/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file iris_resolve.c * * This file handles resolve tracking for main and auxiliary surfaces. * * It also handles our cache tracking. We have sets for the render cache, * depth cache, and so on. If a BO is in a cache's set, then it may have * data in that cache. The helpers take care of emitting flushes for * render-to-texture, format reinterpretation issues, and other situations. */ #include "util/hash_table.h" #include "util/set.h" #include "iris_context.h" /** * Disable auxiliary buffers if a renderbuffer is also bound as a texture * or shader image. This causes a self-dependency, where both rendering * and sampling may concurrently read or write the CCS buffer, causing * incorrect pixels. */ static bool disable_rb_aux_buffer(struct iris_context *ice, bool *draw_aux_buffer_disabled, struct iris_resource *tex_res, unsigned min_level, unsigned num_levels, const char *usage) { struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; bool found = false; /* We only need to worry about color compression and fast clears. */ if (tex_res->aux.usage != ISL_AUX_USAGE_CCS_D && tex_res->aux.usage != ISL_AUX_USAGE_CCS_E) return false; for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) { struct iris_surface *surf = (void *) cso_fb->cbufs[i]; if (!surf) continue; struct iris_resource *rb_res = (void *) surf->base.texture; if (rb_res->bo == tex_res->bo && surf->base.u.tex.level >= min_level && surf->base.u.tex.level < min_level + num_levels) { found = draw_aux_buffer_disabled[i] = true; } } if (found) { perf_debug(&ice->dbg, "Disabling CCS because a renderbuffer is also bound %s.\n", usage); } return found; } static void resolve_sampler_views(struct iris_context *ice, struct iris_batch *batch, struct iris_shader_state *shs, const struct shader_info *info, bool *draw_aux_buffer_disabled, bool consider_framebuffer) { uint32_t views = info ? (shs->bound_sampler_views & info->textures_used) : 0; unsigned astc5x5_wa_bits = 0; // XXX: actual tracking while (views) { const int i = u_bit_scan(&views); struct iris_sampler_view *isv = shs->textures[i]; struct iris_resource *res = (void *) isv->base.texture; if (res->base.target != PIPE_BUFFER) { if (consider_framebuffer) { disable_rb_aux_buffer(ice, draw_aux_buffer_disabled, res, isv->view.base_level, isv->view.levels, "for sampling"); } iris_resource_prepare_texture(ice, batch, res, isv->view.format, isv->view.base_level, isv->view.levels, isv->view.base_array_layer, isv->view.array_len, astc5x5_wa_bits); } iris_cache_flush_for_read(batch, res->bo); } } static void resolve_image_views(struct iris_context *ice, struct iris_batch *batch, struct iris_shader_state *shs, bool *draw_aux_buffer_disabled, bool consider_framebuffer) { /* TODO: Consider images used by program */ uint32_t views = shs->bound_image_views; while (views) { const int i = u_bit_scan(&views); struct iris_resource *res = (void *) shs->image[i].base.resource; if (res->base.target != PIPE_BUFFER) { if (consider_framebuffer) { disable_rb_aux_buffer(ice, draw_aux_buffer_disabled, res, 0, ~0, "as a shader image"); } iris_resource_prepare_image(ice, batch, res); } iris_cache_flush_for_read(batch, res->bo); } } /** * \brief Resolve buffers before drawing. * * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each * enabled depth texture, and flush the render cache for any dirty textures. */ void iris_predraw_resolve_inputs(struct iris_context *ice, struct iris_batch *batch, bool *draw_aux_buffer_disabled, gl_shader_stage stage, bool consider_framebuffer) { struct iris_shader_state *shs = &ice->state.shaders[stage]; const struct shader_info *info = iris_get_shader_info(ice, stage); uint64_t dirty = (IRIS_DIRTY_BINDINGS_VS << stage) | (consider_framebuffer ? IRIS_DIRTY_BINDINGS_FS : 0); if (ice->state.dirty & dirty) { resolve_sampler_views(ice, batch, shs, info, draw_aux_buffer_disabled, consider_framebuffer); resolve_image_views(ice, batch, shs, draw_aux_buffer_disabled, consider_framebuffer); } // XXX: ASTC