/************************************************************************** * * Copyright 2009 VMware, Inc. * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Code generate the whole fragment pipeline. * * The fragment pipeline consists of the following stages: * - stipple (TBI) * - early depth test * - fragment shader * - alpha test * - depth/stencil test (stencil TBI) * - blending * * This file has only the glue to assembly the fragment pipeline. The actual * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we * muster the LLVM JIT execution engine to create a function that follows an * established binary interface and that can be called from C directly. * * A big source of complexity here is that we often want to run different * stages with different precisions and data types and precisions. For example, * the fragment shader needs typically to be done in floats, but the * depth/stencil test and blending is better done in the type that most closely * matches the depth/stencil and color buffer respectively. * * Since the width of a SIMD vector register stays the same regardless of the * element type, different types imply different number of elements, so we must * code generate more instances of the stages with larger types to be able to * feed/consume the stages with smaller types. * * @author Jose Fonseca */ #include "pipe/p_defines.h" #include "util/u_memory.h" #include "util/u_format.h" #include "util/u_debug_dump.h" #include "pipe/internal/p_winsys_screen.h" #include "pipe/p_shader_tokens.h" #include "draw/draw_context.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_parse.h" #include "lp_bld_type.h" #include "lp_bld_conv.h" #include "lp_bld_logic.h" #include "lp_bld_depth.h" #include "lp_bld_tgsi.h" #include "lp_bld_alpha.h" #include "lp_bld_blend.h" #include "lp_bld_swizzle.h" #include "lp_bld_flow.h" #include "lp_bld_debug.h" #include "lp_screen.h" #include "lp_context.h" #include "lp_state.h" #include "lp_quad.h" static const unsigned char quad_offset_x[4] = {0, 1, 0, 1}; static const unsigned char quad_offset_y[4] = {0, 0, 1, 1}; /** * Generate the position vectors. * * TODO: This should be called only once per fragment pipeline, for the first * quad, and the neighboring quad positions obtained by additions. * * Parameter x, y are the integer values with the quad upper left coordinates. */ static void generate_pos(LLVMBuilderRef builder, LLVMValueRef x, LLVMValueRef y, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr, LLVMValueRef *pos) { LLVMTypeRef int_elem_type = LLVMInt32Type(); LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE); LLVMTypeRef elem_type = LLVMFloatType(); LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE); LLVMValueRef x_offsets[QUAD_SIZE]; LLVMValueRef y_offsets[QUAD_SIZE]; unsigned chan; unsigned i; /* * Derive from the quad's upper left scalar coordinates the coordinates for * all other quad pixels */ x = lp_build_broadcast(builder, int_vec_type, x); y = lp_build_broadcast(builder, int_vec_type, y); for(i = 0; i < QUAD_SIZE; ++i) { x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0); y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0); } x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), ""); y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), ""); x = LLVMBuildSIToFP(builder, x, vec_type, ""); y = LLVMBuildSIToFP(builder, y, vec_type, ""); pos[0] = x; pos[1] = y; /* * Calculate z and w from the interpolation factors. */ for(chan = 2; chan < NUM_CHANNELS; ++chan) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); LLVMValueRef a0 = LLVMBuildLoad(builder, LLVMBuildGEP(builder, a0_ptr, &index, 1, ""), ""); LLVMValueRef dadx = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""), ""); LLVMValueRef dady = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dady_ptr, &index, 1, ""), ""); LLVMValueRef res; a0 = lp_build_broadcast(builder, vec_type, a0); dadx = lp_build_broadcast(builder, vec_type, dadx); dady = lp_build_broadcast(builder, vec_type, dady); res = a0; res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dadx, x, ""), ""); res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dady, y, ""), ""); pos[chan] = res; } for(chan = 0; chan < NUM_CHANNELS; ++chan) lp_build_name(pos[chan], "pos.%c", "xyzw"[chan]); } /** * Generate the depth test. */ static void generate_depth(struct llvmpipe_context *lp, LLVMBuilderRef builder, const struct pipe_depth_state *state, union lp_type src_type, struct lp_build_mask_context *mask, LLVMValueRef src, LLVMValueRef dst_ptr) { const struct util_format_description *format_desc; union lp_type dst_type; if(!lp->framebuffer.zsbuf) return; format_desc = util_format_description(lp->framebuffer.zsbuf->format); assert(format_desc); /* Pick the depth type. */ dst_type = lp_depth_type(format_desc, src_type.width*src_type.length); /* FIXME: Cope with a depth test type with a different bit width. */ assert(dst_type.width == src_type.width); assert(dst_type.length == src_type.length); #if 1 src = lp_build_clamped_float_to_unsigned_norm(builder, src_type, dst_type.width, src); #else lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1); #endif lp_build_depth_test(builder, state, dst_type, format_desc, mask, src, dst_ptr); } /** * Generate the fragment shader, depth/stencil test, and alpha tests. */ static void generate_fs(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key, LLVMBuilderRef builder, union lp_type type, LLVMValueRef