/************************************************************************** * * Copyright 2009 VMware, Inc. * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Code generate the whole fragment pipeline. * * The fragment pipeline consists of the following stages: * - triangle edge in/out testing * - scissor test * - stipple (TBI) * - early depth test * - fragment shader * - alpha test * - depth/stencil test (stencil TBI) * - blending * * This file has only the glue to assembly the fragment pipeline. The actual * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we * muster the LLVM JIT execution engine to create a function that follows an * established binary interface and that can be called from C directly. * * A big source of complexity here is that we often want to run different * stages with different precisions and data types and precisions. For example, * the fragment shader needs typically to be done in floats, but the * depth/stencil test and blending is better done in the type that most closely * matches the depth/stencil and color buffer respectively. * * Since the width of a SIMD vector register stays the same regardless of the * element type, different types imply different number of elements, so we must * code generate more instances of the stages with larger types to be able to * feed/consume the stages with smaller types. * * @author Jose Fonseca */ #include #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_format.h" #include "util/u_dump.h" #include "os/os_time.h" #include "pipe/p_shader_tokens.h" #include "draw/draw_context.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_parse.h" #include "gallivm/lp_bld_type.h" #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_conv.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_logic.h" #include "gallivm/lp_bld_depth.h" #include "gallivm/lp_bld_interp.h" #include "gallivm/lp_bld_tgsi.h" #include "gallivm/lp_bld_alpha.h" #include "gallivm/lp_bld_blend.h" #include "gallivm/lp_bld_swizzle.h" #include "gallivm/lp_bld_flow.h" #include "gallivm/lp_bld_debug.h" #include "lp_buffer.h" #include "lp_context.h" #include "lp_debug.h" #include "lp_perf.h" #include "lp_screen.h" #include "lp_setup.h" #include "lp_state.h" #include "lp_tex_sample.h" static const unsigned char quad_offset_x[4] = {0, 1, 0, 1}; static const unsigned char quad_offset_y[4] = {0, 0, 1, 1}; /* * Derive from the quad's upper left scalar coordinates the coordinates for * all other quad pixels */ static void generate_pos0(LLVMBuilderRef builder, LLVMValueRef x, LLVMValueRef y, LLVMValueRef *x0, LLVMValueRef *y0) { LLVMTypeRef int_elem_type = LLVMInt32Type(); LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE); LLVMTypeRef elem_type = LLVMFloatType(); LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE); LLVMValueRef x_offsets[QUAD_SIZE]; LLVMValueRef y_offsets[QUAD_SIZE]; unsigned i; x = lp_build_broadcast(builder, int_vec_type, x); y = lp_build_broadcast(builder, int_vec_type, y); for(i = 0; i < QUAD_SIZE; ++i) { x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0); y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0); } x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), ""); y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), ""); *x0 = LLVMBuildSIToFP(builder, x, vec_type, ""); *y0 = LLVMBuildSIToFP(builder, y, vec_type, ""); } /** * Generate the depth test. */ static void generate_depth(LLVMBuilderRef builder, const struct lp_fragment_shader_variant_key *key, struct lp_type src_type, struct lp_build_mask_context *mask, LLVMValueRef src, LLVMValueRef dst_ptr) { const struct util_format_description *format_desc; struct lp_type dst_type; if(!key->depth.enabled) return; format_desc = util_format_description(key->zsbuf_format); assert(format_desc); /* * Depths are expected to be between 0 and 1, even if they are stored in * floats. Setting these bits here will ensure that the lp_build_conv() call * below won't try to unnecessarily clamp the incoming values. */ if(src_type.floating) { src_type.sign = FALSE; src_type.norm = TRUE; } else { assert(!src_type.sign); assert(src_type.norm); } /* Pick the depth type. */ dst_type = lp_depth_type(format_desc, src_type.width*src_type.length); /* FIXME: Cope with a depth test type with a different bit width. */ assert(dst_type.width == src_type.width); assert(dst_type.length == src_type.length); lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1); dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(dst_type), 0), ""); lp_build_depth_test(builder, &key->depth, dst_type, format_desc, mask, src, dst_ptr); } /** * Generate