } else if (fdec->Semantic.SemanticIndex == 1) { hw = NV30_FP_OP_INPUT_SRC_COL1; } else { NOUVEAU_ERR("bad colour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_FOG: hw = NV30_FP_OP_INPUT_SRC_FOGC; break; case TGSI_SEMANTIC_GENERIC: if (fdec->Semantic.SemanticIndex <= 7) { hw = NV30_FP_OP_INPUT_SRC_TC(fdec->Semantic. SemanticIndex); } else { NOUVEAU_ERR("bad generic semantic index\n"); return FALSE; } break; default: NOUVEAU_ERR("bad input semantic\n"); return FALSE; } fpc->attrib_map[fdec->u.DeclarationRange.First] = hw; return TRUE; } static boolean nv30_fragprog_parse_decl_output(struct nv30_fpc *fpc, const struct tgsi_full_declaration *fdec) { switch (fdec->Semantic.SemanticName) { case TGSI_SEMANTIC_POSITION: fpc->depth_id = fdec->u.DeclarationRange.First; break; case TGSI_SEMANTIC_COLOR: fpc->colour_id = fdec->u.DeclarationRange.First; break; default: NOUVEAU_ERR("bad output semantic\n"); return FALSE; } return TRUE; } void nv30_fragprog_translate(struct nv30_context *nv30, struct nv30_fragment_program *fp) { struct tgsi_parse_context parse; struct nv30_fpc *fpc = NULL; fpc = CALLOC(1, sizeof(struct nv30_fpc)); if (!fpc) return; fpc->fp = fp; fpc->high_temp = -1; fpc->num_regs = 2; tgsi_parse_init(&parse, fp->pipe->tokens); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &parse.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_INPUT: if (!nv30_fragprog_parse_decl_attrib(fpc, fdec)) goto out_err; break; case TGSI_FILE_OUTPUT: if (!nv30_fragprog_parse_decl_output(fpc, fdec)) goto out_err; break; default: break; } } break; case TGSI_TOKEN_TYPE_IMMEDIATE: { struct tgsi_full_immediate *imm; float vals[4]; int i; imm = &parse.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(fpc->nr_imm < MAX_IMM); for (i = 0; i < 4; i++) vals[i] = imm->u.ImmediateFloat32[i].Float; fpc->imm[fpc->nr_imm++] = constant(fpc, -1, vals); } break; case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; finst = &parse.FullToken.FullInstruction; if (!nv30_fragprog_parse_instruction(fpc, finst)) goto out_err; } break; default: break; } } fp->fp_control |= (fpc->num_regs-1)/2; fp->fp_reg_control = (1<<16)|0x4; /* Terminate final instruction */ fp->insn[fpc->inst_offset] |= 0x00000001; /* Append NOP + END instruction, may or may not be necessary. */ fpc->inst_offset = fp->insn_len; grow_insns(fpc, 4); fp->insn[fpc->inst_offset + 0] = 0x00000001; fp->insn[fpc->inst_offset + 1] = 0x00000000; fp->insn[fpc->inst_offset + 2] = 0x00000000; fp->insn[fpc->inst_offset + 3] = 0x00000000; fp->translated = TRUE; fp->on_hw = FALSE; out_err: tgsi_parse_free(&parse); free(fpc); } void nv30_fragprog_bind(struct nv30_context *nv30, struct nv30_fragment_program *fp) { struct pipe_winsys *ws = nv30->pipe.winsys; int i; if (!fp->translated) { nv30_fragprog_translate(nv30, fp); if (!fp->translated) assert(0); } if (fp->nr_consts) { float *map = ws->buffer_map(ws, nv30->fragprog.constant_buf, PIPE_BUFFER_USAGE_CPU_READ); for (i = 0; i < fp->nr_consts; i++) { struct nv30_fragment_program_data *fpd = &fp->consts[i]; uint32_t *p = &fp->insn[fpd->offset]; uint32_t *cb = (uint32_t *)&map[fpd->index * 4]; if (!memcmp(p, cb, 4 * sizeof(float))) continue; memcpy(p, cb, 4 * sizeof(float)); fp->on_hw = 0; } ws->buffer_unmap(ws, nv30->fragprog.constant_buf); } if (!fp->on_hw) { const uint32_t le = 1; uint32_t *map; if (!fp->buffer) fp->buffer = ws->buffer_create(ws, 0x100, 0, fp->insn_len * 4); map = ws->buffer_map(ws, fp->buffer, PIPE_BUFFER_USAGE_CPU_WRITE); #if 0 for (i = 0; i < fp->insn_len; i++) { NOUVEAU_ERR("%d 0x%08x\n", i, fp->insn[i]); } #endif if ((*(const uint8_t *)&le)) { for (i = 0; i < fp->insn_len; i++) { map[i] = fp->insn[i]; } } else { /* Weird swapping for big-endian chips */ for (i = 0; i < fp->insn_len; i++) { map[i] = ((fp->insn[i] & 0xffff) << 16) | ((fp->insn[i] >> 16) & 0xffff); } } ws->buffer_unmap(ws, fp->buffer); fp->on_hw = TRUE; } BEGIN_RING(rankine, NV34TCL_FP_CONTROL, 1); OUT_RING (fp->fp_control); BEGIN_RING(rankine, NV34TCL_FP_REG_CONTROL, 1); OUT_RING (fp->fp_reg_control); nv30->fragprog.active = fp; } void nv30_fragprog_destroy(struct nv30_context *nv30, struct nv30_fragment_program *fp) { if (fp->insn_len) free(fp->insn); }