/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_rect.h" #include "util/u_surface.h" #include "util/u_pack_color.h" #include "os/os_time.h" #include "lp_scene_queue.h" #include "lp_debug.h" #include "lp_fence.h" #include "lp_perf.h" #include "lp_query.h" #include "lp_rast.h" #include "lp_rast_priv.h" #include "gallivm/lp_bld_debug.h" #include "lp_scene.h" #include "lp_tex_sample.h" #ifdef DEBUG int jit_line = 0; const struct lp_rast_state *jit_state = NULL; const struct lp_rasterizer_task *jit_task = NULL; #endif /** * Begin rasterizing a scene. * Called once per scene by one thread. */ static void lp_rast_begin( struct lp_rasterizer *rast, struct lp_scene *scene ) { rast->curr_scene = scene; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); lp_scene_begin_rasterization( scene ); lp_scene_bin_iter_begin( scene ); } static void lp_rast_end( struct lp_rasterizer *rast ) { lp_scene_end_rasterization( rast->curr_scene ); rast->curr_scene = NULL; } /** * Begining rasterization of a tile. * \param x window X position of the tile, in pixels * \param y window Y position of the tile, in pixels */ static void lp_rast_tile_begin(struct lp_rasterizer_task *task, const struct cmd_bin *bin, int x, int y) { LP_DBG(DEBUG_RAST, "%s %d,%d\n", __FUNCTION__, x, y); task->bin = bin; task->x = x * TILE_SIZE; task->y = y * TILE_SIZE; task->width = TILE_SIZE + x * TILE_SIZE > task->scene->fb.width ? task->scene->fb.width - x * TILE_SIZE : TILE_SIZE; task->height = TILE_SIZE + y * TILE_SIZE > task->scene->fb.height ? task->scene->fb.height - y * TILE_SIZE : TILE_SIZE; /* reset pointers to color and depth tile(s) */ memset(task->color_tiles, 0, sizeof(task->color_tiles)); task->depth_tile = NULL; } /** * Clear the rasterizer's current color tile. * This is a bin command called during bin processing. * Clear commands always clear all bound layers. */ static void lp_rast_clear_color(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_scene *scene = task->scene; if (scene->fb.nr_cbufs) { unsigned i; union util_color uc; if (util_format_is_pure_integer(scene->fb.cbufs[0]->format)) { /* * We expect int/uint clear values here, though some APIs * might disagree (but in any case util_pack_color() * couldn't handle it)... */ LP_DBG(DEBUG_RAST, "%s pure int 0x%x,0x%x,0x%x,0x%x\n", __FUNCTION__, arg.clear_color.ui[0], arg.clear_color.ui[1], arg.clear_color.ui[2], arg.clear_color.ui[3]); for (i = 0; i < scene->fb.nr_cbufs; i++) { enum pipe_format format = scene->fb.cbufs[i]->format; if (util_format_is_pure_sint(format)) { util_format_write_4i(format, arg.clear_color.i, 0, &uc, 0, 0, 0, 1, 1); } else { assert(util_format_is_pure_uint(format)); util_format_write_4ui(format, arg.clear_color.ui, 0, &uc, 0, 0, 0, 1, 1); } util_fill_box(scene->cbufs[i].map, format, scene->cbufs[i].stride, scene->cbufs[i].layer_stride, task->x, task->y, 0, task->width, task->height, scene->fb_max_layer + 1, &uc); } } else { uint8_t clear_color[4]; for (i = 0; i < 4; ++i) { clear_color[i] = float_to_ubyte(arg.clear_color.f[i]); } LP_DBG(DEBUG_RAST, "%s 0x%x,0x%x,0x%x,0x%x\n", __FUNCTION__, clear_color[0], clear_color[1], clear_color[2], clear_color[3]); for (i = 0; i < scene->fb.nr_cbufs; i++) { util_pack_color(arg.clear_color.f, scene->fb.cbufs[i]->format, &uc); util_fill_box(scene->cbufs[i].map, scene->fb.cbufs[i]->format, scene->cbufs[i].stride, scene->cbufs[i].layer_stride, task->x, task->y, 0, task->width, task->height, scene->fb_max_layer + 1, &uc); } } } LP_COUNT(nr_color_tile_clear); } /** * Clear the rasterizer's current z/stencil tile. * This is a bin command called during bin processing. * Clear commands always clear all bound layers. */ static void lp_rast_clear_zstencil(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_scene *scene = task->scene; uint64_t clear_value64 = arg.clear_zstencil.value; uint64_t clear_mask64 = arg.clear_zstencil.mask; uint32_t clear_value = (uint32_t) clear_value64; uint32_t clear_mask = (uint32_t) clear_mask64; const unsigned height = task->height; const unsigned width = task->width; const unsigned dst_stride = scene->zsbuf.stride; uint8_t *dst; unsigned i, j; unsigned block_size; LP_DBG(DEBUG_RAST, "%s: value=0x%08x, mask=0x%08x\n", __FUNCTION__, clear_value, clear_mask); /* * Clear the area of the depth/depth buffer matching this tile. */ if (scene->fb.zsbuf) { unsigned layer; uint8_t *dst_layer = lp_rast_get_unswizzled_depth_tile_pointer(task, LP_TEX_USAGE_READ_WRITE); block_size = util_format_get_blocksize(scene->fb.zsbuf->format); clear_value &= clear_mask; for (layer = 0; layer <= scene->fb_max_layer; layer++) { dst = dst_layer; switch (block_size) { case 1: assert(clear_mask == 0xff); memset(dst, (uint8_t) clear_value, height * width); break; case 2: if (clear_mask == 0xffff) { for (i = 0; i < height; i++) { uint16_t *row = (uint16_t *)dst; for (j = 0; j < width; j++) *row++ = (uint16_t) clear_value; dst += dst_stride; } } else { for (i = 0; i < height; i++) { uint16_t *row = (uint16_t *)dst; for (j = 0; j < width; j++) { uint16_t tmp = ~clear_mask & *row; *row++ = clear_value | tmp; } dst += dst_stride; } } break; case 4: if (clear_mask == 0xffffffff) { for (i = 0; i < height; i++) { uint32_t *row = (uint32_t *)dst; for (j = 0; j < width; j++) *row++ = clear_value; dst += dst_stride; } } else { for (i = 0; i < height; i++) { uint32_t *row = (uint32_t *)dst; for (j = 0; j < width; j++) { uint32_t tmp = ~clear_mask & *row; *row++ = clear_value | tmp; } dst += dst_stride; } } break; case 8: clear_value64 &= clear_mask64; if (clear_mask64 == 0xffffffffffULL) { for (i = 0; i < height; i++) { uint64_t *row = (uint64_t *)dst; for (j = 0; j < width; j++) *row++ = clear_value64; dst += dst_stride; } } else { for (i = 0; i < height; i++) { uint64_t *row = (uint64_t *)dst; for (j = 0; j < width; j++) { uint64_t tmp = ~clear_mask64 & *row; *row++ = clear_value64 | tmp; } dst += dst_stride; } } break; default: assert(0); break; } dst_layer += scene->zsbuf.layer_stride; } } } /** * Run the shader on all blocks in a tile. This is used when a tile is * completely contained inside a triangle. * This is a bin command called during bin processing. */ static void lp_rast_shade_tile(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_scene *scene = task->scene; const struct lp_rast_shader_inputs *inputs = arg.shade_tile; const struct lp_rast_state *state; struct lp_fragment_shader_variant *variant; const unsigned tile_x = task->x, tile_y = task->y; unsigned x, y; if (inputs->disable) { /* This command was partially binned and has been disabled */ return; } LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); state = task->state; assert(state); if (!state) { return; } variant = state->variant; /* render the whole 64x64 tile in 4x4 chunks */ for (y = 0; y < task->height; y += 4){ for (x = 0; x < task->width; x += 4) { uint8_t *color[PIPE_MAX_COLOR_BUFS]; unsigned stride[PIPE_MAX_COLOR_BUFS]; uint8_t *depth = NULL; unsigned depth_stride = 0; unsigned i; /* color buffer */ for (i = 0; i < scene->fb.nr_cbufs; i++){ stride[i] = scene->cbufs[i].stride; color[i] = lp_rast_get_unswizzled_color_block_pointer(task, i, tile_x + x, tile_y + y, inputs->layer); } /* depth buffer */ if (scene->zsbuf.map) { depth = lp_rast_get_unswizzled_depth_block_pointer(task, tile_x + x, tile_y + y, inputs->layer); depth_stride = scene->zsbuf.stride; } /* run shader on 4x4 block */ BEGIN_JIT_CALL(state, task); variant->jit_function[RAST_WHOLE]( &state->jit_context, tile_x + x, tile_y + y, inputs->frontfacing, GET_A0(inputs), GET_DADX(inputs), GET_DADY(inputs), color, depth, 