/* * Copyright 2010 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "pipe/p_context.h" #include "pipe/p_state.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "translate/translate.h" #include "nv50/nv50_context.h" #include "nv50/nv50_query_hw.h" #include "nv50/nv50_resource.h" #include "nv50/nv50_3d.xml.h" void nv50_vertex_state_delete(struct pipe_context *pipe, void *hwcso) { struct nv50_vertex_stateobj *so = hwcso; if (so->translate) so->translate->release(so->translate); FREE(hwcso); } void * nv50_vertex_state_create(struct pipe_context *pipe, unsigned num_elements, const struct pipe_vertex_element *elements) { struct nv50_vertex_stateobj *so; struct translate_key transkey; unsigned i; so = MALLOC(sizeof(*so) + num_elements * sizeof(struct nv50_vertex_element)); if (!so) return NULL; so->num_elements = num_elements; so->instance_elts = 0; so->instance_bufs = 0; so->need_conversion = false; memset(so->vb_access_size, 0, sizeof(so->vb_access_size)); for (i = 0; i < PIPE_MAX_ATTRIBS; ++i) so->min_instance_div[i] = 0xffffffff; transkey.nr_elements = 0; transkey.output_stride = 0; for (i = 0; i < num_elements; ++i) { const struct pipe_vertex_element *ve = &elements[i]; const unsigned vbi = ve->vertex_buffer_index; unsigned size; enum pipe_format fmt = ve->src_format; so->element[i].pipe = elements[i]; so->element[i].state = nv50_vertex_format[fmt].vtx; if (!so->element[i].state) { switch (util_format_get_nr_components(fmt)) { case 1: fmt = PIPE_FORMAT_R32_FLOAT; break; case 2: fmt = PIPE_FORMAT_R32G32_FLOAT; break; case 3: fmt = PIPE_FORMAT_R32G32B32_FLOAT; break; case 4: fmt = PIPE_FORMAT_R32G32B32A32_FLOAT; break; default: assert(0); FREE(so); return NULL; } so->element[i].state = nv50_vertex_format[fmt].vtx; so->need_conversion = true; pipe_debug_message(&nouveau_context(pipe)->debug, FALLBACK, "Converting vertex element %d, no hw format %s", i, util_format_name(ve->src_format)); } so->element[i].state |= i; size = util_format_get_blocksize(fmt); if (so->vb_access_size[vbi] < (ve->src_offset + size)) so->vb_access_size[vbi] = ve->src_offset + size; if (1) { unsigned j = transkey.nr_elements++; transkey.element[j].type = TRANSLATE_ELEMENT_NORMAL; transkey.element[j].input_format = ve->src_format; transkey.element[j].input_buffer = vbi; transkey.element[j].input_offset = ve->src_offset; transkey.element[j].instance_divisor = ve->instance_divisor; transkey.element[j].output_format = fmt; transkey.element[j].output_offset = transkey.output_stride; transkey.output_stride += (util_format_get_stride(fmt, 1) + 3) & ~3; if (unlikely(ve->instance_divisor)) { so->instance_elts |= 1 << i; so->instance_bufs |= 1 << vbi; if (ve->instance_divisor < so->min_instance_div[vbi]) so->min_instance_div[vbi] = ve->instance_divisor; } } } so->translate = translate_create(&transkey); so->vertex_size = transkey.output_stride / 4; so->packet_vertex_limit = NV04_PFIFO_MAX_PACKET_LEN / MAX2(so->vertex_size, 1); return