/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #ifdef HAVE_VALGRIND #include #include #define VG(x) x #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x)) #else #define VG(x) #endif #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "pipe/p_screen.h" #include "util/u_inlines.h" #include "util/u_transfer.h" #include "util/u_upload_mgr.h" #include "i915_drm.h" #include "intel/compiler/brw_compiler.h" #include "intel/common/gen_l3_config.h" #include "intel/common/gen_sample_positions.h" #include "iris_batch.h" #include "iris_context.h" #include "iris_pipe.h" #include "iris_resource.h" #define __gen_address_type struct iris_address #define __gen_user_data struct iris_batch #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x)) static uint64_t __gen_combine_address(struct iris_batch *batch, void *location, struct iris_address addr, uint32_t delta) { uint64_t result = addr.offset + delta; if (addr.bo) { iris_use_pinned_bo(batch, addr.bo, addr.write); /* Assume this is a general address, not relative to a base. */ result += addr.bo->gtt_offset; } return result; } #define __genxml_cmd_length(cmd) cmd ## _length #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias #define __genxml_cmd_header(cmd) cmd ## _header #define __genxml_cmd_pack(cmd) cmd ## _pack static void * get_command_space(struct iris_batch *batch, unsigned bytes) { iris_require_command_space(batch, bytes); void *map = batch->cmdbuf.map_next; batch->cmdbuf.map_next += bytes; return map; } #define _iris_pack_command(batch, cmd, dst, name) \ for (struct cmd name = { __genxml_cmd_header(cmd) }, \ *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \ ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \ _dst = NULL; \ })) #define iris_pack_command(cmd, dst, name) \ _iris_pack_command(NULL, cmd, dst, name) #define iris_pack_state(cmd, dst, name) \ for (struct cmd name = {}, \ *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \ __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \ _dst = NULL) #define iris_emit_cmd(batch, cmd, name) \ _iris_pack_command(batch, cmd, get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name) #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \ do { \ uint32_t *dw = get_command_space(batch, 4 * num_dwords); \ for (uint32_t i = 0; i < num_dwords; i++) \ dw[i] = (dwords0)[i] | (dwords1)[i]; \ VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \ } while (0) #include "genxml/genX_pack.h" #include "genxml/gen_macros.h" #include "genxml/genX_bits.h" #define MOCS_WB (2 << 1) UNUSED static void pipe_asserts() { #define PIPE_ASSERT(x) STATIC_ASSERT((int)x) /* pipe_logicop happens to match the hardware. */ PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR); PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR); PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE); PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT); PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR); PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND); PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND); PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV); PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP); PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY); PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE); PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR); PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET); /* pipe_blend_func happens to match the hardware. */ PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE); PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA); /* pipe_blend_func happens to match the hardware. */ PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD); PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT); PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT); PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN); PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX); /* pipe_stencil_op happens to match the hardware. */ PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP); PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO); PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE); PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT); PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT); PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR); PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR); PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT); /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */ PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT); PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT); #undef PIPE_ASSERT } static unsigned translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch) { static const unsigned map[] = { [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST, [PIPE_PRIM_LINES] = _3DPRIM_LINELIST, [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP, [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP, [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST, [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN, [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST, [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP, [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON, [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ, [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ, [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1, }; return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0); } static unsigned translate_compare_func(enum pipe_compare_func pipe_func) { static const unsigned map[] = { [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER, [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS, [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL, [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL, [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER, [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL, [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL, [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS, }; return map[pipe_func]; } static unsigned translate_shadow_func(enum pipe_compare_func pipe_func) { /* Gallium specifies the result of shadow comparisons as: * * 1 if ref texel, * 0 otherwise. * * The hardware does: * * 0 if texel ref, * 1 otherwise. * * So we need to flip the operator and also negate. */ static const unsigned map[] = { [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS, [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL, [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL, [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS, [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL, [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL, [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER, [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER, }; return map[pipe_func]; } static unsigned translate_cull_mode(unsigned pipe_face) { static const unsigned map[4] = { [PIPE_FACE_NONE] = CULLMODE_NONE, [PIPE_FACE_FRONT] = CULLMODE_FRONT, [PIPE_FACE_BACK] = CULLMODE_BACK, [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH, }; return map[pipe_face]; } static unsigned translate_fill_mode(unsigned pipe_polymode) { static const unsigned map[4] = { [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID, [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME, [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT, [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID, }; return map[pipe_polymode]; } static struct iris_address ro_bo(struct iris_bo *bo, uint64_t offset) { return (struct iris_address) { .bo = bo, .offset = offset }; } static uint32_t * stream_state(struct iris_batch *batch, struct u_upload_mgr *uploader, unsigned size, unsigned alignment, uint32_t *out_offset) { struct pipe_resource *res = NULL; void *ptr = NULL; u_upload_alloc(uploader, 0, size, alignment, out_offset, &res, &ptr); struct iris_bo *bo = ((struct iris_resource *) res)->bo; iris_use_pinned_bo(batch, bo, false); /* Compute an offset from state base address. It's a 4GB region starting * at 0GB, 4GB, or 8GB, so we can simply drop everything above 32 bits. */ assert(bo->gtt_offset < 3 * (1ull << 32)); *out_offset += bo->gtt_offset & ((1ull << 32) - 1); pipe_resource_reference(&res, NULL); return ptr; } static uint32_t emit_state(struct iris_batch *batch, struct u_upload_mgr *uploader, const void *data, unsigned size, unsigned alignment) { unsigned offset = 0; uint32_t *map = stream_state(batch, uploader, size, alignment, &offset); if (map) memcpy(map, data, size); return offset; } static void iris_emit_state_base_address(struct iris_batch *batch) { /* XXX: PIPE_CONTROLs */ iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) { #if 0 // XXX: MOCS is stupid for this. sba.GeneralStateMemoryObjectControlState = MOCS_WB; sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB; sba.SurfaceStateMemoryObjectControlState = MOCS_WB; sba.DynamicStateMemoryObjectControlState = MOCS_WB; sba.IndirectObjectMemoryObjectControlState = MOCS_WB; sba.InstructionMemoryObjectControlState = MOCS_WB; sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB; #endif sba.GeneralStateBaseAddressModifyEnable = true; sba.SurfaceStateBaseAddressModifyEnable = true; sba.DynamicStateBaseAddressModifyEnable = true; sba.IndirectObjectBaseAddressModifyEnable = true; sba.InstructionBaseAddressModifyEnable = true; sba.GeneralStateBufferSizeModifyEnable = true; sba.DynamicStateBufferSizeModifyEnable = true; sba.BindlessSurfaceStateBaseAddressModifyEnable = true; sba.IndirectObjectBufferSizeModifyEnable = true; sba.InstructionBuffersizeModifyEnable = true; sba.SurfaceStateBaseAddress = ro_bo(NULL, 1ull << 32); sba.DynamicStateBaseAddress = ro_bo(NULL, 2 * (1ull << 32)); sba.GeneralStateBufferSize = 0xfffff; sba.IndirectObjectBufferSize = 0xfffff; sba.InstructionBufferSize = 0xfffff; sba.DynamicStateBufferSize = 0xfffff; } } static void iris_init_render_context(struct iris_screen *screen, struct iris_batch *batch, struct pipe_debug_callback *dbg) { batch->emit_state_base_address = iris_emit_state_base_address; iris_init_batch(batch, screen, dbg, I915_EXEC_RENDER); iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) { rect.ClippedDrawingRectangleXMax = UINT16_MAX; rect.ClippedDrawingRectangleYMax = UINT16_MAX; } iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) { GEN_SAMPLE_POS_1X(pat._1xSample); GEN_SAMPLE_POS_2X(pat._2xSample); GEN_SAMPLE_POS_4X(pat._4xSample); GEN_SAMPLE_POS_8X(pat._8xSample); GEN_SAMPLE_POS_16X(pat._16xSample); } iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo); iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo); iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo); /* XXX: may need to set an offset for origin-UL framebuffers */ iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo); /* Just assign a static partitioning. */ for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) { iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { alloc._3DCommandSubOpcode = 18 + i; alloc.ConstantBufferOffset = 6 * i; alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6; } } } static void iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info) { } static void iris_set_blend_color(struct pipe_context *ctx, const struct pipe_blend_color *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color)); ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; } struct iris_blend_state { uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)]; uint32_t blend_state[GENX(BLEND_STATE_length) + BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)]; bool alpha_to_coverage; /* for shader key */ }; static void * iris_create_blend_state(struct pipe_context *ctx, const struct pipe_blend_state *state) { struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state)); uint32_t *blend_state = cso->blend_state; cso->alpha_to_coverage = state->alpha_to_coverage; iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) { /* pb.HasWriteableRT is filled in at draw time. */ /* pb.AlphaTestEnable is filled in at draw time. */ pb.AlphaToCoverageEnable = state->alpha_to_coverage; pb.IndependentAlphaBlendEnable = state->independent_blend_enable; pb.ColorBufferBlendEnable = state->rt[0].blend_enable; pb.SourceBlendFactor = state->rt[0].rgb_src_factor; pb.SourceAlphaBlendFactor = state->rt[0].alpha_func; pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor; pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor; } iris_pack_state(GENX(BLEND_STATE), blend_state, bs) { bs.AlphaToCoverageEnable = state->alpha_to_coverage; bs.IndependentAlphaBlendEnable = state->independent_blend_enable; bs.AlphaToOneEnable = state->alpha_to_one; bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage; bs.ColorDitherEnable = state->dither; /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */ } blend_state += GENX(BLEND_STATE_length); for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) { iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) { be.LogicOpEnable = state->logicop_enable; be.LogicOpFunction = state->logicop_func; be.PreBlendSourceOnlyClampEnable = false; be.ColorClampRange = COLORCLAMP_RTFORMAT; be.PreBlendColorClampEnable = true; be.PostBlendColorClampEnable = true; be.ColorBufferBlendEnable = state->rt[i].blend_enable; be.ColorBlendFunction = state->rt[i].rgb_func; be.AlphaBlendFunction = state->rt[i].alpha_func; be.SourceBlendFactor = state->rt[i].rgb_src_factor; be.SourceAlphaBlendFactor = state->rt[i].alpha_func; be.DestinationBlendFactor = state->rt[i].rgb_dst_factor; be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor; be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R); be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G); be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B); be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A); } blend_state += GENX(BLEND_STATE_ENTRY_length); } return cso; } static void iris_bind_blend_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.cso_blend = state; ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_depth_stencil_alpha_state { uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; uint32_t cc_vp[GENX(CC_VIEWPORT_length)]; struct pipe_alpha_state alpha; /* to BLEND_STATE, 3DSTATE_PS_BLEND */ }; static void * iris_create_zsa_state(struct pipe_context *ctx, const struct pipe_depth_stencil_alpha_state *state) { struct iris_depth_stencil_alpha_state *cso = malloc(sizeof(struct iris_depth_stencil_alpha_state)); cso->alpha = state->alpha; bool two_sided_stencil = state->stencil[1].enabled; /* The state tracker needs to optimize away EQUAL writes for us. */ assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask)); iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) { wmds.StencilFailOp = state->stencil[0].fail_op; wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op; wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op; wmds.StencilTestFunction = translate_compare_func(state->stencil[0].func); wmds.BackfaceStencilFailOp = state->stencil[1].fail_op; wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op; wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op; wmds.BackfaceStencilTestFunction = translate_compare_func(state->stencil[1].func); wmds.DepthTestFunction = translate_compare_func(state->depth.func); wmds.DoubleSidedStencilEnable = two_sided_stencil; wmds.StencilTestEnable = state->stencil[0].enabled; wmds.StencilBufferWriteEnable = state->stencil[0].writemask != 0 || (two_sided_stencil && state->stencil[1].writemask != 0); wmds.DepthTestEnable = state->depth.enabled; wmds.DepthBufferWriteEnable = state->depth.writemask; wmds.StencilTestMask = state->stencil[0].valuemask; wmds.StencilWriteMask = state->stencil[0].writemask; wmds.BackfaceStencilTestMask = state->stencil[1].valuemask; wmds.BackfaceStencilWriteMask = state->stencil[1].writemask; /* wmds.[Backface]StencilReferenceValue are merged later */ } iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) { ccvp.MinimumDepth = state->depth.bounds_min; ccvp.MaximumDepth = state->depth.bounds_max; } return cso; } static void iris_bind_zsa_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa; struct iris_depth_stencil_alpha_state *new_cso = state; if (new_cso) { if (!old_cso || old_cso->alpha.ref_value != new_cso->alpha.ref_value) { ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; } } ice->state.cso_zsa = new_cso; ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_rasterizer_state { uint32_t sf[GENX(3DSTATE_SF_length)]; uint32_t clip[GENX(3DSTATE_CLIP_length)]; uint32_t raster[GENX(3DSTATE_RASTER_length)]; uint32_t wm[GENX(3DSTATE_WM_length)]; uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)]; bool flatshade; /* for shader state */ bool clamp_fragment_color; /* for shader state */ bool light_twoside; /* for shader state */ bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */ bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */ enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */ uint16_t sprite_coord_enable; }; static void * iris_create_rasterizer_state(struct pipe_context *ctx, const struct pipe_rasterizer_state *state) { struct iris_rasterizer_state *cso = malloc(sizeof(struct iris_rasterizer_state)); #if 0 point_quad_rasterization -> SBE? not necessary? { poly_smooth force_persample_interp - ? bottom_edge_rule offset_units_unscaled - cap not exposed } #endif cso->flatshade = state->flatshade; cso->clamp_fragment_color = state->clamp_fragment_color; cso->light_twoside = state->light_twoside; cso->rasterizer_discard = state->rasterizer_discard; cso->half_pixel_center = state->half_pixel_center; cso->sprite_coord_mode = state->sprite_coord_mode; cso->sprite_coord_enable = state->sprite_coord_enable; iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) { sf.StatisticsEnable = true; sf.ViewportTransformEnable = true; sf.AALineDistanceMode = AALINEDISTANCE_TRUE; sf.LineEndCapAntialiasingRegionWidth = state->line_smooth ? _10pixels : _05pixels; sf.LastPixelEnable = state->line_last_pixel; sf.LineWidth = state->line_width; sf.SmoothPointEnable = state->point_smooth; sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State; sf.PointWidth = state->point_size; if (state->flatshade_first) { sf.TriangleStripListProvokingVertexSelect = 2; sf.TriangleFanProvokingVertexSelect = 2; sf.LineStripListProvokingVertexSelect = 1; } else { sf.TriangleFanProvokingVertexSelect = 1; } } /* COMPLETE! */ iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) { rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise; rr.CullMode = translate_cull_mode(state->cull_face); rr.FrontFaceFillMode = translate_fill_mode(state->fill_front); rr.BackFaceFillMode = translate_fill_mode(state->fill_back); rr.DXMultisampleRasterizationEnable = state->multisample; rr.GlobalDepthOffsetEnableSolid = state->offset_tri; rr.GlobalDepthOffsetEnableWireframe = state->offset_line; rr.GlobalDepthOffsetEnablePoint = state->offset_point; rr.GlobalDepthOffsetConstant = state->offset_units; rr.GlobalDepthOffsetScale = state->offset_scale; rr.GlobalDepthOffsetClamp = state->offset_clamp; rr.SmoothPointEnable = state->point_smooth; rr.AntialiasingEnable = state->line_smooth; rr.ScissorRectangleEnable = state->scissor; rr.ViewportZNearClipTestEnable = state->depth_clip_near; rr.ViewportZFarClipTestEnable = state->depth_clip_far; //rr.ConservativeRasterizationEnable = not yet supported by Gallium... } iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) { /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB. */ cl.StatisticsEnable = true; cl.EarlyCullEnable = true; cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable; cl.ForceUserClipDistanceClipTestEnableBitmask = true; cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL; cl.GuardbandClipTestEnable = true; cl.ClipMode = CLIPMODE_NORMAL; cl.ClipEnable = true; cl.ViewportXYClipTestEnable = state->point_tri_clip; cl.MinimumPointWidth = 0.125; cl.MaximumPointWidth = 255.875; if (state->flatshade_first) { cl.TriangleStripListProvokingVertexSelect = 2; cl.TriangleFanProvokingVertexSelect = 2; cl.LineStripListProvokingVertexSelect = 1; } else { cl.TriangleFanProvokingVertexSelect = 1; } } iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) { /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are * filled in at draw time from the FS program. */ wm.LineAntialiasingRegionWidth = _10pixels; wm.LineEndCapAntialiasingRegionWidth = _05pixels; wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT; wm.StatisticsEnable = true; wm.LineStippleEnable = state->line_stipple_enable; wm.PolygonStippleEnable = state->poly_stipple_enable; } /* Remap from 0..255 back to 1..256 */ const unsigned line_stipple_factor = state->line_stipple_factor + 1; iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) { line.LineStipplePattern = state->line_stipple_pattern; line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor; line.LineStippleRepeatCount = line_stipple_factor; } return cso; } static void iris_bind_rasterizer_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_rasterizer_state *old_cso = ice->state.cso_rast; struct iris_rasterizer_state *new_cso = state; if (new_cso) { /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */ if (!old_cso || memcmp(old_cso->line_stipple, new_cso->line_stipple, sizeof(old_cso->line_stipple)) != 0) { ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE; } if (!old_cso || old_cso->half_pixel_center != new_cso->half_pixel_center) { ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE; } } ice->state.cso_rast = new_cso; ice->state.dirty |= IRIS_DIRTY_RASTER; } static uint32_t translate_wrap(unsigned pipe_wrap) { static const unsigned map[] = { [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP, [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER, [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP, [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER, [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR, [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE, [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ??? [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ??? }; return map[pipe_wrap]; } /** * Return true if the given wrap mode requires the border color to exist. */ static bool wrap_mode_needs_border_color(unsigned wrap_mode) { return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER; } static unsigned translate_mip_filter(enum pipe_tex_mipfilter pipe_mip) { static const unsigned map[] = { [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST, [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR, [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE, }; return map[pipe_mip]; } struct iris_sampler_state { struct pipe_sampler_state base; bool needs_border_color; uint32_t sampler_state[GENX(SAMPLER_STATE_length)]; }; static void * iris_create_sampler_state(struct pipe_context *pctx, const struct pipe_sampler_state *state) { struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state); if (!cso) return NULL; STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST); STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR); unsigned wrap_s = translate_wrap(state->wrap_s); unsigned wrap_t = translate_wrap(state->wrap_t); unsigned wrap_r = translate_wrap(state->wrap_r); cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) || wrap_mode_needs_border_color(wrap_t) || wrap_mode_needs_border_color(wrap_r); iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) { samp.TCXAddressControlMode = wrap_s; samp.TCYAddressControlMode = wrap_t; samp.TCZAddressControlMode = wrap_r; samp.CubeSurfaceControlMode = state->seamless_cube_map; samp.NonnormalizedCoordinateEnable = !state->normalized_coords; samp.MinModeFilter = state->min_img_filter; samp.MagModeFilter = state->mag_img_filter; samp.MipModeFilter = translate_mip_filter(state->min_mip_filter); samp.MaximumAnisotropy = RATIO21; if (state->max_anisotropy >= 2) { if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) { samp.MinModeFilter = MAPFILTER_ANISOTROPIC; samp.AnisotropicAlgorithm = EWAApproximation; } if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) samp.MagModeFilter = MAPFILTER_ANISOTROPIC; samp.MaximumAnisotropy = MIN2((state->max_anisotropy - 2) / 2, RATIO161); } /* Set address rounding bits if not using nearest filtering. */ if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) { samp.UAddressMinFilterRoundingEnable = true; samp.VAddressMinFilterRoundingEnable = true; samp.RAddressMinFilterRoundingEnable = true; } if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) { samp.UAddressMagFilterRoundingEnable = true; samp.VAddressMagFilterRoundingEnable = true; samp.RAddressMagFilterRoundingEnable = true; } if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) samp.ShadowFunction = translate_shadow_func(state->compare_func); const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13; samp.LODPreClampMode = CLAMP_MODE_OGL; samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod); samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod); samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15); //samp.BorderColorPointer = <> } return cso; } static void iris_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type p_stage, unsigned start, unsigned count, void **states) { struct iris_context *ice = (struct iris_context *) ctx; gl_shader_stage stage = stage_from_pipe(p_stage); assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS); for (int i = 0; i < count; i++) { ice->state.samplers[stage][start + i] = states[i]; } ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage; } struct iris_sampler_view { struct pipe_sampler_view pipe; struct isl_view view; uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)]; }; /** * Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+ * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are * * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE * 0 1 2 3 4 5 * 4 5 6 7 0 1 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE * * which is simply adding 4 then modding by 8 (or anding with 7). * * We then may need to apply workarounds for textureGather hardware bugs. */ static enum isl_channel_select pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle) { return (swizzle + 4) & 7; } static struct pipe_sampler_view * iris_create_sampler_view(struct pipe_context *ctx, struct pipe_resource *tex, const struct pipe_sampler_view *tmpl) { struct iris_screen *screen = (struct iris_screen *)ctx->screen; struct iris_resource *itex = (struct iris_resource *) tex; struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view)); if (!isv) return NULL; /* initialize base object */ isv->pipe = *tmpl; isv->pipe.context = ctx; isv->pipe.texture = NULL; pipe_reference_init(&isv->pipe.reference, 1); pipe_resource_reference(&isv->pipe.texture, tex); /* XXX: do we need brw_get_texture_swizzle hacks here? */ isv->view = (struct isl_view) { .format = iris_isl_format_for_pipe_format(tmpl->format), .base_level = tmpl->u.tex.first_level, .levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1, .base_array_layer = tmpl->u.tex.first_layer, .