/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_surface.h" #include "lp_scene_queue.h" #include "lp_debug.h" #include "lp_fence.h" #include "lp_perf.h" #include "lp_query.h" #include "lp_rast.h" #include "lp_rast_priv.h" #include "lp_tile_soa.h" #include "gallivm/lp_bld_debug.h" #include "lp_scene.h" /** * Begin rasterizing a scene. * Called once per scene by one thread. */ static void lp_rast_begin( struct lp_rasterizer *rast, struct lp_scene *scene ) { const struct pipe_framebuffer_state *fb = &scene->fb; int i; rast->curr_scene = scene; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); rast->state.nr_cbufs = scene->fb.nr_cbufs; for (i = 0; i < rast->state.nr_cbufs; i++) { struct pipe_surface *cbuf = scene->fb.cbufs[i]; llvmpipe_resource_map(cbuf->texture, cbuf->face, cbuf->level, cbuf->zslice, LP_TEX_USAGE_READ_WRITE, LP_TEX_LAYOUT_NONE); } if (fb->zsbuf) { struct pipe_surface *zsbuf = scene->fb.zsbuf; rast->zsbuf.stride = llvmpipe_resource_stride(zsbuf->texture, zsbuf->level); rast->zsbuf.blocksize = util_format_get_blocksize(zsbuf->texture->format); rast->zsbuf.map = llvmpipe_resource_map(zsbuf->texture, zsbuf->face, zsbuf->level, zsbuf->zslice, LP_TEX_USAGE_READ_WRITE, LP_TEX_LAYOUT_NONE); } lp_scene_bin_iter_begin( scene ); } static void lp_rast_end( struct lp_rasterizer *rast ) { struct lp_scene *scene = rast->curr_scene; unsigned i; /* Unmap color buffers */ for (i = 0; i < rast->state.nr_cbufs; i++) { struct pipe_surface *cbuf = scene->fb.cbufs[i]; llvmpipe_resource_unmap(cbuf->texture, cbuf->face, cbuf->level, cbuf->zslice); } /* Unmap z/stencil buffer */ if (rast->zsbuf.map) { struct pipe_surface *zsbuf = scene->fb.zsbuf; llvmpipe_resource_unmap(zsbuf->texture, zsbuf->face, zsbuf->level, zsbuf->zslice); rast->zsbuf.map = NULL; } lp_scene_reset( rast->curr_scene ); rast->curr_scene = NULL; #ifdef DEBUG if (0) debug_printf("Post render scene: tile unswizzle: %u tile swizzle: %u\n", lp_tile_unswizzle_count, lp_tile_swizzle_count); #endif } /** * Begining rasterization of a tile. * \param x window X position of the tile, in pixels * \param y window Y position of the tile, in pixels */ static void lp_rast_tile_begin(struct lp_rasterizer_task *task, unsigned x, unsigned y) { struct lp_rasterizer *rast = task->rast; struct lp_scene *scene = rast->curr_scene; enum lp_texture_usage usage; unsigned buf; LP_DBG(DEBUG_RAST, "%s %d,%d\n", __FUNCTION__, x, y); assert(x % TILE_SIZE == 0); assert(y % TILE_SIZE == 0); task->x = x; task->y = y; if (scene->has_color_clear) usage = LP_TEX_USAGE_WRITE_ALL; else usage = LP_TEX_USAGE_READ_WRITE; /* get pointers to color tile(s) */ for (buf = 0; buf < rast->state.nr_cbufs; buf++) { struct pipe_surface *cbuf = rast->curr_scene->fb.cbufs[buf]; struct llvmpipe_resource *lpt; assert(cbuf); lpt = llvmpipe_resource(cbuf->texture); task->color_tiles[buf] = llvmpipe_get_texture_tile(lpt, cbuf->face + cbuf->zslice, cbuf->level, usage, x, y); assert(task->color_tiles[buf]); } /* get pointer to depth/stencil tile */ { struct pipe_surface *zsbuf = rast->curr_scene->fb.zsbuf; if (zsbuf) { struct llvmpipe_resource *lpt = llvmpipe_resource(zsbuf->texture); if (scene->has_depthstencil_clear) usage = LP_TEX_USAGE_WRITE_ALL; else usage = LP_TEX_USAGE_READ_WRITE; /* "prime" the tile: convert data from linear to tiled if necessary * and update the tile's layout info. */ (void) llvmpipe_get_texture_tile(lpt, zsbuf->face + zsbuf->zslice, zsbuf->level, usage, x, y); /* Get actual pointer to the tile data. Note that depth/stencil * data is tiled differently than color data. */ task->depth_tile = lp_rast_get_depth_block_pointer(task, x, y); assert(task->depth_tile); } else { task->depth_tile = NULL; } } } /** * Clear the rasterizer's current color tile. * This is a bin command called during bin processing. */ void lp_rast_clear_color(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_rasterizer *rast = task->rast; const uint8_t *clear_color = arg.clear_color; unsigned i; LP_DBG(DEBUG_RAST, "%s 0x%x,0x%x,0x%x,0x%x\n", __FUNCTION__, clear_color[0], clear_color[1], clear_color[2], clear_color[3]); if (clear_color[0] == clear_color[1] && clear_color[1] == clear_color[2] && clear_color[2] == clear_color[3]) { /* clear to grayscale value {x, x, x, x} */ for (i = 0; i < rast->state.nr_cbufs; i++) { uint8_t *ptr = task->color_tiles[i]; memset(ptr, clear_color[0], TILE_SIZE * TILE_SIZE * 4); } } else { /* Non-gray color. * Note: if the swizzled tile layout changes (see TILE_PIXEL) this code * will need to change. It'll be pretty obvious when clearing no longer * works. */ const unsigned chunk = TILE_SIZE / 4; for (i = 0; i < rast->state.nr_cbufs; i++) { uint8_t *c = task->color_tiles[i]; unsigned j; for (j = 0; j < 4 * TILE_SIZE; j++) { memset(c, clear_color[0], chunk); c += chunk; memset(c, clear_color[1], chunk); c += chunk; memset(c, clear_color[2], chunk); c += chunk; memset(c, clear_color[3], chunk); c += chunk; } } } LP_COUNT(nr_color_tile_clear); } /** * Clear the rasterizer's current z/stencil tile. * This is a bin command called during bin processing. */ void lp_rast_clear_zstencil(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_rasterizer *rast = task->rast; const struct lp_rast_clearzs *clearzs = arg.clear_zstencil; unsigned clear_value = clearzs->clearzs_value; unsigned clear_mask = clearzs->clearzs_mask; const unsigned height = TILE_SIZE / TILE_VECTOR_HEIGHT; const unsigned width = TILE_SIZE * TILE_VECTOR_HEIGHT; const unsigned block_size = rast->zsbuf.blocksize; const unsigned dst_stride = rast->zsbuf.stride * TILE_VECTOR_HEIGHT; uint8_t *dst; unsigned i, j; LP_DBG(DEBUG_RAST, "%s 0x%x%x\n", __FUNCTION__, clear_value, clear_mask); /* * Clear the aera of the swizzled depth/depth buffer matching this tile, in * stripes of TILE_VECTOR_HEIGHT x TILE_SIZE at a time. * * The swizzled depth format is such that the depths for * TILE_VECTOR_HEIGHT x TILE_VECTOR_WIDTH pixels have consecutive offsets. */ dst = task->depth_tile; if (lp_is_dummy_tile(dst)) return; assert(dst == lp_rast_get_depth_block_pointer(task, task->x, task->y)); switch (block_size) { case 1: memset(dst, (uint8_t) clear_value, height * width); break; case 2: for (i = 0; i < height; i++) { uint16_t *row = (uint16_t *)dst; for (j = 0; j < width; j++) *row++ = (uint16_t) clear_value; dst += dst_stride; } break; case 4: if (clear_mask == 0xffffffff) { for (i = 0; i < height; i++) { uint32_t *row = (uint32_t *)dst; for (j = 0; j < width; j++) *row++ = clear_value; dst += dst_stride; } } else { for (i = 0; i < height; i++) { uint32_t *row = (uint32_t *)dst; for (j = 0; j < width; j++) { uint32_t tmp = ~clear_mask & *row; *row++ = (clear_value & clear_mask) | tmp; } dst += dst_stride; } } break; default: assert(0); break; } } /** * Load tile color from the framebuffer surface. * This is a bin command called during bin processing. */ #if 0 void lp_rast_load_color(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_rasterizer *rast = task->rast; unsigned buf; enum lp_texture_usage usage; LP_DBG(DEBUG_RAST, "%s at %u, %u\n", __FUNCTION__, x, y); if (scene->has_color_clear) usage = LP_TEX_USAGE_WRITE_ALL; else usage = LP_TEX_USAGE_READ_WRITE; /* Get pointers to color tile(s). * This will convert linear data to tiled if needed. */ for (buf = 0; buf < rast->state.nr_cbufs; buf++) { struct pipe_surface *cbuf = rast->curr_scene->fb.cbufs[buf]; struct llvmpipe_texture *lpt; assert(cbuf); lpt = llvmpipe_texture(cbuf->texture); task->color_tiles[buf] = llvmpipe_get_texture_tile(lpt, cbuf->face + cbuf->zslice, cbuf->level, usage, task->x, task->y); assert(task->color_tiles[buf]); } } #endif /** * Convert the color tile from tiled to linear layout. * This is generally only done when we're flushing the scene just prior to * SwapBuffers. If we didn't do this here, we'd have to convert the entire * tiled color buffer to linear layout in the llvmpipe_texture_unmap() * function. It's better to do it here to take advantage of * threading/parallelism. * This is a bin command which is stored in all bins. */ void lp_rast_store_color( struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_rasterizer *rast = task->rast; struct lp_scene *scene = rast->curr_scene; unsigned buf; for (buf = 0; buf < rast->state.nr_cbufs; buf++) { struct pipe_surface *cbuf = scene->fb.cbufs[buf]; const unsigned face = cbuf->face, level = cbuf->level; struct llvmpipe_resource *lpt = llvmpipe_resource(cbuf->texture); /* this will convert the tiled data to linear if needed */ (void) llvmpipe_get_texture_tile_linear(lpt, face, level, LP_TEX_USAGE_READ, task->x, task->y); } } /** * This is a bin command called during bin processing. */ void lp_rast_set_state(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_state *state = arg.set_state; LP_DBG(DEBUG_RAST, "%s %p\n", __FUNCTION__, (void *) state); /* just set the current state pointer for this rasterizer */ task->current_state = state; } /** * Run the shader on all blocks in a tile. This is used when a tile is * completely contained inside a triangle. * This is a bin command called during bin processing. */ void lp_rast_shade_tile(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_rasterizer *rast = task->rast; const struct lp_rast_state *state = task->current_state; const struct lp_rast_shader_inputs *inputs = arg.shade_tile; struct lp_fragment_shader_variant *variant = state->variant; const unsigned tile_x = task->x, tile_y = task->y; unsigned x, y; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); /* render the whole 64x64 tile in 4x4 chunks */ for (y = 0; y < TILE_SIZE; y += 4){ for (x = 0; x < TILE_SIZE; x += 4) { uint8_t *color[PIPE_MAX_COLOR_BUFS]; uint32_t *depth; unsigned i; /* color buffer */ for (i = 0; i < rast->state.nr_cbufs; i++) color[i] = lp_rast_get_color_block_pointer(task, i, tile_x + x, tile_y + y); /* depth buffer */ depth = lp_rast_get_depth_block_pointer(task, tile_x + x, tile_y + y); /* run shader on 4x4 block */ variant->jit_function[RAST_WHOLE]( &state->jit_context, tile_x + x, tile_y + y, inputs->facing, inputs->a0, inputs->dadx, inputs->dady, color, depth, INT_MIN, INT_MIN, INT_MIN, NULL, NULL, NULL, &task->vis_counter); } } } /** * Compute shading for a 4x4 block of pixels. * This is a bin command called during bin processing. * \param x X position of quad in window coords * \param y Y position of quad in window coords */ void lp_rast_shade_quads( struct lp_rasterizer_task *task, const struct lp_rast_shader_inputs *inputs, unsigned x, unsigned y, int32_t c1, int32_t c2, int32_t c3) { const struct lp_rast_state *state = task->current_state; struct lp_fragment_shader_variant *variant = state->variant; struct lp_rasterizer *rast = task->rast; uint8_t *color[PIPE_MAX_COLOR_BUFS]; void *depth; unsigned i; assert(state); /* Sanity checks */ assert(x % TILE_VECTOR_WIDTH == 0); assert(y % TILE_VECTOR_HEIGHT == 0); assert((x % 4) == 0); assert((y % 4) == 0); /* color buffer */ for (i = 0; i < rast->state.nr_cbufs; i++) { color[i] = lp_rast_get_color_block_pointer(task, i, x, y); assert(lp_check_alignment(color[i], 16)); } /* depth buffer */ depth = lp_rast_get_depth_block_pointer(task, x, y); assert(lp_check_alignment(state->jit_context.blend_color, 16)); assert(lp_check_alignment(inputs->step[0], 16)); assert(lp_check_alignment(inputs->step[1], 16)); assert(lp_check_alignment(inputs->step[2], 16)); /* run shader on 4x4 block */ variant->jit_function[RAST_EDGE_TEST]( &state->jit_context, x, y, inputs->facing, inputs->a0, inputs->dadx, inputs->dady, color, depth, c1, c2, c3, inputs->step[0], inputs->step[1], inputs->step[2], &task->vis_counter); } /** * Set top row and left column of the tile's pixels to white. For debugging. */ static void outline_tile(uint8_t *tile) { const uint8_t val = 0xff; unsigned i; for (i = 0; i < TILE_SIZE; i++) { TILE_PIXEL(tile, i, 0, 0) = val; TILE_PIXEL(tile, i, 0, 1) = val; TILE_PIXEL(tile, i, 0, 2) = val; TILE_PIXEL(tile, i, 0, 3) = val; TILE_PIXEL(tile, 0, i, 0) = val; TILE_PIXEL(tile, 0, i, 1) = val; TILE_PIXEL(tile, 0, i, 2) = val; TILE_PIXEL(tile, 0, i, 3) = val; } } /** * Draw grid of gray lines at 16-pixel intervals across the tile to * show the sub-tile boundaries. For debugging. */ static void outline_subtiles(uint8_t *tile) { const uint8_t val = 0x80; const unsigned step = 16; unsigned i, j; for (i = 0; i < TILE_SIZE; i += step) { for (j = 0; j < TILE_SIZE; j++) { TILE_PIXEL(tile, i, j, 0) = val; TILE_PIXEL(tile, i, j, 1) = val; TILE_PIXEL(tile, i, j, 2) = val; TILE_PIXEL(tile, i, j, 3) = val; TILE_PIXEL(tile, j, i, 0) = val; TILE_PIXEL(tile, j, i, 1) = val; TILE_PIXEL(tile, j, i, 2) = val; TILE_PIXEL(tile, j, i, 3) = val; } } outline_tile(tile); } /** * Called when we're done writing to a color tile. */ static void lp_rast_tile_end(struct lp_rasterizer_task *task) { #ifdef DEBUG if (LP_DEBUG & (DEBUG_SHOW_SUBTILES | DEBUG_SHOW_TILES)) { struct lp_rasterizer *rast = task->rast; unsigned buf; for (buf = 0; buf < rast->state.nr_cbufs; buf++) { uint8_t *color = lp_rast_get_color_block_pointer(task, buf, task->x, task->y); if (LP_DEBUG & DEBUG_SHOW_SUBTILES) outline_subtiles(color); else if (LP_DEBUG & DEBUG_SHOW_TILES) outline_tile(color); } } #else (void) outline_subtiles; #endif /* debug */ memset(task->color_tiles, 0, sizeof(task->color_tiles)); task->depth_tile = NULL; } /** * Signal on a fence. This is called during bin execution/rasterization. * Called per thread. */ void lp_rast_fence(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct lp_fence *fence = arg.fence; lp_fence_signal(fence); } /** * Begin a new occlusion query. * This is a bin command put in all bins. * Called per thread. */ void lp_rast_begin_query(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { /* Reset the per-task counter */ task->vis_counter = 0; } /** * End the current occlusion query. * This is a bin command put in all bins. * Called per thread. */ void lp_rast_end_query(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { struct llvmpipe_query *pq = arg.query_obj; pipe_mutex_lock(pq->mutex); { /* Accumulate the visible fragment counter from this tile in * the query object. */ pq->count[task->thread_index] += task->vis_counter; /* check if this is the last tile in the scene */ pq->tile_count++; if (pq->tile_count == pq->num_tiles) { uint i; /* sum the per-thread counters for the query */ pq->result = 0; for (i = 0; i < LP_MAX_THREADS; i++) { pq->result += pq->count[i]; } /* reset counters (in case this query is re-used in the scene) */ memset(pq->count, 0, sizeof(pq->count)); pq->tile_count = 0; pq->binned = FALSE; pq->done = TRUE; } } pipe_mutex_unlock(pq->mutex); } /** * Rasterize commands for a single bin. * \param x, y position of the bin's tile in the framebuffer * Must be called between lp_rast_begin() and lp_rast_end(). * Called per thread. */ static void rasterize_bin(struct lp_rasterizer_task *task, const struct cmd_bin *bin, int x, int y) { const struct cmd_block_list *commands = &bin->commands; struct cmd_block *block; unsigned k; lp_rast_tile_begin( task, x * TILE_SIZE, y * TILE_SIZE ); /* simply execute each of the commands in the block list */ for (block = commands->head; block; block = block->next) { for (k = 0; k < block->count; k++) { block->cmd[k]( task, block->arg[k] ); } } lp_rast_tile_end(task); /* Free data for this bin. */ lp_scene_bin_reset( task->rast->curr_scene, x, y); } #define RAST(x) { lp_rast_##x, #x } static struct { lp_rast_cmd cmd; const char *name; } cmd_names[] = { RAST(clear_color), RAST(clear_zstencil), RAST(triangle), RAST(shade_tile), RAST(set_state), RAST(store_color), RAST(fence), RAST(begin_query), RAST(end_query), }; static void debug_bin( const struct cmd_bin *bin ) { const struct cmd_block *head = bin->commands.head; int i, j; for (i = 0; i < head->count; i++) { debug_printf("%d: ", i); for (j = 0; j < Elements(cmd_names); j++) { if (head->cmd[i] == cmd_names[j].cmd) { debug_printf("%s\n", cmd_names[j].name); break; } } if (j == Elements(cmd_names)) debug_printf("...other\n"); } } /* An empty bin is one that just loads the contents of the tile and * stores them again unchanged. This typically happens when bins have * been flushed for some reason in the middle of a frame, or when * incremental updates are being made to a render target. * * Try to avoid doing pointless work in this case. */ static boolean is_empty_bin( const struct cmd_bin *bin ) { const struct cmd_block *head = bin->commands.head; int i; if (0) debug_bin(bin); /* We emit at most two load-tile commands at the start of the first * command block. In addition we seem to emit a couple of * set-state commands even in empty bins. * * As a heuristic, if a bin has more than 4 commands, consider it * non-empty. */ if (head->next != NULL || head->count > 4) { return FALSE; } for (i = 0; i < head->count; i++) if (head->cmd[i] != lp_rast_set_state) { return FALSE; } return TRUE; } /** * Rasterize/execute all bins within a scene. * Called per thread. */ static void rasterize_scene(struct lp_rasterizer_task *task, struct lp_scene *scene) { /* loop over scene bins, rasterize each */ #if 0 { unsigned i, j; for (i = 0; i < scene->tiles_x; i++) { for (j = 0; j < scene->tiles_y; j++) { struct cmd_bin *bin = lp_scene_get_bin(scene, i, j); rasterize_bin(task, bin, i, j); } } } #else { struct cmd_bin *bin; int x, y; assert(scene); while ((bin = lp_scene_bin_iter_next(scene, &x, &y))) { if (!is_empty_bin( bin )) rasterize_bin(task, bin, x, y); } } #endif if (scene->fence) { lp_rast_fence(task, lp_rast_arg_fence(scene->fence)); } } /** * Called by setup module when it has something for us to render. */ void lp_rast_queue_scene( struct lp_rasterizer *rast, struct lp_scene *scene) { LP_DBG(DEBUG_SETUP, "%s\n", __FUNCTION__); if (rast->num_threads == 0) { /* no threading */ lp_rast_begin( rast, scene ); rasterize_scene( &rast->tasks[0], scene ); lp_scene_reset( scene ); lp_rast_end( rast ); rast->curr_scene = NULL; } else { /* threaded rendering! */ unsigned i; lp_scene_enqueue( rast->full_scenes, scene ); /* signal the threads that there's work to do */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_signal(&rast->tasks[i].work_ready); } } LP_DBG(DEBUG_SETUP, "%s done \n", __FUNCTION__); } void