so; } #define NV50_3D_VERTEX_ATTRIB_INACTIVE \ NV50_3D_VERTEX_ARRAY_ATTRIB_TYPE_FLOAT | \ NV50_3D_VERTEX_ARRAY_ATTRIB_FORMAT_32_32_32_32 | \ NV50_3D_VERTEX_ARRAY_ATTRIB_CONST static void nv50_emit_vtxattr(struct nv50_context *nv50, struct pipe_vertex_buffer *vb, struct pipe_vertex_element *ve, unsigned attr) { struct nouveau_pushbuf *push = nv50->base.pushbuf; const void *data = (const uint8_t *)vb->user_buffer + ve->src_offset; float v[4]; const unsigned nc = util_format_get_nr_components(ve->src_format); const struct util_format_description *desc = util_format_description(ve->src_format); assert(vb->user_buffer); if (desc->channel[0].pure_integer) { if (desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { desc->unpack_rgba_sint((int32_t *)v, 0, data, 0, 1, 1); } else { desc->unpack_rgba_uint((uint32_t *)v, 0, data, 0, 1, 1); } } else { desc->unpack_rgba_float(v, 0, data, 0, 1, 1); } switch (nc) { case 4: BEGIN_NV04(push, NV50_3D(VTX_ATTR_4F_X(attr)), 4); PUSH_DATAf(push, v[0]); PUSH_DATAf(push, v[1]); PUSH_DATAf(push, v[2]); PUSH_DATAf(push, v[3]); break; case 3: BEGIN_NV04(push, NV50_3D(VTX_ATTR_3F_X(attr)), 3); PUSH_DATAf(push, v[0]); PUSH_DATAf(push, v[1]); PUSH_DATAf(push, v[2]); break; case 2: BEGIN_NV04(push, NV50_3D(VTX_ATTR_2F_X(attr)), 2); PUSH_DATAf(push, v[0]); PUSH_DATAf(push, v[1]); break; case 1: if (attr == nv50->vertprog->vp.edgeflag) { BEGIN_NV04(push, NV50_3D(EDGEFLAG), 1); PUSH_DATA (push, v[0] ? 1 : 0); } BEGIN_NV04(push, NV50_3D(VTX_ATTR_1F(attr)), 1); PUSH_DATAf(push, v[0]); break; default: assert(0); break; } } static inline void nv50_user_vbuf_range(struct nv50_context *nv50, unsigned vbi, uint32_t *base, uint32_t *size) { assert(vbi < PIPE_MAX_ATTRIBS); if (unlikely(nv50->vertex->instance_bufs & (1 << vbi))) { /* TODO: use min and max instance divisor to get a proper range */ *base = 0; *size = nv50->vtxbuf[vbi].buffer->width0; } else { /* NOTE: if there are user buffers, we *must* have index bounds */ assert(nv50->vb_elt_limit != ~0); *base = nv50->vb_elt_first * nv50->vtxbuf[vbi].stride; *size = nv50->vb_elt_limit * nv50->vtxbuf[vbi].stride + nv50->vertex->vb_access_size[vbi]; } } static void nv50_upload_user_buffers(struct nv50_context *nv50, uint64_t addrs[], uint32_t limits[]) { unsigned b; assert(nv50->num_vtxbufs <= PIPE_MAX_ATTRIBS); for (b = 0; b < nv50->num_vtxbufs; ++b) { struct nouveau_bo *bo; const struct pipe_vertex_buffer *vb = &nv50->vtxbuf[b]; uint32_t base, size; if (!(nv50->vbo_user & (1 << b)) || !vb->stride) continue; nv50_user_vbuf_range(nv50, b, &base, &size); limits[b] = base + size - 1; addrs[b] = nouveau_scratch_data(&nv50->base, vb->user_buffer, base, size, &bo); if (addrs[b]) BCTX_REFN_bo(nv50->bufctx_3d, 3D_VERTEX_TMP, NOUVEAU_BO_GART | NOUVEAU_BO_RD, bo); } nv50->base.vbo_dirty = true; } static void nv50_update_user_vbufs(struct nv50_context *nv50) { uint64_t address[PIPE_MAX_ATTRIBS]; struct nouveau_pushbuf *push = nv50->base.pushbuf; unsigned i; uint32_t written = 0; for (i = 0; i < nv50->vertex->num_elements; ++i) { struct pipe_vertex_element *ve = &nv50->vertex->element[i].pipe; const unsigned b = ve->vertex_buffer_index; struct pipe_vertex_buffer *vb; uint32_t base, size; assert(b < PIPE_MAX_ATTRIBS); vb = &nv50->vtxbuf[b]; if (!