hacks } void iris_predraw_resolve_framebuffer(struct iris_context *ice, struct iris_batch *batch, bool *draw_aux_buffer_disabled) { struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; if (ice->state.dirty & IRIS_DIRTY_DEPTH_BUFFER) { struct pipe_surface *zs_surf = cso_fb->zsbuf; if (zs_surf) { struct iris_resource *z_res, *s_res; iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res); unsigned num_layers = zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1; if (z_res) { iris_resource_prepare_depth(ice, batch, z_res, zs_surf->u.tex.level, zs_surf->u.tex.first_layer, num_layers); iris_cache_flush_for_depth(batch, z_res->bo); } if (s_res) { iris_cache_flush_for_depth(batch, s_res->bo); } } } if (ice->state.dirty & (IRIS_DIRTY_BINDINGS_FS | IRIS_DIRTY_BLEND_STATE)) { for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) { struct iris_surface *surf = (void *) cso_fb->cbufs[i]; if (!surf) continue; struct iris_resource *res = (void *) surf->base.texture; enum isl_aux_usage aux_usage = iris_resource_render_aux_usage(ice, res, surf->view.format, ice->state.blend_enables & (1u << i), draw_aux_buffer_disabled[i]); if (ice->state.draw_aux_usage[i] != aux_usage) { ice->state.draw_aux_usage[i] = aux_usage; /* XXX: Need to track which bindings to make dirty */ ice->state.dirty |= IRIS_ALL_DIRTY_BINDINGS; } iris_resource_prepare_render(ice, batch, res, surf->view.base_level, surf->view.base_array_layer, surf->view.array_len, aux_usage); iris_cache_flush_for_render(batch, res->bo, surf->view.format, aux_usage); } } } /** * \brief Call this after drawing to mark which buffers need resolving * * If the depth buffer was written to and if it has an accompanying HiZ * buffer, then mark that it needs a depth resolve. * * If the color buffer is a multisample window system buffer, then * mark that it needs a downsample. * * Also mark any render targets which will be textured as needing a render * cache flush. */ void iris_postdraw_update_resolve_tracking(struct iris_context *ice, struct iris_batch *batch) { struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; // XXX: front buffer drawing? bool may_have_resolved_depth = ice->state.dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL); struct pipe_surface *zs_surf = cso_fb->zsbuf; if (zs_surf) { struct iris_resource *z_res, *s_res; iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res); unsigned num_layers = zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1; if (z_res) { if (may_have_resolved_depth) { iris_resource_finish_depth(ice, z_res, zs_surf->u.tex.level, zs_surf->u.tex.first_layer, num_layers, ice->state.depth_writes_enabled); } if (ice->state.depth_writes_enabled) iris_depth_cache_add_bo(batch, z_res->bo); } if (s_res) { if (may_have_resolved_depth) { iris_resource_finish_write(ice, s_res, zs_surf->u.tex.level, zs_surf->u.tex.first_layer, num_layers, ISL_AUX_USAGE_NONE); } if (ice->state.stencil_writes_enabled) iris_depth_cache_add_bo(batch, s_res->bo); } } bool may_have_resolved_color = ice->state.dirty & (IRIS_DIRTY_BINDINGS_FS | IRIS_DIRTY_BLEND_STATE); for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) { struct iris_surface *surf = (void *) cso_fb->cbufs[i]; if (!surf) continue; struct iris_resource *res = (void *) surf->base.texture; enum isl_aux_usage aux_usage = ice->state.draw_aux_usage[i]; iris_render_cache_add_bo(batch, res->bo, surf->view.format, aux_usage); if (may_have_resolved_color) { union pipe_surface_desc *desc = &surf->base.u; unsigned num_layers = desc->tex.last_layer - desc->tex.first_layer + 1; iris_resource_finish_render(ice, res, desc->tex.level, desc->tex.first_layer, num_layers, aux_usage); } } } /** * Clear the cache-tracking sets. */ void iris_cache_sets_clear(struct iris_batch *batch) { hash_table_foreach(batch->cache.render, render_entry) _mesa_hash_table_remove(batch->cache.render, render_entry); set_foreach(batch->cache.depth, depth_entry) _mesa_set_remove(batch->cache.depth, depth_entry); } /** * Emits an appropriate flush for a BO if it has been