0xffff, &task->thread_data, stride, depth_stride); END_JIT_CALL(); } } } /** * Run the shader on all blocks in a tile. This is used when a tile is * completely contained inside a triangle, and the shader is opaque. * This is a bin command called during bin processing. */ static void lp_rast_shade_tile_opaque(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); assert(task->state); if (!task->state) { return; } lp_rast_shade_tile(task, arg); } /** * Compute shading for a 4x4 block of pixels inside a triangle. * This is a bin command called during bin processing. * \param x X position of quad in window coords * \param y Y position of quad in window coords */ void lp_rast_shade_quads_mask(struct lp_rasterizer_task *task, const struct lp_rast_shader_inputs *inputs, unsigned x, unsigned y, unsigned mask) { const struct lp_rast_state *state = task->state; struct lp_fragment_shader_variant *variant = state->variant; const struct lp_scene *scene = task->scene; uint8_t *color[PIPE_MAX_COLOR_BUFS]; unsigned stride[PIPE_MAX_COLOR_BUFS]; uint8_t *depth = NULL; unsigned depth_stride = 0; unsigned i; assert(state); /* Sanity checks */ assert(x < scene->tiles_x * TILE_SIZE); assert(y < scene->tiles_y * TILE_SIZE); assert(x % TILE_VECTOR_WIDTH == 0); assert(y % TILE_VECTOR_HEIGHT == 0); assert((x % 4) == 0); assert((y % 4) == 0); /* color buffer */ for (i = 0; i < scene->fb.nr_cbufs; i++) { stride[i] = scene->cbufs[i].stride; color[i] = lp_rast_get_unswizzled_color_block_pointer(task, i, x, y, inputs->layer); } /* depth buffer */ if (scene->zsbuf.map) { depth_stride = scene->zsbuf.stride; depth = lp_rast_get_unswizzled_depth_block_pointer(task, x, y, inputs->layer); } assert(lp_check_alignment(state->jit_context.u8_blend_color, 16)); /* * The rasterizer may produce fragments outside our * allocated 4x4 blocks hence need to filter them out here. */ if ((x % TILE_SIZE) < task->width && (y % TILE_SIZE) < task->height) { if (task->query[PIPE_QUERY_PIPELINE_STATISTICS]) { /* not very accurate would need a popcount on the mask */ task->ps_invocations++; } /* run shader on 4x4 block */ BEGIN_JIT_CALL(state, task); variant->jit_function[RAST_EDGE_TEST](&state->jit_context, x, y, inputs->frontfacing, GET_A0(inputs), GET_DADX(inputs), GET_DADY(inputs), color, depth, mask, &task->thread_data, stride, depth_stride); END_JIT_CALL(); } } /** * Begin a new occlusion query. * This is a bin command put in all bins. * Called per thread. */ static void lp_rast_begin_query(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct llvmpipe_query *pq = arg.query_obj; assert(task->query[pq->type] == NULL); switch (pq->type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: task->thread_data.vis_counter = 0; break; case PIPE_QUERY_PIPELINE_STATISTICS: task->ps_invocations = 0; break; case PIPE_QUERY_PRIMITIVES_GENERATED: case PIPE_QUERY_PRIMITIVES_EMITTED: case PIPE_QUERY_SO_STATISTICS: case PIPE_QUERY_SO_OVERFLOW_PREDICATE: case PIPE_QUERY_TIMESTAMP_DISJOINT: break; default: assert(0); break; } task->query[pq->type] = pq; } /** * End the current occlusion query. * This is a bin command put in all bins. * Called per thread. */ static void lp_rast_end_query(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct llvmpipe_query *pq = arg.query_obj; assert(task->query[pq->type] == pq || pq->type == PIPE_QUERY_TIMESTAMP || pq->type == PIPE_QUERY_GPU_FINISHED); switch (pq->type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: pq->count[task->thread_index] += task->thread_data.vis_counter; break; case PIPE_QUERY_TIMESTAMP: pq->count[task->thread_index] = os_time_get_nano(); break; case PIPE_QUERY_PIPELINE_STATISTICS: pq->count[task->thread_index] += task->ps_invocations; break; case PIPE_QUERY_PRIMITIVES_GENERATED: case