(nv50->vbo_user & (1 << b))) continue; if (!vb->stride) { nv50_emit_vtxattr(nv50, vb, ve, i); continue; } nv50_user_vbuf_range(nv50, b, &base, &size); if (!(written & (1 << b))) { struct nouveau_bo *bo; const uint32_t bo_flags = NOUVEAU_BO_GART | NOUVEAU_BO_RD; written |= 1 << b; address[b] = nouveau_scratch_data(&nv50->base, vb->user_buffer, base, size, &bo); if (address[b]) BCTX_REFN_bo(nv50->bufctx_3d, 3D_VERTEX_TMP, bo_flags, bo); } BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_LIMIT_HIGH(i)), 2); PUSH_DATAh(push, address[b] + base + size - 1); PUSH_DATA (push, address[b] + base + size - 1); BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_START_HIGH(i)), 2); PUSH_DATAh(push, address[b] + ve->src_offset); PUSH_DATA (push, address[b] + ve->src_offset); } nv50->base.vbo_dirty = true; } static inline void nv50_release_user_vbufs(struct nv50_context *nv50) { if (nv50->vbo_user) { nouveau_bufctx_reset(nv50->bufctx_3d, NV50_BIND_3D_VERTEX_TMP); nouveau_scratch_done(&nv50->base); } } void nv50_vertex_arrays_validate(struct nv50_context *nv50) { uint64_t addrs[PIPE_MAX_ATTRIBS]; uint32_t limits[PIPE_MAX_ATTRIBS]; struct nouveau_pushbuf *push = nv50->base.pushbuf; struct nv50_vertex_stateobj *vertex = nv50->vertex; struct pipe_vertex_buffer *vb; struct nv50_vertex_element *ve; uint32_t mask; uint32_t refd = 0; unsigned i; const unsigned n = MAX2(vertex->num_elements, nv50->state.num_vtxelts); if (unlikely(vertex->need_conversion)) nv50->vbo_fifo = ~0; else if (nv50->vbo_user & ~nv50->vbo_constant) nv50->vbo_fifo = nv50->vbo_push_hint ? ~0 : 0; else nv50->vbo_fifo = 0; if (!nv50->vbo_fifo) { /* if vertex buffer was written by GPU - flush VBO cache */ assert(nv50->num_vtxbufs <= PIPE_MAX_ATTRIBS); for (i = 0; i < nv50->num_vtxbufs; ++i) { struct nv04_resource *buf = nv04_resource(nv50->vtxbuf[i].buffer); if (buf && buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) { buf->status &= ~NOUVEAU_BUFFER_STATUS_GPU_WRITING; nv50->base.vbo_dirty = true; } } } /* update vertex format state */ BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_ATTRIB(0)), n); if (nv50->vbo_fifo) { nv50->state.num_vtxelts = vertex->num_elements; for (i = 0; i < vertex->num_elements; ++i) PUSH_DATA (push, vertex->element[i].state); for (; i < n; ++i) PUSH_DATA (push, NV50_3D_VERTEX_ATTRIB_INACTIVE); for (i = 0; i < n; ++i) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 1); PUSH_DATA (push, 0); } return; } for (i = 0; i < vertex->num_elements; ++i) { const unsigned b = vertex->element[i].pipe.vertex_buffer_index; assert(b < PIPE_MAX_ATTRIBS); ve = &vertex->element[i]; vb = &nv50->vtxbuf[b]; if (likely(vb->stride) || !