the code to do inside/outside triangle testing for the * four pixels in a 2x2 quad. This will set the four elements of the * quad mask vector to 0 or ~0. * \param i which quad of the quad group to test, in [0,3] */ static void generate_tri_edge_mask(LLVMBuilderRef builder, unsigned i, LLVMValueRef *mask, /* ivec4, out */ LLVMValueRef c0, /* int32 */ LLVMValueRef c1, /* int32 */ LLVMValueRef c2, /* int32 */ LLVMValueRef step0_ptr, /* ivec4 */ LLVMValueRef step1_ptr, /* ivec4 */ LLVMValueRef step2_ptr) /* ivec4 */ { #define OPTIMIZE_IN_OUT_TEST 0 #if OPTIMIZE_IN_OUT_TEST struct lp_build_if_state ifctx; LLVMValueRef not_draw_all; #endif struct lp_build_flow_context *flow; struct lp_type i32_type; LLVMTypeRef i32vec4_type, mask_type; LLVMValueRef c0_vec, c1_vec, c2_vec; LLVMValueRef in_out_mask; assert(i < 4); /* int32 vector type */ memset(&i32_type, 0, sizeof i32_type); i32_type.floating = FALSE; /* values are integers */ i32_type.sign = TRUE; /* values are signed */ i32_type.norm = FALSE; /* values are not normalized */ i32_type.width = 32; /* 32-bit int values */ i32_type.length = 4; /* 4 elements per vector */ i32vec4_type = lp_build_int32_vec4_type(); mask_type = LLVMIntType(32 * 4); /* * Use a conditional here to do detailed pixel in/out testing. * We only have to do this if c0 != INT_MIN. */ flow = lp_build_flow_create(builder); lp_build_flow_scope_begin(flow); { #if OPTIMIZE_IN_OUT_TEST /* not_draw_all = (c0 != INT_MIN) */ not_draw_all = LLVMBuildICmp(builder, LLVMIntNE, c0, LLVMConstInt(LLVMInt32Type(), INT_MIN, 0), ""); in_out_mask = lp_build_int_const_scalar(i32_type, ~0); lp_build_flow_scope_declare(flow, &in_out_mask); /* if (not_draw_all) {... */ lp_build_if(&ifctx, flow, builder, not_draw_all); #endif { LLVMValueRef step0_vec, step1_vec, step2_vec; LLVMValueRef m0_vec, m1_vec, m2_vec; LLVMValueRef index, m; /* c0_vec = {c0, c0, c0, c0} * Note that we emit this code four times but LLVM optimizes away * three instances of it. */ c0_vec = lp_build_broadcast(builder, i32vec4_type, c0); c1_vec = lp_build_broadcast(builder, i32vec4_type, c1); c2_vec = lp_build_broadcast(builder, i32vec4_type, c2); lp_build_name(c0_vec, "edgeconst0vec"); lp_build_name(c1_vec, "edgeconst1vec"); lp_build_name(c2_vec, "edgeconst2vec"); /* load step0vec, step1, step2 vec from memory */ index = LLVMConstInt(LLVMInt32Type(), i, 0); step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), ""); step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), ""); step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), ""); lp_build_name(step0_vec, "step0vec"); lp_build_name(step1_vec, "step1vec"); lp_build_name(step2_vec, "step2vec"); /* m0_vec = step0_ptr[i] > c0_vec */ m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec); m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec); m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec); /* in_out_mask = m0_vec & m1_vec & m2_vec */ m = LLVMBuildAnd(builder, m0_vec, m1_vec, ""); in_out_mask = LLVMBuildAnd(builder, m, m2_vec, ""); lp_build_name(in_out_mask, "inoutmaskvec"); } #if OPTIMIZE_IN_OUT_TEST lp_build_endif(&ifctx); #endif } lp_build_flow_scope_end(flow); lp_build_flow_destroy(flow); /* This is the initial alive/dead pixel mask for a quad of four pixels. * It's an int[4] vector with each word set to 0 or ~0. * Words will get cleared when pixels faile the Z test, etc. */ *mask = in_out_mask; } static LLVMValueRef generate_scissor_test(LLVMBuilderRef builder, LLVMValueRef context_ptr, const struct lp_build_interp_soa_context *interp, struct lp_type type) { LLVMTypeRef vec_type = lp_build_vec_type(type); LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1]; LLVMValueRef xmin, ymin, xmax, ymax; LLVMValueRef m0, m1, m2, m3, m; /* xpos, ypos contain the window coords for the four pixels in the quad */ assert(xpos); assert(ypos); /* get the current scissor bounds, convert to vectors */ xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr); xmin = lp_build_broadcast(builder, vec_type, xmin); ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr); ymin = lp_build_broadcast(builder, vec_type, ymin); xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr); xmax = lp_build_broadcast(builder, vec_type, xmax); ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr); ymax = lp_build_broadcast(builder, vec_type, ymax); /* compare the fragment's position coordinates against the scissor bounds */ m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin); m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin); m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax); m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax); /* AND