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1, .swizzle = (struct isl_swizzle) { .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r), .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g), .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b), .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a), }, .usage = ISL_SURF_USAGE_TEXTURE_BIT, }; isl_surf_fill_state(&screen->isl_dev, isv->surface_state, .surf = &itex->surf, .view = &isv->view, .mocs = MOCS_WB, .address = itex->bo->gtt_offset); // .aux_surf = // .clear_color = clear_color, return &isv->pipe; } struct iris_surface { struct pipe_surface pipe; struct isl_view view; uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)]; }; static struct pipe_surface * iris_create_surface(struct pipe_context *ctx, struct pipe_resource *tex, const struct pipe_surface *tmpl) { struct iris_screen *screen = (struct iris_screen *)ctx->screen; struct iris_surface *surf = calloc(1, sizeof(struct iris_surface)); struct pipe_surface *psurf = &surf->pipe; struct iris_resource *itex = (struct iris_resource *) tex; if (!surf) return NULL; pipe_reference_init(&psurf->reference, 1); pipe_resource_reference(&psurf->texture, tex); psurf->context = ctx; psurf->format = tmpl->format; psurf->width = tex->width0; psurf->height = tex->height0; psurf->texture = tex; psurf->u.tex.first_layer = tmpl->u.tex.first_layer; psurf->u.tex.last_layer = tmpl->u.tex.last_layer; psurf->u.tex.level = tmpl->u.tex.level; surf->view = (struct isl_view) { .format = iris_isl_format_for_pipe_format(tmpl->format), .base_level = tmpl->u.tex.level, .levels = 1, .base_array_layer = tmpl->u.tex.first_layer, .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1, .swizzle = ISL_SWIZZLE_IDENTITY, // XXX: DEPTH_BIt, STENCIL_BIT...CUBE_BIT? Other bits?! .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, }; isl_surf_fill_state(&screen->isl_dev, surf->surface_state, .surf = &itex->surf, .view = &surf->view, .mocs = MOCS_WB, .address = itex->bo->gtt_offset); // .aux_surf = // .clear_color = clear_color, return psurf; } static void iris_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { } static void iris_set_clip_state(struct pipe_context *ctx, const struct pipe_clip_state *state) { } static void iris_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.poly_stipple, state, sizeof(*state)); ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE; } static void iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.sample_mask = sample_mask; ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK; } static void iris_set_scissor_states(struct pipe_context *ctx, unsigned start_slot, unsigned num_scissors, const struct pipe_scissor_state *states) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.num_scissors = num_scissors; for (unsigned i = 0; i < num_scissors; i++) { ice->state.scissors[start_slot + i] = states[i]; } ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT; } static void iris_set_stencil_ref(struct pipe_context *ctx, const struct pipe_stencil_ref *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.stencil_ref, state, sizeof(*state)); ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_viewport_state { uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS]; }; static float viewport_extent(const struct pipe_viewport_state *state, int axis, float sign) { return copysignf(state->scale[axis], sign) + state->translate[axis]; } #if 0 static void calculate_guardband_size(uint32_t fb_width, uint32_t fb_height, float m00, float m11, float m30, float m31, float *xmin, float *xmax, float *ymin, float *ymax) { /* According to the "Vertex X,Y Clamping and Quantization" section of the * Strips and Fans documentation: * * "The vertex X and Y screen-space coordinates are also /clamped/ to the * fixed-point "guardband" range supported by the rasterization hardware" * * and * * "In almost all circumstances, if an object’s vertices are actually * modified by this clamping (i.e., had X or Y coordinates outside of * the guardband extent the rendered object will not match the intended * result. Therefore software should take steps to ensure that this does * not happen - e.g., by clipping objects such that they do not exceed * these limits after the Drawing Rectangle is applied." * * I believe the fundamental restriction is that the rasterizer (in * the SF/WM stages) have a limit on the number of pixels that can be * rasterized. We need to ensure any coordinates beyond the rasterizer * limit are handled by the clipper. So effectively that limit becomes * the clipper's guardband size. * * It goes on to say: * * "In addition, in order to be correctly rendered, objects must have a * screenspace bounding box not exceeding 8K in the X or Y direction. * This additional restriction must also be comprehended by software, * i.e., enforced by use of clipping." * * This makes no sense. Gen7+ hardware supports 16K render targets, * and you definitely need to be able to draw polygons that fill the * surface. Our assumption is that the rasterizer was limited to 8K * on Sandybridge, which only supports 8K surfaces, and it was actually * increased to 16K on Ivybridge and later. * * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge. */ const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f; if (m00 != 0 && m11 != 0) { /* First, we compute the screen-space render area */ const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00); const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00); const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11); const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11); /* We want the guardband to be centered on that */ const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size; const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size; const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size; const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size; /* Now we need it in native device coordinates */ const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00; const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00; const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11; const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11; /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be * flipped upside-down. X should be fine though. */ assert(ndc_gb_xmin <= ndc_gb_xmax); *xmin = ndc_gb_xmin; *xmax = ndc_gb_xmax; *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax); *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax); } else { /* The viewport scales to 0, so nothing will be rendered. */ *xmin = 0.0f; *xmax = 0.0f; *ymin = 0.0f; *ymax = 0.0f; } } #endif static void iris_set_viewport_states(struct pipe_context *ctx, unsigned start_slot, unsigned num_viewports, const struct pipe_viewport_state *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_viewport_state *cso = malloc(sizeof(struct iris_viewport_state)); uint32_t *vp_map = &cso->sf_cl_vp[start_slot]; // XXX: sf_cl_vp is only big enough for one slot, we don't iterate right for (unsigned i = 0; i < num_viewports; i++) { iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) { vp.ViewportMatrixElementm00 = state[i].scale[0]; vp.ViewportMatrixElementm11 = state[i].scale[1]; vp.ViewportMatrixElementm22 = state[i].scale[2]; vp.ViewportMatrixElementm30 = state[i].translate[0]; vp.ViewportMatrixElementm31 = state[i].translate[1]; vp.ViewportMatrixElementm32 = state[i].translate[2]; /* XXX: in i965 this is computed based on the drawbuffer size, * but we don't have that here... */ vp.XMinClipGuardband = -1.0; vp.XMaxClipGuardband = 1.0; vp.YMinClipGuardband = -1.0; vp.YMaxClipGuardband = 1.0; vp.XMinViewPort = viewport_extent(&state[i], 0, -1.0f); vp.XMaxViewPort = viewport_extent(&state[i], 0, 1.0f) - 1; vp.YMinViewPort = viewport_extent(&state[i], 1, -1.0f); vp.YMaxViewPort = viewport_extent(&state[i], 1, 1.0f) - 1; } vp_map += GENX(SF_CLIP_VIEWPORT_length); } ice->state.cso_vp = cso; ice->state.num_viewports = num_viewports; ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT; } struct iris_depth_state { uint32_t depth_buffer[GENX(3DSTATE_DEPTH_BUFFER_length)]; uint32_t hier_depth_buffer[GENX(3DSTATE_HIER_DEPTH_BUFFER_length)]; uint32_t stencil_buffer[GENX(3DSTATE_STENCIL_BUFFER_length)]; }; static void iris_set_framebuffer_state(struct pipe_context *ctx, const struct pipe_framebuffer_state *state) { struct iris_context *ice = (struct iris_context *) ctx; struct pipe_framebuffer_state *cso = &ice->state.framebuffer; if (cso->samples != state->samples) { ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE; } if (cso->nr_cbufs != state->nr_cbufs) { ice->state.dirty |= IRIS_DIRTY_BLEND_STATE; } cso->width = state->width; cso->height = state->height; cso->layers = state->layers; cso->samples = state->samples; unsigned i; for (i = 0; i < state->nr_cbufs; i++) pipe_surface_reference(&cso->cbufs[i], state->cbufs[i]); for (; i < cso->nr_cbufs; i++) pipe_surface_reference(&cso->cbufs[i], NULL); cso->nr_cbufs = state->nr_cbufs; pipe_surface_reference(&cso->zsbuf, state->zsbuf); struct isl_depth_stencil_hiz_emit_info info = { .mocs = MOCS_WB, }; // XXX: depth buffers } static void iris_set_constant_buffer(struct pipe_context *ctx, enum pipe_shader_type p_stage, unsigned index, const struct pipe_constant_buffer *cb) { struct iris_context *ice = (struct iris_context *) ctx; gl_shader_stage stage = stage_from_pipe(p_stage); util_copy_constant_buffer(&ice->shaders.state[stage].constbuf[index], cb); } static void iris_sampler_view_destroy(struct pipe_context *ctx, struct pipe_sampler_view *state) { pipe_resource_reference(&state->texture, NULL); free(state); } static void iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *surface) { pipe_resource_reference(&surface->texture, NULL); free(surface); } static void iris_delete_state(struct pipe_context *ctx, void *state) { free(state); } struct iris_vertex_buffer_state { uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)]; struct iris_address bos[33]; unsigned num_buffers; }; static void iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso) { if (cso) { for (unsigned i = 0; i < cso->num_buffers; i++) iris_bo_unreference(cso->bos[i].bo); free(cso); } } static void iris_set_vertex_buffers(struct pipe_context *ctx, unsigned start_slot, unsigned count, const struct pipe_vertex_buffer *buffers) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_vertex_buffer_state *cso = malloc(sizeof(struct iris_vertex_buffer_state)); /* If there are no buffers, do nothing. We can leave the stale * 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex * elements that point to them, it should be fine. */ if (!buffers) return; iris_free_vertex_buffers(ice->state.cso_vertex_buffers); cso->num_buffers = count; iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) { vb.DWordLength = 4 * cso->num_buffers - 1; } uint32_t *vb_pack_dest = &cso->vertex_buffers[1]; for (unsigned i = 0; i < count; i++) { assert(!buffers[i].is_user_buffer); struct iris_resource *res = (void *) buffers[i].buffer.resource; iris_bo_reference(res->bo); cso->bos[i] = ro_bo(res->bo, buffers[i].buffer_offset); iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) { vb.VertexBufferIndex = start_slot + i; vb.MOCS = MOCS_WB; vb.AddressModifyEnable = true; vb.BufferPitch = buffers[i].stride; vb.BufferSize = res->bo->size; /* vb.BufferStartingAddress is filled in at draw time */ } vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length); } ice->state.cso_vertex_buffers = cso; ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS; } struct iris_vertex_element_state { uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)]; uint32_t vf_instancing[GENX(3DSTATE_VF_INSTANCING_length)][33]; unsigned count; }; static void * iris_create_vertex_elements(struct pipe_context *ctx, unsigned count, const struct pipe_vertex_element *state) { struct iris_vertex_element_state *cso = malloc(sizeof(struct iris_vertex_element_state)); cso->count = count; /* TODO: * - create edge flag one * - create SGV ones * - if those are necessary, use count + 1/2/3... OR in the length */ iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve); uint32_t *ve_pack_dest = &cso->vertex_elements[1]; for (int i = 0; i < count; i++) { enum isl_format isl_format = iris_isl_format_for_pipe_format(state[i].src_format); unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC, VFCOMP_STORE_SRC, VFCOMP_STORE_SRC }; switch (isl_format_get_num_channels(isl_format)) { case 0: comp[0] = VFCOMP_STORE_0; case 1: comp[1] = VFCOMP_STORE_0; case 2: comp[2] = VFCOMP_STORE_0; case 3: comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT : VFCOMP_STORE_1_FP; break; } iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { ve.VertexBufferIndex = state[i].vertex_buffer_index; ve.Valid = true; ve.SourceElementOffset = state[i].src_offset; ve.SourceElementFormat = isl_format; ve.Component0Control = comp[0]; ve.Component1Control = comp[1]; ve.Component2Control = comp[2]; ve.Component3Control = comp[3]; } iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->vf_instancing[i], vi) { vi.VertexElementIndex = i; vi.InstancingEnable = state[i].instance_divisor > 0; vi.InstanceDataStepRate = state[i].instance_divisor; } ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length); } return cso; } static void iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.cso_vertex_elements = state; ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS; } static void * iris_create_compute_state(struct pipe_context *ctx, const struct pipe_compute_state *state) { return malloc(1); } static struct pipe_stream_output_target * iris_create_stream_output_target(struct pipe_context *ctx, struct pipe_resource *res, unsigned buffer_offset, unsigned buffer_size) { struct pipe_stream_output_target *t = CALLOC_STRUCT(pipe_stream_output_target); if (!t) return NULL; pipe_reference_init(&t->reference, 1); pipe_resource_reference(&t->buffer, res); t->buffer_offset = buffer_offset; t->buffer_size = buffer_size; return t; } static void iris_stream_output_target_destroy(struct pipe_context *ctx, struct pipe_stream_output_target *t) { pipe_resource_reference(&t->buffer, NULL); free(t); } static void iris_set_stream_output_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { } #if 0 static void iris_compute_sbe(const struct iris_context *ice, const struct brw_wm_prog_data *wm_prog_data) { uint32_t sbe_map[GENX(3DSTATE_SBE_length)]; struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; unsigned urb_read_offset, urb_read_length; brw_compute_sbe_urb_slot_interval(fp->info.inputs_read, ice->shaders.last_vue_map, &urb_read_offset, &urb_read_length); iris_pack_command(GENX(3DSTATE_SBE), sbe_map, sbe) { sbe.AttributeSwizzleEnable = true; sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode; sbe.VertexURBEntryReadOffset = urb_read_offset; sbe.VertexURBEntryReadLength = urb_read_length; sbe.ForceVertexURBEntryReadOffset = true; sbe.ForceVertexURBEntryReadLength = true; sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs; for (int i = 0; i < urb_read_length * 2; i++) { sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW; } } } #endif static void iris_bind_compute_state(struct pipe_context *ctx, void *state) { } static void iris_populate_vs_key(const struct iris_context *ice, struct brw_vs_prog_key *key) { memset(key, 0, sizeof(*key)); } static void iris_populate_tcs_key(const struct iris_context *ice, struct brw_tcs_prog_key *key) { memset(key, 0, sizeof(*key)); } static void iris_populate_tes_key(const struct iris_context *ice, struct brw_tes_prog_key *key) { memset(key, 0, sizeof(*key)); } static void iris_populate_gs_key(const struct iris_context *ice, struct brw_gs_prog_key *key) { memset(key, 0, sizeof(*key)); } static void iris_populate_fs_key(const struct iris_context *ice, struct brw_wm_prog_key *key) { memset(key, 0, sizeof(*key)); /* XXX: dirty flags? */ const struct pipe_framebuffer_state *fb = &ice->state.framebuffer; const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa; const struct iris_rasterizer_state *rast = ice->state.cso_rast; const struct iris_blend_state *blend = ice->state.cso_blend; key->nr_color_regions = fb->nr_cbufs; key->clamp_fragment_color = rast->clamp_fragment_color; key->replicate_alpha = fb->nr_cbufs > 1 && (zsa->alpha.enabled || blend->alpha_to_coverage); // key->force_dual_color_blend for unigine #if 0 if (cso_rast->multisample) { key->persample_interp = ctx->Multisample.SampleShading && (ctx->Multisample.MinSampleShadingValue * _mesa_geometric_samples(ctx->DrawBuffer) > 1); key->multisample_fbo = fb->samples > 1; } #endif key->coherent_fb_fetch = true; } //pkt.SamplerCount = \ //DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \ //pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \ //ffs(stage_state->per_thread_scratch) - 11; \ static uint64_t KSP(const struct iris_compiled_shader *shader) { struct iris_resource *res = (void *) shader->buffer; return res->bo->gtt_offset + shader->offset; } #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \ pkt.KernelStartPointer = KSP(shader); \ pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \ pkt.FloatingPointMode = prog_data->use_alt_mode; \ \ pkt.DispatchGRFStartRegisterForURBData = \ prog_data->dispatch_grf_start_reg; \ pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \ pkt.prefix##URBEntryReadOffset = 0; \ \ pkt.StatisticsEnable = true; \ pkt.Enable = true; static void iris_set_vs_state(const struct gen_device_info *devinfo, struct iris_compiled_shader *shader) { struct brw_stage_prog_data *prog_data = shader->prog_data; struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) { INIT_THREAD_DISPATCH_FIELDS(vs, Vertex); vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1; vs.SIMD8DispatchEnable = true; vs.