(nv50->vbo_user & (1 << b))) PUSH_DATA(push, ve->state); else PUSH_DATA(push, ve->state | NV50_3D_VERTEX_ARRAY_ATTRIB_CONST); } for (; i < n; ++i) PUSH_DATA(push, NV50_3D_VERTEX_ATTRIB_INACTIVE); /* update per-instance enables */ mask = vertex->instance_elts ^ nv50->state.instance_elts; while (mask) { const int i = ffs(mask) - 1; mask &= ~(1 << i); BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_PER_INSTANCE(i)), 1); PUSH_DATA (push, (vertex->instance_elts >> i) & 1); } nv50->state.instance_elts = vertex->instance_elts; if (nv50->vbo_user & ~nv50->vbo_constant) nv50_upload_user_buffers(nv50, addrs, limits); /* update buffers and set constant attributes */ for (i = 0; i < vertex->num_elements; ++i) { uint64_t address, limit; const unsigned b = vertex->element[i].pipe.vertex_buffer_index; assert(b < PIPE_MAX_ATTRIBS); ve = &vertex->element[i]; vb = &nv50->vtxbuf[b]; if (unlikely(nv50->vbo_constant & (1 << b))) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 1); PUSH_DATA (push, 0); nv50_emit_vtxattr(nv50, vb, &ve->pipe, i); continue; } else if (nv50->vbo_user & (1 << b)) { address = addrs[b] + ve->pipe.src_offset; limit = addrs[b] + limits[b]; } else if (!vb->buffer) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 1); PUSH_DATA (push, 0); continue; } else { struct nv04_resource *buf = nv04_resource(vb->buffer); if (!(refd & (1 << b))) { refd |= 1 << b; BCTX_REFN(nv50->bufctx_3d, 3D_VERTEX, buf, RD); } address = buf->address + vb->buffer_offset + ve->pipe.src_offset; limit = buf->address + buf->base.width0 - 1; } if (unlikely(ve->pipe.instance_divisor)) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 4); PUSH_DATA (push, NV50_3D_VERTEX_ARRAY_FETCH_ENABLE | vb->stride); PUSH_DATAh(push, address); PUSH_DATA (push, address); PUSH_DATA (push, ve->pipe.instance_divisor); } else { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 3); PUSH_DATA (push, NV50_3D_VERTEX_ARRAY_FETCH_ENABLE | vb->stride); PUSH_DATAh(push, address); PUSH_DATA (push, address); } BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_LIMIT_HIGH(i)), 2); PUSH_DATAh(push, limit); PUSH_DATA (push, limit); } for (; i < nv50->state.num_vtxelts; ++i) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FETCH(i)), 1); PUSH_DATA (push, 0); } nv50->state.num_vtxelts = vertex->num_elements; } #define NV50_PRIM_GL_CASE(n) \ case PIPE_PRIM_##n: return NV50_3D_VERTEX_BEGIN_GL_PRIMITIVE_##n static inline unsigned nv50_prim_gl(unsigned prim) { switch (prim) { NV50_PRIM_GL_CASE(POINTS); NV50_PRIM_GL_CASE(LINES); NV50_PRIM_GL_CASE(LINE_LOOP); NV50_PRIM_GL_CASE(LINE_STRIP); NV50_PRIM_GL_CASE(TRIANGLES); NV50_PRIM_GL_CASE(TRIANGLE_STRIP); NV50_PRIM_GL_CASE(TRIANGLE_FAN); NV50_PRIM_GL_CASE(QUADS); NV50_PRIM_GL_CASE(QUAD_STRIP); NV50_PRIM_GL_CASE(POLYGON); NV50_PRIM_GL_CASE(LINES_ADJACENCY); NV50_PRIM_GL_CASE(LINE_STRIP_ADJACENCY); NV50_PRIM_GL_CASE(TRIANGLES_ADJACENCY); NV50_PRIM_GL_CASE(TRIANGLE_STRIP_ADJACENCY); default: return