/************************************************************************** * * Copyright 2009 VMware, Inc. * Copyright 2007-2008 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Position and shader input interpolation. * * @author Jose Fonseca */ #include "pipe/p_shader_tokens.h" #include "util/u_debug.h" #include "util/u_memory.h" #include "util/u_math.h" #include "tgsi/tgsi_scan.h" #include "gallivm/lp_bld_debug.h" #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_arit.h" #include "gallivm/lp_bld_swizzle.h" #include "gallivm/lp_bld_flow.h" #include "lp_bld_interp.h" /* * The shader JIT function operates on blocks of quads. * Each block has 2x2 quads and each quad has 2x2 pixels. * * We iterate over the quads in order 0, 1, 2, 3: * * ################# * # | # | # * #---0---#---1---# * # | # | # * ################# * # | # | # * #---2---#---3---# * # | # | # * ################# * * If we iterate over multiple quads at once, quads 01 and 23 are processed * together. * * Within each quad, we have four pixels which are represented in SOA * order: * * ######### * # 0 | 1 # * #---+---# * # 2 | 3 # * ######### * * So the green channel (for example) of the four pixels is stored in * a single vector register: {g0, g1, g2, g3}. * The order stays the same even with multiple quads: * 0 1 4 5 * 2 3 6 7 * is stored as g0..g7 */ /** * Do one perspective divide per quad. * * For perspective interpolation, the final attribute value is given * * a' = a/w = a * oow * * where * * a = a0 + dadx*x + dady*y * w = w0 + dwdx*x + dwdy*y * oow = 1/w = 1/(w0 + dwdx*x + dwdy*y) * * Instead of computing the division per pixel, with this macro we compute the * division on the upper left pixel of each quad, and use a linear * approximation in the remaining pixels, given by: * * da'dx = (dadx - dwdx*a)*oow * da'dy = (dady - dwdy*a)*oow * * Ironically, this actually makes things slower -- probably because the * divide hardware unit is rarely used, whereas the multiply unit is typically * already saturated. */ #define PERSPECTIVE_DIVIDE_PER_QUAD 0 static const unsigned char quad_offset_x[16] = {0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3}; static const unsigned char quad_offset_y[16] = {0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3}; static void attrib_name(LLVMValueRef val, unsigned attrib, unsigned chan, const char *suffix) { if(attrib == 0) lp_build_name(val, "pos.%c%s", "xyzw"[chan], suffix); else lp_build_name(val, "input%u.%c%s", attrib - 1, "xyzw"[chan], suffix); } static void calc_offsets(struct lp_build_context *coeff_bld, unsigned quad_start_index, LLVMValueRef *pixoffx, LLVMValueRef *pixoffy) { unsigned i; unsigned num_pix = coeff_bld->type.length; struct gallivm_state *gallivm = coeff_bld->gallivm; LLVMBuilderRef builder = coeff_bld->gallivm->builder; LLVMValueRef nr, pixxf, pixyf; *pixoffx = coeff_bld->undef; *pixoffy = coeff_bld->undef; for (i = 0; i < num_pix; i++) { nr = lp_build_const_int32(gallivm, i); pixxf = lp_build_const_float(gallivm, quad_offset_x[i % num_pix] + (quad_start_index & 1) * 2); pixyf = lp_build_const_float(gallivm, quad_offset_y[i % num_pix] + (quad_start_index & 2)); *pixoffx = LLVMBuildInsertElement(builder, *pixoffx, pixxf, nr, ""); *pixoffy = LLVMBuildInsertElement(builder, *pixoffy, pixyf, nr, ""); } } /* Much easier, and significantly less instructions in the per-stamp * part (less than half) but overall more instructions so a loss if * most quads are active. Might be a win though with larger vectors. * No ability to do per-quad divide (doable but not implemented) * Could be made to work with passed in pixel offsets (i.e. active quad merging). */ static void coeffs_init_simple(struct lp_build_interp_soa_context *bld, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr) { struct lp_build_context *coeff_bld = &bld->coeff_bld; struct lp_build_context *setup_bld = &bld->setup_bld; struct gallivm_state *gallivm = coeff_bld->gallivm; LLVMBuilderRef builder = gallivm->builder; unsigned attrib; for (attrib = 0; attrib < bld->num_attribs; ++attrib) { /* * always fetch all 4 values for performance/simplicity * Note: we do that here because it seems to generate better * code. It generates a lot of moves initially but less * moves later. As far as I can tell this looks like a * llvm issue, instead of simply reloading the values from * the passed in pointers it if it runs out of registers * it spills/reloads them. Maybe some optimization passes * would help. * Might want to investigate this again later. */ const unsigned interp = bld->interp[attrib]; LLVMValueRef index = lp_build_const_int32(gallivm, attrib * TGSI_NUM_CHANNELS); LLVMValueRef ptr; LLVMValueRef dadxaos = setup_bld->zero; LLVMValueRef dadyaos = setup_bld->zero; LLVMValueRef a0aos = setup_bld->zero; switch (interp) { case LP_INTERP_PERSPECTIVE: /* fall-through */ case LP_INTERP_LINEAR: ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadxaos = LLVMBuildLoad(builder, ptr, ""); ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadyaos = LLVMBuildLoad(builder, ptr, ""); attrib_name(dadxaos, attrib, 0, ".dadxaos"); attrib_name(dadyaos, attrib, 0, ".dadyaos"); /* fall-through */ case LP_INTERP_CONSTANT: case LP_INTERP_FACING: ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); a0aos = LLVMBuildLoad(builder, ptr, ""); attrib_name(a0aos, attrib, 0, ".a0aos"); break; case LP_INTERP_POSITION: /* Nothing to do as the position coeffs are already setup in slot 0 */ continue; default: assert(0); break; } bld->a0aos[attrib] = a0aos; bld->dadxaos[attrib] = dadxaos; bld->dadyaos[attrib] = dadyaos; } } /** * Interpolate the shader input attribute values. * This is called for each (group of) quad(s). */ static void attribs_update_simple(struct lp_build_interp_soa_context *bld, struct gallivm_state *gallivm, LLVMValueRef loop_iter, int start, int end) { LLVMBuilderRef builder = gallivm->builder; struct lp_build_context *coeff_bld = &bld->coeff_bld; struct lp_build_context *setup_bld = &bld->setup_bld; LLVMValueRef oow = NULL; unsigned attrib; LLVMValueRef pixoffx; LLVMValueRef pixoffy; LLVMValueRef ptr; /* could do this with code-generated passed in pixel offsets too */ assert(loop_iter); ptr = LLVMBuildGEP(builder, bld->xoffset_store, &loop_iter, 1, ""); pixoffx = LLVMBuildLoad(builder, ptr, ""); ptr = LLVMBuildGEP(builder, bld->yoffset_store, &loop_iter, 1, ""); pixoffy = LLVMBuildLoad(builder, ptr, ""); pixoffx = LLVMBuildFAdd(builder, pixoffx, lp_build_broadcast_scalar(coeff_bld, bld->x), ""); pixoffy = LLVMBuildFAdd(builder, pixoffy, lp_build_broadcast_scalar(coeff_bld, bld->y), ""); for (attrib = start; attrib < end; attrib++) { const unsigned mask = bld->mask[attrib]; const unsigned interp = bld->interp[attrib]; unsigned chan; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (mask & (1 << chan)) { LLVMValueRef index; LLVMValueRef dadx = coeff_bld->zero; LLVMValueRef dady = coeff_bld->zero; LLVMValueRef a = coeff_bld->zero; index = lp_build_const_int32(gallivm, chan); switch (interp) { case LP_INTERP_PERSPECTIVE: /* fall-through */ case LP_INTERP_LINEAR: if (attrib == 0 && chan == 0) { dadx = coeff_bld->one; if (bld->pos_offset) { a = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset); } } else if (attrib == 0 && chan == 1) { dady = coeff_bld->one; if (bld->pos_offset) { a = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset); } } else { dadx = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, bld->dadxaos[attrib], index); dady = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, bld->dadyaos[attrib], index); a = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, bld->a0aos[attrib], index); } /* * a = a0 + (x * dadx + y * dady) */ a = lp_build_fmuladd(builder, dadx, pixoffx, a); a = lp_build_fmuladd(builder, dady, pixoffy, a); if (interp == LP_INTERP_PERSPECTIVE) { if (oow == NULL) { LLVMValueRef w = bld->attribs[0][3]; assert(attrib != 0); assert(bld->mask[0] & TGSI_WRITEMASK_W); oow = lp_build_rcp(coeff_bld, w); } a = lp_build_mul(coeff_bld, a, oow); } break; case