all the masks together */ m = LLVMBuildAnd(builder, m0, m1, ""); m = LLVMBuildAnd(builder, m, m2, ""); m = LLVMBuildAnd(builder, m, m3, ""); lp_build_name(m, "scissormask"); return m; } static LLVMValueRef build_int32_vec_const(int value) { struct lp_type i32_type; memset(&i32_type, 0, sizeof i32_type); i32_type.floating = FALSE; /* values are integers */ i32_type.sign = TRUE; /* values are signed */ i32_type.norm = FALSE; /* values are not normalized */ i32_type.width = 32; /* 32-bit int values */ i32_type.length = 4; /* 4 elements per vector */ return lp_build_int_const_scalar(i32_type, value); } /** * Generate the fragment shader, depth/stencil test, and alpha tests. * \param i which quad in the tile, in range [0,3] * \param do_tri_test if 1, do triangle edge in/out testing */ static void generate_fs(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, unsigned i, const struct lp_build_interp_soa_context *interp, struct lp_build_sampler_soa *sampler, LLVMValueRef *pmask, LLVMValueRef (*color)[4], LLVMValueRef depth_ptr, unsigned do_tri_test, LLVMValueRef c0, LLVMValueRef c1, LLVMValueRef c2, LLVMValueRef step0_ptr, LLVMValueRef step1_ptr, LLVMValueRef step2_ptr) { const struct tgsi_token *tokens = shader->base.tokens; LLVMTypeRef elem_type; LLVMTypeRef vec_type; LLVMTypeRef int_vec_type; LLVMValueRef consts_ptr; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS]; LLVMValueRef z = interp->pos[2]; struct lp_build_flow_context *flow; struct lp_build_mask_context mask; boolean early_depth_test; unsigned attrib; unsigned chan; unsigned cbuf; assert(i < 4); elem_type = lp_build_elem_type(type); vec_type = lp_build_vec_type(type); int_vec_type = lp_build_int_vec_type(type); consts_ptr = lp_jit_context_constants(builder, context_ptr); flow = lp_build_flow_create(builder); memset(outputs, 0, sizeof outputs); lp_build_flow_scope_begin(flow); /* Declare the color and z variables */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { for(chan = 0; chan < NUM_CHANNELS; ++chan) { color[cbuf][chan] = LLVMGetUndef(vec_type); lp_build_flow_scope_declare(flow, &color[cbuf][chan]); } } lp_build_flow_scope_declare(flow, &z); /* do triangle edge testing */ if (do_tri_test) { generate_tri_edge_mask(builder, i, pmask, c0, c1, c2, step0_ptr, step1_ptr, step2_ptr); } else { *pmask = build_int32_vec_const(~0); } /* 'mask' will control execution based on quad's pixel alive/killed state */ lp_build_mask_begin(&mask, flow, type, *pmask); if (key->scissor) { LLVMValueRef smask = generate_scissor_test(builder, context_ptr, interp, type); lp_build_mask_update(&mask, smask); } early_depth_test = key->depth.enabled && !key->alpha.enabled && !shader->info.uses_kill && !shader->info.writes_z; if(early_depth_test) generate_depth(builder, key, type, &mask, z, depth_ptr); lp_build_tgsi_soa(builder, tokens, type, &mask, consts_ptr, interp->pos, interp->inputs, outputs, sampler); for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) { for(chan = 0; chan < NUM_CHANNELS; ++chan) { if(outputs[attrib][chan]) { LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], ""); lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]); switch (shader->info.output_semantic_name[attrib]) { case TGSI_SEMANTIC_COLOR: { unsigned cbuf = shader->info.output_semantic_index[attrib]; lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]); /* Alpha test */ /* XXX: should the alpha reference value be passed separately? */ /* XXX: should only test the final assignment to alpha */ if(cbuf == 0 && chan == 3) { LLVMValueRef alpha = out; LLVMValueRef alpha_ref_value; alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr); alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value); lp_build_alpha_test(builder, &key->alpha, type, &mask, alpha, alpha_ref_value); } color[cbuf][chan] = out; break; } case TGSI_SEMANTIC_POSITION: if(chan == 2) z = out; break; } } } } if(!early_depth_test) generate_depth(builder, key, type, &mask, z, depth_ptr); lp_build_mask_end(&mask); lp_build_flow_scope_end(flow); lp_build_flow_destroy(flow); *pmask = mask.value; } /** * Generate color blending and color output. */ static void generate_blend(const struct pipe_blend_state *blend, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, LLVMValueRef mask, LLVMValueRef *src, LLVMValueRef dst_ptr) { struct lp_build_context bld; struct lp_build_flow_context *flow; struct lp_build_mask_context mask_ctx; LLVMTypeRef vec_type; LLVMTypeRef int_vec_type; LLVMValueRef const_ptr; LLVMValueRef con[4]; LLVMValueRef dst[4]; LLVMValueRef res[4]; unsigned chan; lp_build_context_init(&bld, builder, type); flow = lp_build_flow_create(builder); /* we'll use this mask context to skip blending if all pixels are dead */ lp_build_mask_begin(&mask_ctx, flow, type, mask); vec_type = lp_build_vec_type(type); int_vec_type = lp_build_int_vec_type(type); const_ptr = lp_jit_context_blend_color(builder, context_ptr); const_ptr = LLVMBuildBitCast(builder, const_ptr, LLVMPointerType(vec_type, 0), ""); for(chan = 0; chan < 4; ++chan) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), ""); dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), ""); lp_build_name(con[chan], "con.