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; } } static void iris_set_tcs_state(const struct gen_device_info *devinfo, struct iris_compiled_shader *shader) { struct brw_stage_prog_data *prog_data = shader->prog_data; struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data; iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) { INIT_THREAD_DISPATCH_FIELDS(hs, Vertex); hs.InstanceCount = tcs_prog_data->instances - 1; hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1; hs.IncludeVertexHandles = true; } } static void iris_set_tes_state(const struct gen_device_info *devinfo, struct iris_compiled_shader *shader) { struct brw_stage_prog_data *prog_data = shader->prog_data; struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; struct brw_tes_prog_data *tes_prog_data = (void *) prog_data; uint32_t *te_state = (void *) shader->derived_data; uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length); iris_pack_command(GENX(3DSTATE_TE), te_state, te) { te.Partitioning = tes_prog_data->partitioning; te.OutputTopology = tes_prog_data->output_topology; te.TEDomain = tes_prog_data->domain; te.TEEnable = true; te.MaximumTessellationFactorOdd = 63.0; te.MaximumTessellationFactorNotOdd = 64.0; } iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) { INIT_THREAD_DISPATCH_FIELDS(ds, Patch); ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH; ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1; ds.ComputeWCoordinateEnable = tes_prog_data->domain == BRW_TESS_DOMAIN_TRI; ds.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; } } static void iris_set_gs_state(const struct gen_device_info *devinfo, struct iris_compiled_shader *shader) { struct brw_stage_prog_data *prog_data = shader->prog_data; struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; struct brw_gs_prog_data *gs_prog_data = (void *) prog_data; iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) { INIT_THREAD_DISPATCH_FIELDS(gs, Vertex); gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1; gs.OutputTopology = gs_prog_data->output_topology; gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords; gs.InstanceControl = gs_prog_data->invocations - 1; gs.DispatchMode = SIMD8; gs.IncludePrimitiveID = gs_prog_data->include_primitive_id; gs.ControlDataFormat = gs_prog_data->control_data_format; gs.ReorderMode = TRAILING; gs.ExpectedVertexCount = gs_prog_data->vertices_in; gs.MaximumNumberofThreads = GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1) : (devinfo->max_gs_threads - 1); if (gs_prog_data->static_vertex_count != -1) { gs.StaticOutput = true; gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count; } gs.IncludeVertexHandles = vue_prog_data->include_vue_handles; gs.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; const int urb_entry_write_offset = 1; const uint32_t urb_entry_output_length = DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) - urb_entry_write_offset; gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset; gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1); } } static void iris_set_fs_state(const struct gen_device_info *devinfo, struct iris_compiled_shader *shader) { struct brw_stage_prog_data *prog_data = shader->prog_data; struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data; uint32_t *ps_state = (void *) shader->derived_data; uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length); iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) { ps.VectorMaskEnable = true; //ps.SamplerCount = ... ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; ps.FloatingPointMode = prog_data->use_alt_mode; ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1); ps.PushConstantEnable = prog_data->nr_params > 0 || prog_data->ubo_ranges[0].length > 0; /* From the documentation for this packet: * "If the PS kernel does not need the Position XY Offsets to * compute a Position Value, then this field should be programmed * to POSOFFSET_NONE." * * "SW Recommendation: If the PS kernel needs the Position Offsets * to compute a Position XY value, this field should match Position * ZW Interpolation Mode to ensure a consistent position.xyzw * computation." * * We only require XY sample offsets. So, this recommendation doesn't * look useful at the moment. We might need this in future. */ ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE; ps._8PixelDispatchEnable = wm_prog_data->dispatch_8; ps._16PixelDispatchEnable = wm_prog_data->dispatch_16; ps._32PixelDispatchEnable = wm_prog_data->dispatch_32; // XXX: Disable SIMD32 with 16x MSAA ps.DispatchGRFStartRegisterForConstantSetupData0 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0); ps.DispatchGRFStartRegisterForConstantSetupData1 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1); ps.DispatchGRFStartRegisterForConstantSetupData2 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2); ps.KernelStartPointer0 = KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0); ps.KernelStartPointer1 = KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1); ps.KernelStartPointer2 = KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2); } iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) { psx.PixelShaderValid = true; psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode; psx.PixelShaderKillsPixel = wm_prog_data->uses_kill; psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0; psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth; psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w; psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch; if (wm_prog_data->uses_sample_mask) { /* TODO: conservative rasterization */ if (wm_prog_data->post_depth_coverage) psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE; else psx.InputCoverageMaskState = ICMS_NORMAL; } psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask; psx.PixelShaderPullsBary = wm_prog_data->pulls_bary; psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil; // XXX: UAV bit } } static unsigned iris_derived_program_state_size(enum iris_program_cache_id cache_id) { assert(cache_id <= IRIS_CACHE_CS); static const unsigned dwords[] = { [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length), [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length), [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length), [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length), [IRIS_CACHE_FS] = GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length), [IRIS_CACHE_CS] = 0, [IRIS_CACHE_BLORP_BLIT] = 0, }; return sizeof(uint32_t) * dwords[cache_id]; } static void iris_set_derived_program_state(const struct gen_device_info *devinfo, enum iris_program_cache_id cache_id, struct iris_compiled_shader *shader) { switch (cache_id) { case IRIS_CACHE_VS: iris_set_vs_state(devinfo, shader); break; case IRIS_CACHE_TCS: iris_set_tcs_state(devinfo, shader); break; case IRIS_CACHE_TES: iris_set_tes_state(devinfo, shader); break; case IRIS_CACHE_GS: iris_set_gs_state(devinfo, shader); break; case IRIS_CACHE_FS: iris_set_fs_state(devinfo, shader); break; case IRIS_CACHE_CS: break; default: break; } } static void iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch) { const struct gen_device_info *devinfo = &batch->screen->devinfo; const unsigned push_size_kB = 32; unsigned entries[4]; unsigned start[4]; unsigned size[4]; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { if (!ice->shaders.prog[i]) { size[i] = 1; } else { struct brw_vue_prog_data *vue_prog_data = (void *) ice->shaders.prog[i]->prog_data; size[i] = vue_prog_data->urb_entry_size; } assert(size[i] != 