NV50_3D_VERTEX_BEGIN_GL_PRIMITIVE_POINTS; break; } } /* For pre-nva0 transform feedback. */ static const uint8_t nv50_pipe_prim_to_prim_size[PIPE_PRIM_MAX + 1] = { [PIPE_PRIM_POINTS] = 1, [PIPE_PRIM_LINES] = 2, [PIPE_PRIM_LINE_LOOP] = 2, [PIPE_PRIM_LINE_STRIP] = 2, [PIPE_PRIM_TRIANGLES] = 3, [PIPE_PRIM_TRIANGLE_STRIP] = 3, [PIPE_PRIM_TRIANGLE_FAN] = 3, [PIPE_PRIM_QUADS] = 3, [PIPE_PRIM_QUAD_STRIP] = 3, [PIPE_PRIM_POLYGON] = 3, [PIPE_PRIM_LINES_ADJACENCY] = 2, [PIPE_PRIM_LINE_STRIP_ADJACENCY] = 2, [PIPE_PRIM_TRIANGLES_ADJACENCY] = 3, [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = 3 }; static void nv50_draw_arrays(struct nv50_context *nv50, unsigned mode, unsigned start, unsigned count, unsigned instance_count) { struct nouveau_pushbuf *push = nv50->base.pushbuf; unsigned prim; if (nv50->state.index_bias) { BEGIN_NV04(push, NV50_3D(VB_ELEMENT_BASE), 1); PUSH_DATA (push, 0); if (nv50->screen->base.class_3d >= NV84_3D_CLASS) { BEGIN_NV04(push, NV84_3D(VERTEX_ID_BASE), 1); PUSH_DATA (push, 0); } nv50->state.index_bias = 0; } prim = nv50_prim_gl(mode); while (instance_count--) { BEGIN_NV04(push, NV50_3D(VERTEX_BEGIN_GL), 1); PUSH_DATA (push, prim); BEGIN_NV04(push, NV50_3D(VERTEX_BUFFER_FIRST), 2); PUSH_DATA (push, start); PUSH_DATA (push, count); BEGIN_NV04(push, NV50_3D(VERTEX_END_GL), 1); PUSH_DATA (push, 0); prim |= NV50_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT; } } static void nv50_draw_elements_inline_u08(struct nouveau_pushbuf *push, const uint8_t *map, unsigned start, unsigned count) { map += start; if (count & 3) { unsigned i; BEGIN_NI04(push, NV50_3D(VB_ELEMENT_U32), count & 3); for (i = 0; i < (count & 3); ++i) PUSH_DATA(push, *map++); count &= ~3; } while (count) { unsigned i, nr = MIN2(count, NV04_PFIFO_MAX_PACKET_LEN * 4) / 4; BEGIN_NI04(push, NV50_3D(VB_ELEMENT_U8), nr); for (i = 0; i < nr; ++i) { PUSH_DATA(push, (map[3] << 24) | (map[2] << 16) | (map[1] << 8) | map[0]); map += 4; } count -= nr * 4; } } static void nv50_draw_elements_inline_u16(struct nouveau_pushbuf *push, const uint16_t *map, unsigned start, unsigned count) { map += start; if (count & 1) { count &= ~1; BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U32), 1); PUSH_DATA (push, *map++); } while (count) { unsigned i, nr = MIN2(count, NV04_PFIFO_MAX_PACKET_LEN * 2) / 2; BEGIN_NI04(push, NV50_3D(VB_ELEMENT_U16), nr); for (i = 0; i < nr; ++i) { PUSH_DATA(push, (map[1] << 16) | map[0]); map += 2; } count -= nr * 2; } } static void nv50_draw_elements_inline_u32(struct nouveau_pushbuf *push, const uint32_t *map, unsigned start, unsigned count) { map += start; while (count) { const unsigned nr = MIN2(count, NV04_PFIFO_MAX_PACKET_LEN); BEGIN_NI04(push, NV50_3D(VB_ELEMENT_U32), nr); PUSH_DATAp(push, map, nr); map += nr; count -= nr; } } static void nv50_draw_elements_inline_u32_short(struct nouveau_pushbuf *push, const uint32_t *map, unsigned start, unsigned count) { map += start; if (count & 