LP_INTERP_CONSTANT: case LP_INTERP_FACING: a = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, bld->a0aos[attrib], index); break; case LP_INTERP_POSITION: assert(attrib > 0); a = bld->attribs[0][chan]; break; default: assert(0); break; } if ((attrib == 0) && (chan == 2)){ /* FIXME: Depth values can exceed 1.0, due to the fact that * setup interpolation coefficients refer to (0,0) which causes * precision loss. So we must clamp to 1.0 here to avoid artifacts */ a = lp_build_min(coeff_bld, a, coeff_bld->one); } bld->attribs[attrib][chan] = a; } } } } /** * Initialize the bld->a, dadq fields. This involves fetching * those values from the arrays which are passed into the JIT function. */ static void coeffs_init(struct lp_build_interp_soa_context *bld, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr) { struct lp_build_context *coeff_bld = &bld->coeff_bld; struct lp_build_context *setup_bld = &bld->setup_bld; struct gallivm_state *gallivm = coeff_bld->gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef pixoffx, pixoffy; unsigned attrib; unsigned chan; unsigned i; pixoffx = coeff_bld->undef; pixoffy = coeff_bld->undef; for (i = 0; i < coeff_bld->type.length; i++) { LLVMValueRef nr = lp_build_const_int32(gallivm, i); LLVMValueRef pixxf = lp_build_const_float(gallivm, quad_offset_x[i]); LLVMValueRef pixyf = lp_build_const_float(gallivm, quad_offset_y[i]); pixoffx = LLVMBuildInsertElement(builder, pixoffx, pixxf, nr, ""); pixoffy = LLVMBuildInsertElement(builder, pixoffy, pixyf, nr, ""); } for (attrib = 0; attrib < bld->num_attribs; ++attrib) { const unsigned mask = bld->mask[attrib]; const unsigned interp = bld->interp[attrib]; LLVMValueRef index = lp_build_const_int32(gallivm, attrib * TGSI_NUM_CHANNELS); LLVMValueRef ptr; LLVMValueRef dadxaos = setup_bld->zero; LLVMValueRef dadyaos = setup_bld->zero; LLVMValueRef a0aos = setup_bld->zero; /* always fetch all 4 values for performance/simplicity */ switch (interp) { case LP_INTERP_PERSPECTIVE: /* fall-through */ case LP_INTERP_LINEAR: ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadxaos = LLVMBuildLoad(builder, ptr, ""); ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadyaos = LLVMBuildLoad(builder, ptr, ""); attrib_name(dadxaos, attrib, 0, ".dadxaos"); attrib_name(dadyaos, attrib, 0, ".dadyaos"); /* fall-through */ case LP_INTERP_CONSTANT: case LP_INTERP_FACING: ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); a0aos = LLVMBuildLoad(builder, ptr, ""); attrib_name(a0aos, attrib, 0, ".a0aos"); break; case LP_INTERP_POSITION: /* Nothing to do as the position coeffs are already setup in slot 0 */ continue; default: assert(0); break; } /* * a = a0 + (x * dadx + y * dady) * a0aos is the attrib value at top left corner of stamp */ if (interp != LP_INTERP_CONSTANT && interp != LP_INTERP_FACING) { LLVMValueRef x = lp_build_broadcast_scalar(setup_bld, bld->x); LLVMValueRef y = lp_build_broadcast_scalar(setup_bld, bld->y); a0aos = lp_build_fmuladd(builder, x, dadxaos, a0aos); a0aos = lp_build_fmuladd(builder, y, dadyaos, a0aos); } /* * dadq = {0, dadx, dady, dadx + dady} * for two quads (side by side) this is: * {0, dadx, dady, dadx+dady, 2*dadx, 2*dadx+dady, 3*dadx+dady} */ for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { /* this generates a CRAPLOAD of shuffles... */ if (mask & (1 << chan)) { LLVMValueRef dadx, dady; LLVMValueRef dadq, dadq2; LLVMValueRef a; LLVMValueRef chan_index = lp_build_const_int32(gallivm, chan); if (attrib == 0 && chan == 0) { a = bld->x; if (bld->pos_offset) { a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), ""); } a = lp_build_broadcast_scalar(coeff_bld, a); dadx = coeff_bld->one; dady = coeff_bld->zero; } else if (attrib == 0 && chan == 1) { a = bld->y; if (bld->pos_offset) { a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), ""); } a = lp_build_broadcast_scalar(coeff_bld, a); dady = coeff_bld->one; dadx = coeff_bld->zero; } else { dadx = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, dadxaos, chan_index); dady = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, dadyaos, chan_index); /* * a = {a, a, a, a} */ a = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, a0aos, chan_index); } dadx = LLVMBuildFMul(builder, dadx, pixoffx, ""); dady = LLVMBuildFMul(builder, dady, pixoffy, ""); dadq = LLVMBuildFAdd(builder, dadx, dady, ""); /* * Compute the attrib values on the upper-left corner of each * group of quads. * Note that if we process 2 quads at once this doesn't * really exactly to what we want. * We need to access elem 0 and 2 respectively later if we process * 2 quads at once. */ if (interp != LP_INTERP_CONSTANT && interp != LP_INTERP_FACING) { dadq2 = LLVMBuildFAdd(builder, dadq, dadq, ""); a = LLVMBuildFAdd(builder, a, dadq2, ""); } #if PERSPECTIVE_DIVIDE_PER_QUAD /* * a *= 1 / w */ /* * XXX since we're only going to access elements 0,2 out of 8 * if we have 8-wide vectors we should do the division only 4-wide. * a is really a 2-elements in a 4-wide vector disguised as 8-wide * in this case. */ if (interp == LP_INTERP_PERSPECTIVE) { LLVMValueRef w = bld->a[0][3]; assert(attrib != 0); assert(bld->mask[0] & TGSI_WRITEMASK_W); if (!bld->oow) { bld->oow = lp_build_rcp(coeff_bld, w); lp_build_name(bld->oow, "oow"); } a = lp_build_mul(coeff_bld, a, bld->oow); } #endif attrib_name(a, attrib, chan, ".a"); attrib_name(dadq, attrib, chan, ".dadq"); bld->a[attrib][chan] = lp_build_alloca(gallivm, LLVMTypeOf(a), ""); LLVMBuildStore(builder, a, bld->a[attrib][chan]); bld->dadq[attrib][chan] = dadq; } } } } /** * Increment the shader input attribute values. * This is called when we move from one quad to the next. */ static void attribs_update(struct lp_build_interp_soa_context *bld, struct gallivm_state *gallivm, LLVMValueRef loop_iter, int start, int end) { LLVMBuilderRef builder = gallivm->builder; struct lp_build_context *coeff_bld = &bld->coeff_bld; LLVMValueRef oow = NULL; unsigned attrib; unsigned chan; for(attrib = start; attrib < end; ++attrib) { const unsigned mask = bld->mask[attrib]; const unsigned interp = bld->interp[attrib]; for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { if(mask & (1 << chan)) { LLVMValueRef a; if (interp == LP_INTERP_CONSTANT || interp == LP_INTERP_FACING) { a = LLVMBuildLoad(builder, bld->a[attrib][chan], ""); } else if (interp == LP_INTERP_POSITION) { assert(attrib > 0); a = bld->attribs[0][chan]; } else { LLVMValueRef dadq; a = bld->a[attrib][chan]; /* * Broadcast the attribute value for this quad into all elements */ { /* stored as vector load as float */ LLVMTypeRef ptr_type = LLVMPointerType(LLVMFloatTypeInContext( gallivm->context), 0); LLVMValueRef ptr; a = LLVMBuildBitCast(builder, a, ptr_type, ""); ptr = LLVMBuildGEP(builder, a, &loop_iter, 1, ""); a = LLVMBuildLoad(builder, ptr, ""); a = lp_build_broadcast_scalar(&bld->coeff_bld, a); } /* * Get the derivatives. */ dadq = bld->dadq[attrib][chan]; #if PERSPECTIVE_DIVIDE_PER_QUAD if (interp == LP_INTERP_PERSPECTIVE) { LLVMValueRef dwdq = bld->dadq[0][3]; if (oow == NULL) { assert(bld->oow); oow = LLVMBuildShuffleVector(coeff_bld->builder, bld->oow, coeff_bld->undef, shuffle, ""); } dadq = lp_build_sub(coeff_bld, dadq, lp_build_mul(coeff_bld, a, dwdq)); dadq = lp_build_mul(coeff_bld, dadq, oow); } #endif /* * Add the derivatives */ a = lp_build_add(coeff_bld, a, dadq); #if !PERSPECTIVE_DIVIDE_PER_QUAD if (interp == LP_INTERP_PERSPECTIVE) { if (oow == NULL) { LLVMValueRef w = bld->attribs[0][3]; assert(attrib != 0); assert(bld->mask[0] & TGSI_WRITEMASK_W); oow = lp_build_rcp(coeff_bld, w); } a = lp_build_mul(coeff_bld, a, oow); } #endif if (attrib == 0 && chan == 2) { /* FIXME: Depth values can exceed 1.0, due to the fact that * setup interpolation coefficients refer to (0,0) which causes * precision loss. So we must clamp to 1.0 here to avoid artifacts */ a = lp_build_min(coeff_bld, a, coeff_bld->one); } attrib_name(a, attrib, chan, ""); } bld->attribs[attrib][chan] = a; } } } } /** * Generate the position vectors. * * Parameter