0); } gen_get_urb_config(devinfo, 1024 * push_size_kB, 1024 * ice->shaders.urb_size, ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL, ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL, size, entries, start); for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) { urb._3DCommandSubOpcode += i; urb.VSURBStartingAddress = start[i]; urb.VSURBEntryAllocationSize = size[i] - 1; urb.VSNumberofURBEntries = entries[i]; } } } static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; static void iris_upload_render_state(struct iris_context *ice, struct iris_batch *batch, const struct pipe_draw_info *draw) { const uint64_t dirty = ice->state.dirty; struct brw_wm_prog_data *wm_prog_data = (void *) ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data; if (dirty & IRIS_DIRTY_CC_VIEWPORT) { struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) { ptr.CCViewportPointer = emit_state(batch, ice->state.dynamic_uploader, cso->cc_vp, sizeof(cso->cc_vp), 32); } } if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) { struct iris_viewport_state *cso = ice->state.cso_vp; iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) { ptr.SFClipViewportPointer = emit_state(batch, ice->state.dynamic_uploader, cso->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) * ice->state.num_viewports, 64); } } /* XXX: L3 State */ if (dirty & IRIS_DIRTY_URB) { iris_upload_urb_config(ice, batch); } if (dirty & IRIS_DIRTY_BLEND_STATE) { struct iris_blend_state *cso_blend = ice->state.cso_blend; struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa; const int num_dwords = 4 * (GENX(BLEND_STATE_length) + cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length)); uint32_t blend_offset; uint32_t *blend_map = stream_state(batch, ice->state.dynamic_uploader, 4 * num_dwords, 64, &blend_offset); uint32_t blend_state_header; iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) { bs.AlphaTestEnable = cso_zsa->alpha.enabled; bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func); } blend_map[0] = blend_state_header | cso_blend->blend_state[0]; memcpy(&blend_map[1], &cso_blend->blend_state[1], sizeof(cso_blend->blend_state) - sizeof(uint32_t)); iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) { ptr.BlendStatePointer = blend_offset; ptr.BlendStatePointerValid = true; } } if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) { struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; uint32_t cc_offset; void *cc_map = stream_state(batch, ice->state.dynamic_uploader, sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length), 64, &cc_offset); iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) { cc.AlphaTestFormat = ALPHATEST_FLOAT32; cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value; cc.BlendConstantColorRed = ice->state.blend_color.color[0]; cc.BlendConstantColorGreen = ice->state.blend_color.color[1]; cc.BlendConstantColorBlue = ice->state.blend_color.color[2]; cc.BlendConstantColorAlpha = ice->state.blend_color.color[3]; } iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) { ptr.ColorCalcStatePointer = cc_offset; ptr.ColorCalcStatePointerValid = true; } } for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { // XXX: wrong dirty tracking... if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage))) continue; struct pipe_constant_buffer *cbuf0 = &ice->shaders.state[stage].constbuf[0]; if (!ice->shaders.prog[stage] || cbuf0->buffer || !cbuf0->buffer_size) continue; struct iris_shader_state *shs = &ice->shaders.state[stage]; shs->const_size = cbuf0->buffer_size; u_upload_data(ice->ctx.const_uploader, 0, shs->const_size, 32, cbuf0->user_buffer, &shs->const_offset, &shs->push_resource); } for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { // XXX: wrong dirty tracking... if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage))) continue; struct iris_shader_state *shs = &ice->shaders.state[stage]; struct iris_resource *res = (void *) shs->push_resource; iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) { pkt._3DCommandSubOpcode = push_constant_opcodes[stage]; if (res) { pkt.ConstantBody.ReadLength[3] = shs->const_size; pkt.ConstantBody.Buffer[3] = ro_bo(res->bo, shs->const_offset); } } } // Surfaces: // - pull constants // - ubos/ssbos/abos // - images // - textures // - render targets - write and read // XXX: 3DSTATE_BINDING_TABLE_POINTERS_XS for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { struct iris_compiled_shader *shader = ice->shaders.prog[stage]; if (!shader) // XXX: dirty bits...also, emit a disable maybe? continue; struct brw_stage_prog_data *prog_data = (void *) shader->prog_data; uint32_t bt_offset = 0; uint32_t *bt_map = NULL; if (prog_data->binding_table.size_bytes != 0) { bt_map = iris_binder_reserve(&ice->state.binder, prog_data->binding_table.size_bytes, &bt_offset); } iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) { ptr._3DCommandSubOpcode = 38 + stage; ptr.PointertoVSBindingTable = bt_offset; } // XXX: we don't want to stream out surface states here. we want to // track whether we've emitted them in this statebuffer already, and // reuse them. need to figure out how best to do that. if (stage == MESA_SHADER_FRAGMENT) { struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) { struct iris_surface *surf = (void *) cso_fb->cbufs[i]; struct iris_resource *res = (void *) surf->pipe.texture; iris_use_pinned_bo(batch, res->bo, true); /* emit_state already adjusts for surface base address, so * it already basically subtracts the binder address for us. */ *bt_map++ = emit_state(batch, ice->state.surface_uploader, surf->surface_state, 4 * GENX(RENDER_SURFACE_STATE_length), 64); } } #if 0 for (int i = 0; i < TEXTURES; i++) { struct iris_sampler_view *view = SOMEWHERE; struct iris_resource *res = (void *) view->pipe.texture; // XXX: these are per-context??????????? pipe_sampler_view::context *bt_map++ = emit_patched_surface_state(batch, view->surface_state, res, 0); } // XXX: not implemented yet assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0); assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0); assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0); assert(prog_data->binding_table.image_start == 0xd0d0d0d0); assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0); //assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0); //assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0); #endif } for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) || !ice->shaders.prog[stage]) continue; // XXX: get sampler count from shader; don't emit them all... const int count = IRIS_MAX_TEXTURE_SAMPLERS; uint32_t offset; uint32_t *map = stream_state(batch, ice->state.dynamic_uploader, count * 4 * GENX(SAMPLER_STATE_length), 32, &offset); for (int i = 0; i < count; i++) { // XXX: when we have a correct count, these better be bound if (!ice->state.samplers[stage][i]) continue; memcpy(map, ice->state.samplers[stage][i]->sampler_state, 4 * GENX(SAMPLER_STATE_length)); map += GENX(SAMPLER_STATE_length); } iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) { ptr._3DCommandSubOpcode = 43 + stage; ptr.PointertoVSSamplerState = offset; } } if (dirty & IRIS_DIRTY_MULTISAMPLE) { iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) { ms.PixelLocation = ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER; if (ice->state.framebuffer.samples > 0) ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1; } } if (dirty & IRIS_DIRTY_SAMPLE_MASK) { iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) { ms.SampleMask = MAX2(ice->state.sample_mask, 1); } } for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { if (!