1) { count--; BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U32), 1); PUSH_DATA (push, *map++); } while (count) { unsigned i, nr = MIN2(count, NV04_PFIFO_MAX_PACKET_LEN * 2) / 2; BEGIN_NI04(push, NV50_3D(VB_ELEMENT_U16), nr); for (i = 0; i < nr; ++i) { PUSH_DATA(push, (map[1] << 16) | map[0]); map += 2; } count -= nr * 2; } } static void nv50_draw_elements(struct nv50_context *nv50, bool shorten, unsigned mode, unsigned start, unsigned count, unsigned instance_count, int32_t index_bias) { struct nouveau_pushbuf *push = nv50->base.pushbuf; unsigned prim; const unsigned index_size = nv50->idxbuf.index_size; prim = nv50_prim_gl(mode); if (index_bias != nv50->state.index_bias) { BEGIN_NV04(push, NV50_3D(VB_ELEMENT_BASE), 1); PUSH_DATA (push, index_bias); if (nv50->screen->base.class_3d >= NV84_3D_CLASS) { BEGIN_NV04(push, NV84_3D(VERTEX_ID_BASE), 1); PUSH_DATA (push, index_bias); } nv50->state.index_bias = index_bias; } if (nv50->idxbuf.buffer) { struct nv04_resource *buf = nv04_resource(nv50->idxbuf.buffer); unsigned pb_start; unsigned pb_bytes; const unsigned base = (buf->offset + nv50->idxbuf.offset) & ~3; start += ((buf->offset + nv50->idxbuf.offset) & 3) >> (index_size >> 1); assert(nouveau_resource_mapped_by_gpu(nv50->idxbuf.buffer)); /* This shouldn't have to be here. The going theory is that the buffer * is being filled in by PGRAPH, and it's not done yet by the time it * gets submitted to PFIFO, which in turn starts immediately prefetching * the not-yet-written data. Ideally this wait would only happen on * pushbuf submit, but it's probably not a big performance difference. */ if (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr)) nouveau_fence_wait(buf->fence_wr, &nv50->base.debug); while (instance_count--) { BEGIN_NV04(push, NV50_3D(VERTEX_BEGIN_GL), 1); PUSH_DATA (push, prim); nouveau_pushbuf_space(push, 16, 0, 1); PUSH_REFN(push, buf->bo, NOUVEAU_BO_RD | buf->domain); switch (index_size) { case 4: BEGIN_NL50(push, NV50_3D(VB_ELEMENT_U32), count); nouveau_pushbuf_data(push, buf->bo, base + start * 4, count * 4); break; case 2: pb_start = (start & ~1) * 2; pb_bytes = ((start + count + 1) & ~1) * 2 - pb_start; BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U16_SETUP), 1); PUSH_DATA (push, (start << 31) | count); BEGIN_NL50(push, NV50_3D(VB_ELEMENT_U16), pb_bytes / 4); nouveau_pushbuf_data(push, buf->bo, base + pb_start, pb_bytes); BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U16_SETUP), 1); PUSH_DATA (push, 0); break; default: assert(index_size == 1); pb_start = start & ~3; pb_bytes = ((start + count + 3) & ~3) - pb_start; BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U8_SETUP), 1); PUSH_DATA (push, (start << 30) | count); BEGIN_NL50(push, NV50_3D(VB_ELEMENT_U8), pb_bytes / 4); nouveau_pushbuf_data(push, buf->bo, base + pb_start, pb_bytes); BEGIN_NV04(push, NV50_3D(VB_ELEMENT_U8_SETUP), 1); PUSH_DATA (push, 0); break; } BEGIN_NV04(push, NV50_3D(VERTEX_END_GL), 1); PUSH_DATA (push, 0); prim |= NV50_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT; } } else { const void *data = nv50->idxbuf.user_buffer; while (instance_count--) { BEGIN_NV04(push, NV50_3D(VERTEX_BEGIN_GL), 1); PUSH_DATA (push, prim); switch (index_size) { case 1: nv50_draw_elements_inline_u08(push, data, start, count); break; case 2: nv50_draw_elements_inline_u16(push, data, start, count); break; case 4: if (shorten) nv50_draw_elements_inline_u32_short(push, data, start, count); else nv50_draw_elements_inline_u32(push, data, start, count); break; default: assert(0); return; } BEGIN_NV04(push, NV50_3D(VERTEX_END_GL), 1); PUSH_DATA (push, 0); prim |= NV50_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT; } } NOUVEAU_DRV_STAT(&nv50->screen->base, draw_calls_indexed, 1); } static void nva0_draw_stream_output(struct nv50_context *nv50, const struct pipe_draw_info *info) { struct nouveau_pushbuf *push = nv50->base.pushbuf; struct nv50_so_target *so = nv50_so_target(info->count_from_stream_output); struct nv04_resource *res = nv04_resource(so->pipe.buffer); unsigned num_instances = info->instance_count; unsigned mode = nv50_prim_gl(info->mode); if (unlikely(nv50->screen->base.class_3d < NVA0_3D_CLASS)) { /* A proper implementation without waiting doesn't seem possible, * so don't bother. */ NOUVEAU_ERR("draw_stream_output not supported on pre-NVA0 cards\n"); return; } if (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) { res->status &= ~NOUVEAU_BUFFER_STATUS_GPU_WRITING; PUSH_SPACE(push, 4); BEGIN_NV04(push, SUBC_3D(NV50_GRAPH_SERIALIZE), 1); PUSH_DATA (push, 0); BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FLUSH), 1); PUSH_DATA (push, 0); } assert(num_instances); do { PUSH_SPACE(push, 8); BEGIN_NV04(push, NV50_3D(VERTEX_BEGIN_GL), 1); PUSH_DATA (push, mode); BEGIN_NV04(push, NVA0_3D(DRAW_TFB_BASE), 1); PUSH_DATA (push, 0); BEGIN_NV04(push, NVA0_3D(DRAW_TFB_STRIDE), 1); PUSH_DATA (push, so->stride); nv50_hw_query_pushbuf_submit(push, NVA0_3D_DRAW_TFB_BYTES, nv50_query(so->pq), 0x4); BEGIN_NV04(push, NV50_3D(VERTEX_END_GL), 1); PUSH_DATA (push, 0); mode |= NV50_3D_VERTEX_BEGIN_GL_INSTANCE_NEXT; } while (--num_instances); } static void nv50_draw_vbo_kick_notify(struct nouveau_pushbuf *chan) { struct nv50_screen *screen = chan->user_priv; nouveau_fence_update(&screen->base, true); nv50_bufctx_fence(screen->cur_ctx->bufctx_3d, true); } void nv50_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info) { struct nv50_context *nv50 = nv50_context(pipe); struct nouveau_pushbuf *push = nv50->base.pushbuf; bool tex_dirty = false; int s; /* NOTE: caller must ensure that (min_index + index_bias) is >= 0 */ nv50->vb_elt_first = info->min_index + info->index_bias; nv50->vb_elt_limit = info->max_index - info->min_index; nv50->instance_off = info->start_instance; nv50->instance_max = info->instance_count - 1; /* For picking only a few vertices from a large user buffer, push is better, * if index count is larger and we expect repeated vertices, suggest upload. */ nv50->vbo_push_hint = /* the 64 is heuristic */ !