lp_rast_finish( struct lp_rasterizer *rast ) { if (rast->num_threads == 0) { /* nothing to do */ } else { int i; /* wait for work to complete */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_wait(&rast->tasks[i].work_done); } } } /** * This is the thread's main entrypoint. * It's a simple loop: * 1. wait for work * 2. do work * 3. signal that we're done */ static PIPE_THREAD_ROUTINE( thread_func, init_data ) { struct lp_rasterizer_task *task = (struct lp_rasterizer_task *) init_data; struct lp_rasterizer *rast = task->rast; boolean debug = false; while (1) { /* wait for work */ if (debug) debug_printf("thread %d waiting for work\n", task->thread_index); pipe_semaphore_wait(&task->work_ready); if (rast->exit_flag) break; if (task->thread_index == 0) { /* thread[0]: * - get next scene to rasterize * - map the framebuffer surfaces */ lp_rast_begin( rast, lp_scene_dequeue( rast->full_scenes, TRUE ) ); } /* Wait for all threads to get here so that threads[1+] don't * get a null rast->curr_scene pointer. */ pipe_barrier_wait( &rast->barrier ); /* do work */ if (debug) debug_printf("thread %d doing work\n", task->thread_index); rasterize_scene(task, rast->curr_scene); /* wait for all threads to finish with this scene */ pipe_barrier_wait( &rast->barrier ); /* XXX: shouldn't be necessary: */ if (task->thread_index == 0) { lp_rast_end( rast ); } /* signal done with work */ if (debug) debug_printf("thread %d done working\n", task->thread_index); pipe_semaphore_signal(&task->work_done); } return NULL; } /** * Initialize semaphores and spawn the threads. */ static void create_rast_threads(struct lp_rasterizer *rast) { unsigned i; /* NOTE: if num_threads is zero, we won't use any threads */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_init(&rast->tasks[i].work_ready, 0); pipe_semaphore_init(&rast->tasks[i].work_done, 0); rast->threads[i] = pipe_thread_create(thread_func, (void *) &rast->tasks[i]); } } /** * Create new lp_rasterizer. If num_threads is zero, don't create any * new threads, do rendering synchronously. * \param num_threads number of rasterizer threads to create */ struct lp_rasterizer * lp_rast_create( unsigned num_threads ) { struct lp_rasterizer *rast; unsigned i; rast = CALLOC_STRUCT(lp_rasterizer); if(!rast) return NULL; rast->full_scenes = lp_scene_queue_create(); for (i = 0; i < Elements(rast->tasks); i++) { struct lp_rasterizer_task *task = &rast->tasks[i]; task->rast = rast; task->thread_index = i; } rast->num_threads = num_threads; create_rast_threads(rast); /* for synchronizing rasterization threads */ pipe_barrier_init( &rast->barrier, rast->num_threads ); return rast; } /* Shutdown: */ void lp_rast_destroy( struct lp_rasterizer *rast ) { unsigned i; /* Set exit_flag and signal each thread's work_ready semaphore. * Each thread will be woken up, notice that the exit_flag is set and * break out of its main loop. The thread will then exit. */ rast->exit_flag = TRUE; for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_signal(&rast->tasks[i].work_ready); } /* Wait for threads to terminate before cleaning up per-thread data */ for (i = 0; i < rast->num_threads; i++) { pipe_thread_wait(rast->threads[i]); } /* Clean up per-thread data */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_destroy(&rast->tasks[i].work_ready); pipe_semaphore_destroy(&rast->tasks[i].work_done); } /* for synchronizing rasterization threads */ pipe_barrier_destroy( &rast->barrier ); lp_scene_queue_destroy(rast->full_scenes); FREE(rast); } /** Return number of rasterization threads */ unsigned lp_rast_get_num_threads( struct lp_rasterizer *rast ) { return rast->num_threads; }