x0, y0 are the integer values with upper left coordinates. */ static void pos_init(struct lp_build_interp_soa_context *bld, LLVMValueRef x0, LLVMValueRef y0) { LLVMBuilderRef builder = bld->coeff_bld.gallivm->builder; struct lp_build_context *coeff_bld = &bld->coeff_bld; bld->x = LLVMBuildSIToFP(builder, x0, coeff_bld->elem_type, ""); bld->y = LLVMBuildSIToFP(builder, y0, coeff_bld->elem_type, ""); } /** * Initialize fragment shader input attribute info. */ void lp_build_interp_soa_init(struct lp_build_interp_soa_context *bld, struct gallivm_state *gallivm, unsigned num_inputs, const struct lp_shader_input *inputs, boolean pixel_center_integer, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr, LLVMValueRef x0, LLVMValueRef y0) { struct lp_type coeff_type; struct lp_type setup_type; unsigned attrib; unsigned chan; memset(bld, 0, sizeof *bld); memset(&coeff_type, 0, sizeof coeff_type); coeff_type.floating = TRUE; coeff_type.sign = TRUE; coeff_type.width = 32; coeff_type.length = type.length; memset(&setup_type, 0, sizeof setup_type); setup_type.floating = TRUE; setup_type.sign = TRUE; setup_type.width = 32; setup_type.length = TGSI_NUM_CHANNELS; /* XXX: we don't support interpolating into any other types */ assert(memcmp(&coeff_type, &type, sizeof coeff_type) == 0); lp_build_context_init(&bld->coeff_bld, gallivm, coeff_type); lp_build_context_init(&bld->setup_bld, gallivm, setup_type); /* For convenience */ bld->pos = bld->attribs[0]; bld->inputs = (const LLVMValueRef (*)[TGSI_NUM_CHANNELS]) bld->attribs[1]; /* Position */ bld->mask[0] = TGSI_WRITEMASK_XYZW; bld->interp[0] = LP_INTERP_LINEAR; /* Inputs */ for (attrib = 0; attrib < num_inputs; ++attrib) { bld->mask[1 + attrib] = inputs[attrib].usage_mask; bld->interp[1 + attrib] = inputs[attrib].interp; } bld->num_attribs = 1 + num_inputs; /* Ensure all masked out input channels have a valid value */ for (attrib = 0; attrib < bld->num_attribs; ++attrib) { for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { bld->attribs[attrib][chan] = bld->coeff_bld.undef; } } if (pixel_center_integer) { bld->pos_offset = 0.0; } else { bld->pos_offset = 0.5; } pos_init(bld, x0, y0); /* * Simple method (single step interpolation) may be slower if vector length * is just 4, but the results are different (generally less accurate) with * the other method, so always use more accurate version. */ if (1) { bld->simple_interp = TRUE; { /* XXX this should use a global static table */ unsigned i; unsigned num_loops = 16 / type.length; LLVMValueRef pixoffx, pixoffy, index; LLVMValueRef ptr; bld->xoffset_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, type), lp_build_const_int32(gallivm, num_loops), ""); bld->yoffset_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, type), lp_build_const_int32(gallivm, num_loops), ""); for (i = 0; i < num_loops; i++) { index = lp_build_const_int32(gallivm, i); calc_offsets(&bld->coeff_bld, i*type.length/4, &pixoffx, &pixoffy); ptr = LLVMBuildGEP(builder, bld->xoffset_store, &index, 1, ""); LLVMBuildStore(builder, pixoffx, ptr); ptr = LLVMBuildGEP(builder, bld->yoffset_store, &index, 1, ""); LLVMBuildStore(builder, pixoffy, ptr); } } coeffs_init_simple(bld, a0_ptr, dadx_ptr, dady_ptr); } else { bld->simple_interp = FALSE; coeffs_init(bld, a0_ptr, dadx_ptr, dady_ptr); } } /* * Advance the position and inputs to the given quad within the block. */ void lp_build_interp_soa_update_inputs_dyn(struct lp_build_interp_soa_context *bld, struct gallivm_state *gallivm, LLVMValueRef quad_start_index) { if (bld->simple_interp) { attribs_update_simple(bld, gallivm, quad_start_index, 1, bld->num_attribs); } else { attribs_update(bld, gallivm, quad_start_index, 1, bld->num_attribs); } } void lp_build_interp_soa_update_pos_dyn(struct lp_build_interp_soa_context *bld, struct gallivm_state *gallivm, LLVMValueRef quad_start_index) { if (bld->simple_interp) { attribs_update_simple(bld, gallivm, quad_start_index, 0, 1); } else { attribs_update(bld, gallivm, quad_start_index, 0, 1); } }