%c", "rgba"[chan]); lp_build_name(dst[chan], "dst.%c", "rgba"[chan]); } lp_build_blend_soa(builder, blend, type, src, dst, con, res); for(chan = 0; chan < 4; ++chan) { if(blend->rt[0].colormask & (1 << chan)) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); lp_build_name(res[chan], "res.%c", "rgba"[chan]); res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]); LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, "")); } } lp_build_mask_end(&mask_ctx); lp_build_flow_destroy(flow); } /** * Generate the runtime callable function for the whole fragment pipeline. * Note that the function which we generate operates on a block of 16 * pixels at at time. The block contains 2x2 quads. Each quad contains * 2x2 pixels. */ static void generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant *variant, unsigned do_tri_test) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); const struct lp_fragment_shader_variant_key *key = &variant->key; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_vec_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef blend_int_vec_type; LLVMTypeRef arg_types[14]; LLVMTypeRef func_type; LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type(); LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef color_ptr_ptr; LLVMValueRef depth_ptr; LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; LLVMValueRef x0; LLVMValueRef y0; struct lp_build_sampler_soa *sampler; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef blend_in_color[NUM_CHANNELS]; LLVMValueRef function; unsigned num_fs; unsigned i; unsigned chan; unsigned cbuf; /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 elements per vector */ num_fs = 4; /* number of quads per block */ memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_vec_type = lp_build_vec_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); blend_int_vec_type = lp_build_int_vec_type(blend_type); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */ arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */ arg_types[8] = LLVMInt32Type(); /* c0 */ arg_types[9] = LLVMInt32Type(); /* c1 */ arg_types[10] = LLVMInt32Type(); /* c2 */ /* Note: the step arrays are built as int32[16] but we interpret * them here as int32_vec4[4]. */ arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */ arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */ arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); function = LLVMAddFunction(screen->module, "shader", func_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); variant->function[do_tri_test] = function; /* XXX: need to propagate noalias down into color param now we are * passing a pointer-to-pointer? */ for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(function, 0); x = LLVMGetParam(function, 1); y = LLVMGetParam(function, 2); a0_ptr = LLVMGetParam(function, 3); dadx_ptr = LLVMGetParam(function, 4); dady_ptr = LLVMGetParam(function, 5); color_ptr_ptr = LLVMGetParam(function, 6); depth_ptr = LLVMGetParam(function, 7); c0 = LLVMGetParam(function, 8); c1 = LLVMGetParam(function, 9); c2 = LLVMGetParam(function, 10); step0_ptr = LLVMGetParam(function, 11); step1_ptr = LLVMGetParam(function, 12); step2_ptr = LLVMGetParam(function, 13); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(color_ptr_ptr, "color_ptr"); lp_build_name(depth_ptr, "depth"); lp_build_name(c0, "c0"); lp_build_name(c1, "c1"); lp_build_name(c2, "c2"); lp_build_name(step0_ptr, "step0"); lp_build_name(step1_ptr, "step1"); lp_build_name(step2_ptr, "step2"); /* * Function body */ block = LLVMAppendBasicBlock(function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); generate_pos0(builder, x, y, &x0, &y0); lp_build_interp_soa_init(&interp, shader->base.tokens, key->flatshade, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x0, y0); /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); /* loop over quads in the block */ for(i = 0; i < num_fs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS]; LLVMValueRef