PIPE_QUERY_PRIMITIVES_EMITTED: case PIPE_QUERY_SO_STATISTICS: case PIPE_QUERY_SO_OVERFLOW_PREDICATE: case PIPE_QUERY_TIMESTAMP_DISJOINT: case PIPE_QUERY_GPU_FINISHED: break; default: assert(0); break; } if (task->query[pq->type] == pq) { task->query[pq->type] = NULL; } } void lp_rast_set_state(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { task->state = arg.state; } /** * Called when we're done writing to a color tile. */ static void lp_rast_tile_end(struct lp_rasterizer_task *task) { unsigned i; for (i = 0; i < PIPE_QUERY_TYPES; ++i) { if (task->query[i]) { lp_rast_end_query(task, lp_rast_arg_query(task->query[i])); } } /* debug */ memset(task->color_tiles, 0, sizeof(task->color_tiles)); task->depth_tile = NULL; task->bin = NULL; } static lp_rast_cmd_func dispatch[LP_RAST_OP_MAX] = { lp_rast_clear_color, lp_rast_clear_zstencil, lp_rast_triangle_1, lp_rast_triangle_2, lp_rast_triangle_3, lp_rast_triangle_4, lp_rast_triangle_5, lp_rast_triangle_6, lp_rast_triangle_7, lp_rast_triangle_8, lp_rast_triangle_3_4, lp_rast_triangle_3_16, lp_rast_triangle_4_16, lp_rast_shade_tile, lp_rast_shade_tile_opaque, lp_rast_begin_query, lp_rast_end_query, lp_rast_set_state, }; static void do_rasterize_bin(struct lp_rasterizer_task *task, const struct cmd_bin *bin, int x, int y) { const struct cmd_block *block; unsigned k; if (0) lp_debug_bin(bin, x, y); for (block = bin->head; block; block = block->next) { for (k = 0; k < block->count; k++) { dispatch[block->cmd[k]]( task, block->arg[k] ); } } } /** * Rasterize commands for a single bin. * \param x, y position of the bin's tile in the framebuffer * Must be called between lp_rast_begin() and lp_rast_end(). * Called per thread. */ static void rasterize_bin(struct lp_rasterizer_task *task, const struct cmd_bin *bin, int x, int y ) { lp_rast_tile_begin( task, bin, x, y ); do_rasterize_bin(task, bin, x, y); lp_rast_tile_end(task); /* Debug/Perf flags: */ if (bin->head->count == 1) { if (bin->head->cmd[0] == LP_RAST_OP_SHADE_TILE_OPAQUE) LP_COUNT(nr_pure_shade_opaque_64); else if (bin->head->cmd[0] == LP_RAST_OP_SHADE_TILE) LP_COUNT(nr_pure_shade_64); } } /* An empty bin is one that just loads the contents of the tile and * stores them again unchanged. This typically happens when bins have * been flushed for some reason in the middle of a frame, or when * incremental updates are being made to a render target. * * Try to avoid doing pointless work in this case. */ static boolean is_empty_bin( const struct cmd_bin *bin ) { return bin->head == NULL; } /** * Rasterize/execute all bins within a scene. * Called per thread. */ static void rasterize_scene(struct lp_rasterizer_task *task, struct lp_scene *scene) { task->scene = scene; if (!task->rast->no_rast && !scene->discard) { /* loop over scene bins, rasterize each */ { struct cmd_bin *bin; int i, j; assert(scene); while ((bin = lp_scene_bin_iter_next(scene, &i, &j))) { if (!is_empty_bin( bin )) rasterize_bin(task, bin, i, j); } } } if (scene->fence) { lp_fence_signal(scene->fence); } task->scene = NULL; } /** * Called by setup module when it has something for us to render. */ void lp_rast_queue_scene( struct lp_rasterizer *rast, struct lp_scene *scene) { LP_DBG(DEBUG_SETUP, "%s\n", __FUNCTION__); if (rast->num_threads == 0) { /* no threading */ lp_rast_begin( rast, scene ); rasterize_scene( &rast->tasks[0], scene ); lp_rast_end( rast ); rast->curr_scene = NULL; } else { /* threaded rendering! */ unsigned i; lp_scene_enqueue( rast->full_scenes, scene ); /* signal the threads that there's work to do */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_signal(&rast->tasks[i].work_ready); } } LP_DBG(DEBUG_SETUP, "%s done \n", __FUNCTION__); } void lp_rast_finish( struct lp_rasterizer *rast ) { if (rast->num_threads == 0) { /* nothing