context_ptr, unsigned i, LLVMValueRef x, LLVMValueRef y, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr, LLVMValueRef *pmask, LLVMValueRef *color, LLVMValueRef depth_ptr) { const struct tgsi_token *tokens = shader->base.tokens; LLVMTypeRef elem_type; LLVMTypeRef vec_type; LLVMTypeRef int_vec_type; LLVMValueRef consts_ptr; LLVMValueRef samplers_ptr; LLVMValueRef pos[NUM_CHANNELS]; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS]; struct lp_build_mask_context mask; boolean early_depth_test; unsigned attrib; unsigned chan; elem_type = lp_build_elem_type(type); vec_type = lp_build_vec_type(type); int_vec_type = lp_build_int_vec_type(type); consts_ptr = lp_jit_context_constants(builder, context_ptr); samplers_ptr = lp_jit_context_samplers(builder, context_ptr); generate_pos(builder, x, y, a0_ptr, dadx_ptr, dady_ptr, pos); lp_build_mask_begin(&mask, builder, type, *pmask); early_depth_test = lp->depth_stencil->depth.enabled && lp->framebuffer.zsbuf && !lp->depth_stencil->alpha.enabled && !lp->fs->info.uses_kill && !lp->fs->info.writes_z; if(early_depth_test) generate_depth(lp, builder, &key->depth, type, &mask, pos[2], depth_ptr); memset(outputs, 0, sizeof outputs); lp_build_tgsi_soa(builder, tokens, type, &mask, pos, a0_ptr, dadx_ptr, dady_ptr, consts_ptr, outputs, samplers_ptr); for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) { for(chan = 0; chan < NUM_CHANNELS; ++chan) { if(outputs[attrib][chan]) { lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]); switch (shader->info.output_semantic_name[attrib]) { case TGSI_SEMANTIC_COLOR: { unsigned cbuf = shader->info.output_semantic_index[attrib]; lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]); /* Alpha test */ /* XXX: should the alpha reference value be passed separately? */ if(cbuf == 0 && chan == 3) { LLVMValueRef alpha = outputs[attrib][chan]; LLVMValueRef alpha_ref_value; alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr); alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value); lp_build_alpha_test(builder, &key->alpha, type, &mask, alpha, alpha_ref_value); } if(cbuf == 0) color[chan] = outputs[attrib][chan]; break; } case TGSI_SEMANTIC_POSITION: if(chan == 2) pos[2] = outputs[attrib][chan]; break; } } } } if(!early_depth_test) generate_depth(lp, builder, &key->depth, type, &mask, pos[2], depth_ptr); lp_build_mask_end(&mask); *pmask = mask.value; } /** * Generate color blending and color output. */ static void generate_blend(const struct pipe_blend_state *blend, LLVMBuilderRef builder, union lp_type type, LLVMValueRef context_ptr, LLVMValueRef mask, LLVMValueRef *src, LLVMValueRef dst_ptr) { struct lp_build_context bld; LLVMTypeRef vec_type; LLVMTypeRef int_vec_type; LLVMValueRef const_ptr; LLVMValueRef con[4]; LLVMValueRef dst[4]; LLVMValueRef res[4]; unsigned chan; vec_type = lp_build_vec_type(type); int_vec_type = lp_build_int_vec_type(type); lp_build_context_init(&bld, builder, type); const_ptr = lp_jit_context_blend_color(builder, context_ptr); const_ptr = LLVMBuildBitCast(builder, const_ptr, LLVMPointerType(vec_type, 0), ""); for(chan = 0; chan < 4; ++chan) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), ""); dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), ""); lp_build_name(con[chan], "con.%c", "rgba"[chan]); lp_build_name(dst[chan], "dst.%c", "rgba"[chan]); } lp_build_blend_soa(builder, blend, type, src, dst, con, res); for(chan = 0; chan < 4; ++chan) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); lp_build_name(res[chan], "res.%c", "rgba"[chan]); res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]); LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, "")); } } /** * Generate the runtime callable function for the whole fragment pipeline. */ static struct lp_fragment_shader_variant * generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); struct lp_fragment_shader_variant *variant; union lp_type fs_type; union lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_vec_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef blend_int_vec_type; LLVMTypeRef arg_types[9]; LLVMTypeRef func_type; LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef mask_ptr; LLVMValueRef color_ptr; LLVMValueRef depth_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef blend_in_color[NUM_CHANNELS]; unsigned num_fs; unsigned i; unsigned chan; #ifdef DEBUG tgsi_dump(shader->base.tokens, 0); if(key->depth.enabled) { debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE)); debug_printf("depth.writemask = %u\n", key->depth.writemask); debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count); } if(key->alpha.enabled) { debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE)); debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value); } if(key->blend.logicop_enable) { debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func); } else if(key->blend.blend_enable) { debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE)); debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE)); debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE)); debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE)); debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE)); debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE)); } debug_printf("blend.colormask = 0x%x\n", key->blend.colormask); #endif variant = CALLOC_STRUCT(lp_fragment_shader_variant); if(!variant) return NULL; variant->shader = shader; memcpy(&variant->key, key, sizeof *key); /* TODO: actually pick these based on the fs and color buffer * characteristics. */ fs_type.value = 0; fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 element per vector */ num_fs = 4; blend_type.value = 0; blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_vec_type = lp_build_vec_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); blend_int_vec_type = lp_build_int_vec_type(blend_type); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */ arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */ arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); variant->function = LLVMAddFunction(screen->module, "shader", func_type); LLVMSetFunctionCallConv(variant->function, LLVMCCallConv); for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(variant->function, 0); x = LLVMGetParam(variant->function, 1); y = LLVMGetParam(variant->function, 2); a0_ptr = LLVMGetParam(variant->function, 3); dadx_ptr = LLVMGetParam(variant->function, 4); dady_ptr = LLVMGetParam(variant->function, 5); mask_ptr = LLVMGetParam(variant->function, 6); color_ptr = LLVMGetParam(variant->function, 7); depth_ptr = LLVMGetParam(variant->function, 8); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(mask_ptr, "mask"); lp_build_name(color_ptr, "color"); lp_build_name(depth_ptr, "depth"); /* * Function body */ block = LLVMAppendBasicBlock(variant->function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); for(i = 0; i < num_fs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); LLVMValueRef out_color[NUM_CHANNELS]; LLVMValueRef x_i; LLVMValueRef depth_ptr_i; /* TODO: Reuse position interpolation */ x_i = LLVMBuildAdd(builder, x, LLVMConstInt(LLVMInt32Type(), 2*i, 0), ""); fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), ""); depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, x_i, y, a0_ptr, dadx_ptr, dady_ptr, &fs_mask[i], out_color, depth_ptr_i); for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[chan][i] = out_color[chan]; } /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { lp_build_conv(builder, fs_type, blend_type, fs_out_color[chan], num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]); } lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); /* * Blending. */ generate_blend(&key->blend, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr); LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* * Translate the LLVM IR into machine code. */ LLVMRunFunctionPassManager(screen->pass, variant->function); #ifdef DEBUG LLVMDumpValue(variant->function); debug_printf("\n"); #endif if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) { LLVMDumpValue(variant->function); abort(); } variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function); #ifdef DEBUG lp_disassemble(variant->jit_function); #endif variant->next = shader->variants; shader->variants = variant; return variant; } void * llvmpipe_create_fs_state(struct pipe_context *pipe, const struct pipe_shader_state *templ) { struct lp_fragment_shader *shader; shader = CALLOC_STRUCT(lp_fragment_shader); if (!shader) return NULL; /* get/save the summary info for this shader */ tgsi_scan_shader(templ->tokens, &shader->info); /* we need to keep a local copy of the tokens */ shader->base.tokens = tgsi_dup_tokens(templ->tokens); return shader; } void llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); llvmpipe->fs = (struct lp_fragment_shader *) fs; llvmpipe->dirty |= LP_NEW_FS; } void llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen); struct lp_fragment_shader *shader = fs; struct lp_fragment_shader_variant *variant; assert(fs != llvmpipe->fs); variant = shader->variants; while(variant) { struct lp_fragment_shader_variant *next = variant->next; if(variant->function) { if(variant->jit_function) LLVMFreeMachineCodeForFunction(screen->engine, variant->function); LLVMDeleteFunction(variant->function); } FREE(variant); variant = next; } FREE((void *) shader->base.tokens); FREE(shader); } void llvmpipe_set_constant_buffer(struct pipe_context *pipe, uint shader, uint index, const struct pipe_constant_buffer *buf) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); assert(shader < PIPE_SHADER_TYPES); assert(index == 0); /* note: reference counting */ pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buf ? buf->buffer : NULL); llvmpipe->dirty |= LP_NEW_CONSTANTS; } /** * We need to generate several variants of the fragment pipeline to match * all the combinations of the contributing state atoms. * * TODO: there is actually no reason to tie this to context state -- the * generated code could be cached globally in the screen. */ static void make_variant_key(struct llvmpipe_context *lp, struct lp_fragment_shader_variant_key *key) { memset(key, 0, sizeof *key); memcpy(&key->depth, &lp->depth_stencil->depth, sizeof &key->depth); key->alpha.enabled = lp->depth_stencil->alpha.enabled; if(key->alpha.enabled) key->alpha.func = lp->depth_stencil->alpha.func; /* alpha.ref_value is passed in jit_context */ memcpy(&key->blend, lp->blend, sizeof &key->blend); } void llvmpipe_update_fs(struct llvmpipe_context *lp) { struct lp_fragment_shader *shader = lp->fs; struct lp_fragment_shader_variant_key key; struct lp_fragment_shader_variant *variant; make_variant_key(lp, &key); variant = shader->variants; while(variant) { if(memcmp(&variant->key, &key, sizeof key) == 0) break; variant = variant->next; } if(!variant) variant = generate_fragment(lp, shader, &key); shader->current = variant; }