depth_ptr_i; int cbuf; if(i != 0) lp_build_interp_soa_update(&interp, i); depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, &interp, sampler, &fs_mask[i], /* output */ out_color, depth_ptr_i, do_tri_test, c0, c1, c2, step0_ptr, step1_ptr, step2_ptr); for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[cbuf][chan][i] = out_color[cbuf][chan]; } sampler->destroy(sampler); /* Loop over color outputs / color buffers to do blending. */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { LLVMValueRef color_ptr; LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0); /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { lp_build_conv(builder, fs_type, blend_type, fs_out_color[cbuf][chan], num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]); } lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), ""); lp_build_name(color_ptr, "color_ptr%d", cbuf); /* * Blending. */ generate_blend(&key->blend, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr); } LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* Verify the LLVM IR. If invalid, dump and abort */ #ifdef DEBUG if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) { if (1) LLVMDumpValue(function); abort(); } #endif /* Apply optimizations to LLVM IR */ if (1) LLVMRunFunctionPassManager(screen->pass, function); if (LP_DEBUG & DEBUG_JIT) { /* Print the LLVM IR to stderr */ LLVMDumpValue(function); debug_printf("\n"); } /* * Translate the LLVM IR into machine code. */ variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function); if (LP_DEBUG & DEBUG_ASM) lp_disassemble(variant->jit_function[do_tri_test]); } static struct lp_fragment_shader_variant * generate_variant(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key) { struct lp_fragment_shader_variant *variant; if (LP_DEBUG & DEBUG_JIT) { unsigned i; tgsi_dump(shader->base.tokens, 0); if(key->depth.enabled) { debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format)); debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE)); debug_printf("depth.writemask = %u\n", key->depth.writemask); } if(key->alpha.enabled) { debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE)); debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value); } if(key->blend.logicop_enable) { debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func); } else if(key->blend.rt[0].blend_enable) { debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE)); debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE)); debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE)); debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE)); debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE)); debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE)); } debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask); for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) { if(key->sampler[i].format) { debug_printf("sampler[%u] = \n", i); debug_printf(" .format = %s\n", util_format_name(key->sampler[i].format)); debug_printf(" .target = %s\n", util_dump_tex_target(key->sampler[i].target, TRUE)); debug_printf(" .pot = %u %u %u\n", key->sampler[i].pot_width, key->sampler[i].pot_height, key->sampler[i].pot_depth); debug_printf(" .wrap = %s %s %s\n", util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE), util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE), util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE)); debug_printf(" .min_img_filter = %s\n", util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE)); debug_printf(" .min_mip_filter = %s\n", util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE)); debug_printf(" .mag_img_filter = %s\n", util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE)); if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE) debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE)); debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords); } } } variant = CALLOC_STRUCT(lp_fragment_shader_variant); if(!variant) return NULL; variant->shader = shader; memcpy(&variant->key, key, sizeof *key); generate_fragment(lp, shader, variant, 0); generate_fragment(lp, shader, variant, 1); /* insert new variant into linked list */ variant->next = shader->variants; shader->variants = variant; return variant; } void * llvmpipe_create_fs_state(struct pipe_context *pipe, const struct pipe_shader_state *templ) { struct lp_fragment_shader *shader; shader = CALLOC_STRUCT(lp_fragment_shader); if (!shader) return NULL; /* get/save the summary info for this shader */ tgsi_scan_shader(templ->tokens, &shader->info); /* we need to