(dirty & (IRIS_DIRTY_VS << stage))) continue; struct iris_compiled_shader *shader = ice->shaders.prog[stage]; if (shader) { struct iris_resource *cache = (void *) shader->buffer; iris_use_pinned_bo(batch, cache->bo, false); iris_batch_emit(batch, shader->derived_data, iris_derived_program_state_size(stage)); } else { if (stage == MESA_SHADER_TESS_EVAL) { iris_emit_cmd(batch, GENX(3DSTATE_HS), hs); iris_emit_cmd(batch, GENX(3DSTATE_TE), te); iris_emit_cmd(batch, GENX(3DSTATE_DS), ds); } else if (stage == MESA_SHADER_GEOMETRY) { iris_emit_cmd(batch, GENX(3DSTATE_GS), gs); } } } // XXX: SOL: // 3DSTATE_STREAMOUT // 3DSTATE_SO_BUFFER // 3DSTATE_SO_DECL_LIST if (dirty & IRIS_DIRTY_CLIP) { struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)]; iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) { if (wm_prog_data->barycentric_interp_modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) cl.NonPerspectiveBarycentricEnable = true; cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0; } iris_emit_merge(batch, cso_rast->clip, dynamic_clip, ARRAY_SIZE(cso_rast->clip)); } if (dirty & IRIS_DIRTY_RASTER) { struct iris_rasterizer_state *cso = ice->state.cso_rast; iris_batch_emit(batch, cso->raster, sizeof(cso->raster)); iris_batch_emit(batch, cso->sf, sizeof(cso->sf)); } if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_FS)) { struct iris_rasterizer_state *cso = ice->state.cso_rast; uint32_t dynamic_wm[GENX(3DSTATE_WM_length)]; iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) { wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes; if (wm_prog_data->early_fragment_tests) wm.EarlyDepthStencilControl = EDSC_PREPS; else if (wm_prog_data->has_side_effects) wm.EarlyDepthStencilControl = EDSC_PSEXEC; } iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm)); } if (1) { // XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ // -> iris_raster_state (point sprite texture coordinate origin) // -> bunch of shader state... iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) { sbe.AttributeSwizzleEnable = true; sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; sbe.VertexURBEntryReadOffset = 1; sbe.VertexURBEntryReadLength = 1; sbe.ForceVertexURBEntryReadOffset = true; sbe.ForceVertexURBEntryReadLength = true; sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs; for (int i = 0; i < 2; i++) { sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW; } } iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbe) { } } if (dirty & IRIS_DIRTY_PS_BLEND) { struct iris_blend_state *cso_blend = ice->state.cso_blend; struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa; uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)]; iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) { pb.HasWriteableRT = true; // XXX: comes from somewhere :( pb.AlphaTestEnable = cso_zsa->alpha.enabled; } iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb, ARRAY_SIZE(cso_blend->ps_blend)); } if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) { struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref; uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) { wmds.StencilReferenceValue = p_stencil_refs->ref_value[0]; wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1]; } iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds)); } if (dirty & IRIS_DIRTY_SCISSOR) { uint32_t scissor_offset = emit_state(batch, ice->state.dynamic_uploader, ice->state.scissors, sizeof(struct pipe_scissor_state) * ice->state.num_scissors, 32); iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) { ptr.ScissorRectPointer = scissor_offset; } } // XXX: 3DSTATE_DEPTH_BUFFER // XXX: 3DSTATE_HIER_DEPTH_BUFFER // XXX: 3DSTATE_STENCIL_BUFFER // XXX: 3DSTATE_CLEAR_PARAMS if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) { iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) { for (int i = 0; i < 32; i++) { poly.PatternRow[i] = ice->state.poly_stipple.stipple[i]; } } } if (dirty & IRIS_DIRTY_LINE_STIPPLE) { struct iris_rasterizer_state *cso = ice->state.cso_rast; iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple)); } if (1) { iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) { topo.PrimitiveTopologyType = translate_prim_type(draw->mode, draw->vertices_per_patch); } } if (draw->index_size > 0) { struct iris_resource *res = (struct iris_resource *)draw->index.resource; assert(!draw->has_user_indices); iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) { ib.IndexFormat = draw->index_size; ib.MOCS = MOCS_WB; ib.BufferSize = res->bo->size; ib.BufferStartingAddress = ro_bo(res->bo, 0); } } if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) { struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers; STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_length) == 4); STATIC_ASSERT((GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) % 32) == 0); uint64_t *addr = batch->cmdbuf.map_next + sizeof(uint32_t) * (GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) / 32); uint32_t *delta = cso->vertex_buffers + (1 + GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) / 32); iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) * (1 + 4 * cso->num_buffers)); for (unsigned i = 0; i < cso->num_buffers; i++) { iris_use_pinned_bo(batch, cso->bos[i].bo, false); *addr = cso->bos[i].offset + *delta; addr = (void *) addr + 16; delta = (void *) delta + 16; } } if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) { struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements; iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) * (1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length))); for (int i = 0; i < cso->count; i++) { iris_batch_emit(batch, cso->vf_instancing[i], sizeof(uint32_t) * (cso->count * GENX(3DSTATE_VF_INSTANCING_length))); } for (int i = 0; i < cso->count; i++) { /* TODO: vertexid, instanceid support */ iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs); } } if (1) { iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) { if (draw->primitive_restart) { vf.IndexedDrawCutIndexEnable = true; vf.CutIndex = draw->restart_index; } } } // XXX: Gen8 - PMA fix assert(!draw->indirect); // XXX: indirect support iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) { prim.StartInstanceLocation = draw->start_instance; prim.InstanceCount = draw->instance_count; prim.VertexCountPerInstance = draw->count; prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL; // XXX: this is probably bonkers. prim.StartVertexLocation = draw->start; if (draw->index_size) { prim.BaseVertexLocation += draw->index_bias; } else { prim.StartVertexLocation += draw->index_bias; } //prim.BaseVertexLocation = ...; } } static void iris_destroy_state(struct iris_context *ice) { // XXX: unreference resources/surfaces. for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) { pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL); } pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL); } void genX(init_state)(struct iris_context *ice) { struct pipe_context *ctx = &ice->ctx; ctx->create_blend_state = iris_create_blend_state; ctx->create_depth_stencil_alpha_state = iris_create_zsa_state; ctx->create_rasterizer_state = iris_create_rasterizer_state; ctx->create_sampler_state = iris_create_sampler_state; ctx->create_sampler_view = iris_create_sampler_view; ctx->create_surface = iris_create_surface; ctx->create_vertex_elements_state = iris_create_vertex_elements; ctx->create_compute_state = iris_create_compute_state; ctx->bind_blend_state = iris_bind_blend_state; ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state; ctx->bind_sampler_states = iris_bind_sampler_states; ctx->bind_rasterizer_state = iris_bind_rasterizer_state; ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state; ctx->bind_compute_state = iris_bind_compute_state; ctx->delete_blend_state = iris_delete_state; ctx->delete_depth_stencil_alpha_state = iris_delete_state; ctx->delete_fs_state = iris_delete_state; ctx->delete_rasterizer_state = iris_delete_state; ctx->delete_sampler_state = iris_delete_state; ctx->delete_vertex_elements_state = iris_delete_state; ctx->delete_compute_state = iris_delete_state; ctx->delete_tcs_state = iris_delete_state; ctx->delete_tes_state = iris_delete_state; ctx->delete_gs_state = iris_delete_state; ctx->delete_vs_state = iris_delete_state; ctx->set_blend_color = iris_set_blend_color; ctx->set_clip_state = iris_set_clip_state; ctx->set_constant_buffer = iris_set_constant_buffer; ctx->set_sampler_views = iris_set_sampler_views; ctx->set_framebuffer_state = iris_set_framebuffer_state; ctx->set_polygon_stipple = iris_set_polygon_stipple; ctx->set_sample_mask = iris_set_sample_mask; ctx->set_scissor_states = iris_set_scissor_states; ctx->set_stencil_ref = iris_set_stencil_ref; ctx->set_vertex_buffers = iris_set_vertex_buffers; ctx->set_viewport_states = iris_set_viewport_states; ctx->sampler_view_destroy = iris_sampler_view_destroy; ctx->surface_destroy = iris_surface_destroy; ctx->draw_vbo = iris_draw_vbo; ctx->launch_grid = iris_launch_grid; ctx->create_stream_output_target = iris_create_stream_output_target; ctx->stream_output_target_destroy = iris_stream_output_target_destroy; ctx->set_stream_output_targets = iris_set_stream_output_targets; ice->state.destroy_state = iris_destroy_state; ice->state.init_render_context = iris_init_render_context; ice->state.upload_render_state = iris_upload_render_state; ice->state.derived_program_state_size = iris_derived_program_state_size; ice->state.set_derived_program_state = iris_set_derived_program_state; ice->state.populate_vs_key = iris_populate_vs_key; ice->state.populate_tcs_key = iris_populate_tcs_key; ice->state.populate_tes_key = iris_populate_tes_key; ice->state.populate_gs_key = iris_populate_gs_key; ice->state.populate_fs_key = iris_populate_fs_key; ice->state.dirty = ~0ull; }