to do */ } else { int i; /* wait for work to complete */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_wait(&rast->tasks[i].work_done); } } } /** * This is the thread's main entrypoint. * It's a simple loop: * 1. wait for work * 2. do work * 3. signal that we're done */ static PIPE_THREAD_ROUTINE( thread_function, init_data ) { struct lp_rasterizer_task *task = (struct lp_rasterizer_task *) init_data; struct lp_rasterizer *rast = task->rast; boolean debug = false; while (1) { /* wait for work */ if (debug) debug_printf("thread %d waiting for work\n", task->thread_index); pipe_semaphore_wait(&task->work_ready); if (rast->exit_flag) break; if (task->thread_index == 0) { /* thread[0]: * - get next scene to rasterize * - map the framebuffer surfaces */ lp_rast_begin( rast, lp_scene_dequeue( rast->full_scenes, TRUE ) ); } /* Wait for all threads to get here so that threads[1+] don't * get a null rast->curr_scene pointer. */ pipe_barrier_wait( &rast->barrier ); /* do work */ if (debug) debug_printf("thread %d doing work\n", task->thread_index); rasterize_scene(task, rast->curr_scene); /* wait for all threads to finish with this scene */ pipe_barrier_wait( &rast->barrier ); /* XXX: shouldn't be necessary: */ if (task->thread_index == 0) { lp_rast_end( rast ); } /* signal done with work */ if (debug) debug_printf("thread %d done working\n", task->thread_index); pipe_semaphore_signal(&task->work_done); } return NULL; } /** * Initialize semaphores and spawn the threads. */ static void create_rast_threads(struct lp_rasterizer *rast) { unsigned i; /* NOTE: if num_threads is zero, we won't use any threads */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_init(&rast->tasks[i].work_ready, 0); pipe_semaphore_init(&rast->tasks[i].work_done, 0); rast->threads[i] = pipe_thread_create(thread_function, (void *) &rast->tasks[i]); } } /** * Create new lp_rasterizer. If num_threads is zero, don't create any * new threads, do rendering synchronously. * \param num_threads number of rasterizer threads to create */ struct lp_rasterizer * lp_rast_create( unsigned num_threads ) { struct lp_rasterizer *rast; unsigned i; rast = CALLOC_STRUCT(lp_rasterizer); if (!rast) { goto no_rast; } rast->full_scenes = lp_scene_queue_create(); if (!rast->full_scenes) { goto no_full_scenes; } for (i = 0; i < Elements(rast->tasks); i++) { struct lp_rasterizer_task *task = &rast->tasks[i]; task->rast = rast; task->thread_index = i; } rast->num_threads = num_threads; rast->no_rast = debug_get_bool_option("LP_NO_RAST", FALSE); create_rast_threads(rast); /* for synchronizing rasterization threads */ pipe_barrier_init( &rast->barrier, rast->num_threads ); memset(lp_dummy_tile, 0, sizeof lp_dummy_tile); return rast; no_full_scenes: FREE(rast); no_rast: return NULL; } /* Shutdown: */ void lp_rast_destroy( struct lp_rasterizer *rast ) { unsigned i; /* Set exit_flag and signal each thread's work_ready semaphore. * Each thread will be woken up, notice that the exit_flag is set and * break out of its main loop. The thread will then exit. */ rast->exit_flag = TRUE; for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_signal(&rast->tasks[i].work_ready); } /* Wait for threads to terminate before cleaning up per-thread data */ for (i = 0; i < rast->num_threads; i++) { pipe_thread_wait(rast->threads[i]); } /* Clean up per-thread data */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_destroy(&rast->tasks[i].work_ready); pipe_semaphore_destroy(&rast->tasks[i].work_done); } /* for synchronizing rasterization threads */ pipe_barrier_destroy( &rast->barrier ); lp_scene_queue_destroy(rast->full_scenes); FREE(rast); } /** Return number of rasterization threads */ unsigned lp_rast_get_num_threads( struct lp_rasterizer *rast ) { return rast->num_threads; }