keep a local copy of the tokens */ shader->base.tokens = tgsi_dup_tokens(templ->tokens); return shader; } void llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); if (llvmpipe->fs == fs) return; draw_flush(llvmpipe->draw); llvmpipe->fs = fs; llvmpipe->dirty |= LP_NEW_FS; } void llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen); struct lp_fragment_shader *shader = fs; struct lp_fragment_shader_variant *variant; assert(fs != llvmpipe->fs); (void) llvmpipe; /* * XXX: we need to flush the context until we have some sort of reference * counting in fragment shaders as they may still be binned */ draw_flush(llvmpipe->draw); lp_setup_flush(llvmpipe->setup, 0); variant = shader->variants; while(variant) { struct lp_fragment_shader_variant *next = variant->next; unsigned i; for (i = 0; i < Elements(variant->function); i++) { if (variant->function[i]) { if (variant->jit_function[i]) LLVMFreeMachineCodeForFunction(screen->engine, variant->function[i]); LLVMDeleteFunction(variant->function[i]); } } FREE(variant); variant = next; } FREE((void *) shader->base.tokens); FREE(shader); } void llvmpipe_set_constant_buffer(struct pipe_context *pipe, uint shader, uint index, struct pipe_buffer *constants) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); unsigned size = constants ? constants->size : 0; const void *data = constants ? llvmpipe_buffer(constants)->data : NULL; assert(shader < PIPE_SHADER_TYPES); assert(index == 0); if(llvmpipe->constants[shader] == constants) return; draw_flush(llvmpipe->draw); /* note: reference counting */ pipe_buffer_reference(&llvmpipe->constants[shader], constants); if(shader == PIPE_SHADER_VERTEX) { draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0, data, size); } llvmpipe->dirty |= LP_NEW_CONSTANTS; } /** * We need to generate several variants of the fragment pipeline to match * all the combinations of the contributing state atoms. * * TODO: there is actually no reason to tie this to context state -- the * generated code could be cached globally in the screen. */ static void make_variant_key(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant_key *key) { unsigned i; memset(key, 0, sizeof *key); if(lp->framebuffer.zsbuf && lp->depth_stencil->depth.enabled) { key->zsbuf_format = lp->framebuffer.zsbuf->format; memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth); } key->alpha.enabled = lp->depth_stencil->alpha.enabled; if(key->alpha.enabled) key->alpha.func = lp->depth_stencil->alpha.func; /* alpha.ref_value is passed in jit_context */ key->flatshade = lp->rasterizer->flatshade; key->scissor = lp->rasterizer->scissor; if (lp->framebuffer.nr_cbufs) { memcpy(&key->blend, lp->blend, sizeof key->blend); } key->nr_cbufs = lp->framebuffer.nr_cbufs; for (i = 0; i < lp->framebuffer.nr_cbufs; i++) { const struct util_format_description *format_desc; unsigned chan; format_desc = util_format_description(lp->framebuffer.cbufs[i]->format); assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB || format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB); /* mask out color channels not present in the color buffer. * Should be simple to incorporate per-cbuf writemasks: */ for(chan = 0; chan < 4; ++chan) { enum util_format_swizzle swizzle = format_desc->swizzle[chan]; if(swizzle <= UTIL_FORMAT_SWIZZLE_W) key->blend.rt[0].colormask |= (1 << chan); } } for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]); } /** * Update fragment state. This is called just prior to drawing * something when some fragment-related state has changed. */ void llvmpipe_update_fs(struct llvmpipe_context *lp) { struct lp_fragment_shader *shader = lp->fs; struct lp_fragment_shader_variant_key key; struct lp_fragment_shader_variant *variant; boolean opaque; make_variant_key(lp, shader, &key); variant = shader->variants; while(variant) { if(memcmp(&variant->key, &key, sizeof key) == 0) break; variant = variant->next; } if (!variant) { int64_t t0, t1; int64_t dt; t0 = os_time_get(); variant = generate_variant(lp, shader, &key); t1 = os_time_get(); dt = t1 - t0; LP_COUNT_ADD(llvm_compile_time, dt); LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */ } shader->current = variant; /* TODO: put this in the variant */ /* TODO: most of these can be relaxed, in particular the colormask */ opaque = !key.blend.logicop_enable && !key.blend.rt[0].blend_enable && key.blend.rt[0].colormask == 0xf && !key.alpha.enabled && !key.depth.enabled && !key.scissor && !shader->info.uses_kill ? TRUE : FALSE; lp_setup_set_fs_functions(lp->setup, shader->current->jit_function[0], shader->current->jit_function[1], opaque); }