(info->indexed && ((nv50->vb_elt_limit + 64) < info->count)); if (nv50->vbo_user && !(nv50->dirty_3d & (NV50_NEW_3D_ARRAYS | NV50_NEW_3D_VERTEX))) { if (!!nv50->vbo_fifo != nv50->vbo_push_hint) nv50->dirty_3d |= NV50_NEW_3D_ARRAYS; else if (!nv50->vbo_fifo) nv50_update_user_vbufs(nv50); } if (unlikely(nv50->num_so_targets && !nv50->gmtyprog)) nv50->state.prim_size = nv50_pipe_prim_to_prim_size[info->mode]; nv50_state_validate_3d(nv50, ~0); push->kick_notify = nv50_draw_vbo_kick_notify; for (s = 0; s < 3 && !nv50->cb_dirty; ++s) { if (nv50->constbuf_coherent[s]) nv50->cb_dirty = true; } /* If there are any coherent constbufs, flush the cache */ if (nv50->cb_dirty) { BEGIN_NV04(push, NV50_3D(CODE_CB_FLUSH), 1); PUSH_DATA (push, 0); nv50->cb_dirty = false; } for (s = 0; s < 3 && !tex_dirty; ++s) { if (nv50->textures_coherent[s]) tex_dirty = true; } if (tex_dirty) { BEGIN_NV04(push, NV50_3D(TEX_CACHE_CTL), 1); PUSH_DATA (push, 0x20); } if (nv50->screen->base.class_3d >= NVA0_3D_CLASS && nv50->seamless_cube_map != nv50->state.seamless_cube_map) { nv50->state.seamless_cube_map = nv50->seamless_cube_map; BEGIN_NV04(push, SUBC_3D(NVA0_3D_TEX_MISC), 1); PUSH_DATA (push, nv50->seamless_cube_map ? NVA0_3D_TEX_MISC_SEAMLESS_CUBE_MAP : 0); } if (nv50->vbo_fifo) { nv50_push_vbo(nv50, info); push->kick_notify = nv50_default_kick_notify; nouveau_pushbuf_bufctx(push, NULL); return; } if (nv50->state.instance_base != info->start_instance) { nv50->state.instance_base = info->start_instance; /* NOTE: this does not affect the shader input, should it ? */ BEGIN_NV04(push, NV50_3D(VB_INSTANCE_BASE), 1); PUSH_DATA (push, info->start_instance); } nv50->base.vbo_dirty |= !!nv50->vtxbufs_coherent; if (nv50->base.vbo_dirty) { BEGIN_NV04(push, NV50_3D(VERTEX_ARRAY_FLUSH), 1); PUSH_DATA (push, 0); nv50->base.vbo_dirty = false; } if (info->indexed) { bool shorten = info->max_index <= 65535; if (info->primitive_restart != nv50->state.prim_restart) { if (info->primitive_restart) { BEGIN_NV04(push, NV50_3D(PRIM_RESTART_ENABLE), 2); PUSH_DATA (push, 1); PUSH_DATA (push, info->restart_index); if (info->restart_index > 65535) shorten = false; } else { BEGIN_NV04(push, NV50_3D(PRIM_RESTART_ENABLE), 1); PUSH_DATA (push, 0); } nv50->state.prim_restart = info->primitive_restart; } else if (info->primitive_restart) { BEGIN_NV04(push, NV50_3D(PRIM_RESTART_INDEX), 1); PUSH_DATA (push, info->restart_index); if (info->restart_index > 65535) shorten = false; } nv50_draw_elements(nv50, shorten, info->mode, info->start, info->count, info->instance_count, info->index_bias); } else if (unlikely(info->count_from_stream_output)) { nva0_draw_stream_output(nv50, info); } else { nv50_draw_arrays(nv50, info->mode, info->start, info->count, info->instance_count); } push->kick_notify = nv50_default_kick_notify; nv50_release_user_vbufs(nv50); nouveau_pushbuf_bufctx(push, NULL); }