rendered to within the * same batchbuffer as a read that's about to be emitted. * * The GPU has separate, incoherent caches for the render cache and the * sampler cache, along with other caches. Usually data in the different * caches don't interact (e.g. we don't render to our driver-generated * immediate constant data), but for render-to-texture in FBOs we definitely * do. When a batchbuffer is flushed, the kernel will ensure that everything * necessary is flushed before another use of that BO, but for reuse from * different caches within a batchbuffer, it's all our responsibility. */ void iris_flush_depth_and_render_caches(struct iris_batch *batch) { iris_emit_pipe_control_flush(batch, "cache tracker: render-to-texture", PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_RENDER_TARGET_FLUSH | PIPE_CONTROL_CS_STALL); iris_emit_pipe_control_flush(batch, "cache tracker: render-to-texture", PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_CONST_CACHE_INVALIDATE); iris_cache_sets_clear(batch); } void iris_cache_flush_for_read(struct iris_batch *batch, struct iris_bo *bo) { if (_mesa_hash_table_search_pre_hashed(batch->cache.render, bo->hash, bo) || _mesa_set_search_pre_hashed(batch->cache.depth, bo->hash, bo)) iris_flush_depth_and_render_caches(batch); } static void * format_aux_tuple(enum isl_format format, enum isl_aux_usage aux_usage) { return (void *)(uintptr_t)((uint32_t)format << 8 | aux_usage); } void iris_cache_flush_for_render(struct iris_batch *batch, struct iris_bo *bo, enum isl_format format, enum isl_aux_usage aux_usage) { if (_mesa_set_search_pre_hashed(batch->cache.depth, bo->hash, bo)) iris_flush_depth_and_render_caches(batch); /* Check to see if this bo has been used by a previous rendering operation * but with a different format or aux usage. If it has, flush the render * cache so we ensure that it's only in there with one format or aux usage * at a time. * * Even though it's not obvious, this can easily happen in practice. * Suppose a client is blending on a surface with sRGB encode enabled on * gen9. This implies that you get AUX_USAGE_CCS_D at best. If the client * then disables sRGB decode and continues blending we will flip on * AUX_USAGE_CCS_E without doing any sort of resolve in-between (this is * perfectly valid since CCS_E is a subset of CCS_D). However, this means * that we have fragments in-flight which are rendering with UNORM+CCS_E * and other fragments in-flight with SRGB+CCS_D on the same surface at the * same time and the pixel scoreboard and color blender are trying to sort * it all out. This ends badly (i.e. GPU hangs). * * To date, we have never observed GPU hangs or even corruption to be * associated with switching the format, only the aux usage. However, * there are comments in various docs which indicate that the render cache * isn't 100% resilient to format changes. We may as well be conservative * and flush on format changes too. We can always relax this later if we * find it to be a performance problem. */ struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(batch->cache.render, bo->hash, bo); if (entry && entry->data != format_aux_tuple(format, aux_usage)) iris_flush_depth_and_render_caches(batch); } void iris_render_cache_add_bo(struct iris_batch *batch, struct iris_bo *bo, enum isl_format format, enum isl_aux_usage aux_usage) { #ifndef NDEBUG struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(batch->cache.render, bo->hash, bo); if (entry) { /* Otherwise, someone didn't do a flush_for_render and that would be * very bad indeed. */ assert(entry->data == format_aux_tuple(format, aux_usage)); } #endif _mesa_hash_table_insert_pre_hashed(batch->cache.render, bo->hash, bo, format_aux_tuple(format, aux_usage)); } void iris_cache_flush_for_depth(struct iris_batch *batch, struct iris_bo *bo) { if (_mesa_hash_table_search_pre_hashed(batch->cache.render, bo->hash, bo)) iris_flush_depth_and_render_caches(batch); } void iris_depth_cache_add_bo(struct iris_batch *batch, struct iris_bo *bo) { _mesa_set_add_pre_hashed(batch->cache.depth, bo->hash, bo); } static void iris_resolve_color(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, unsigned level, unsigned layer, enum isl_aux_op resolve_op) { //DBG("%s to mt %p level %u layer %u\n", __FUNCTION__, mt, level, layer); struct blorp_surf surf; iris_blorp_surf_for_resource(&ice->vtbl, &surf, &res->base, res->aux.usage, level, true); iris_batch_maybe_flush(batch, 1500); /* Ivybridge PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)": * * "Any transition from any value in {Clear, Render, Resolve} to a * different value in {Clear, Render, Resolve} requires end of pipe * synchronization." * * In other words, fast clear ops are not properly synchronized with * other drawing. We need to use a PIPE_CONTROL to ensure that the * contents of the previous draw hit the render target before we resolve * and again afterwards to ensure that the resolve is complete before we * do any more regular drawing. */ iris_emit_end_of_pipe_sync(batch, "color resolve: pre-flush", PIPE_CONTROL_RENDER_TARGET_FLUSH); struct blorp_batch blorp_batch; blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0); blorp_ccs_resolve(&blorp_batch, &surf, level, layer, 1, isl_format_srgb_to_linear(res->surf.format), resolve_op); blorp_batch_finish(&blorp_batch); /* See comment above */ iris_emit_end_of_pipe_sync(batch, "color resolve: post-flush", PIPE_CONTROL_RENDER_TARGET_FLUSH); } static void iris_mcs_partial_resolve(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t start_layer, uint32_t num_layers) { //DBG("%s to mt %p layers %u-%u\n", __FUNCTION__, mt, //start_layer, start_layer + num_layers - 1); assert(res->aux.usage == ISL_AUX_USAGE_MCS); struct blorp_surf surf; iris_blorp_surf_for_resource(&ice->vtbl, &surf, &res->base, res->aux.usage, 0, true); struct blorp_batch blorp_batch; blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0); blorp_mcs_partial_resolve(&blorp_batch, &surf, isl_format_srgb_to_linear(res->surf.format), start_layer, num_layers); blorp_batch_finish(&blorp_batch); } /** * Return true if the format that will be used to access the resource is * CCS_E-compatible with the resource's linear/non-sRGB format. * * Why use the linear format? Well, although the resourcemay be specified * with an sRGB format, the usage of that color space/format can be toggled. * Since our HW tends to support more linear formats than sRGB ones, we use * this format variant for check for CCS_E compatibility. */ static bool format_ccs_e_compat_with_resource(const struct gen_device_info *devinfo, const struct iris_resource *res, enum isl_format access_format) { assert(res->aux.usage == ISL_AUX_USAGE_CCS_E); enum isl_format isl_format = isl_format_srgb_to_linear(res->surf.format); return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format); } static bool sample_with_hiz(const struct gen_device_info *devinfo, const struct iris_resource *res) { if (!devinfo->has_sample_with_hiz) return false; if (res->aux.usage != ISL_AUX_USAGE_HIZ) return false; /* It seems the hardware won't fallback to the depth buffer if some of the * mipmap levels aren't available in the HiZ buffer. So we need all levels * of the texture to be HiZ enabled. */ for (unsigned level = 0; level < res->surf.levels; ++level) { if (!iris_resource_level_has_hiz(res, level)) return false; } /* If compressed multisampling is enabled, then we use it for the auxiliary * buffer instead. * * From the BDW PRM (Volume 2d: Command Reference: Structures * RENDER_SURFACE_STATE.AuxiliarySurfaceMode): * * "If this field is set to AUX_HIZ, Number of Multisamples must be * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D. * * There is no such blurb for 1D textures, but there is sufficient evidence * that this is broken on SKL+. */ // XXX: i965 disables this for arrays too, is that reasonable? return res->surf.samples == 1 && res->surf.dim == ISL_SURF_DIM_2D; } /** * Perform a HiZ or depth resolve operation. * * For an overview of HiZ ops, see the following sections of the Sandy Bridge * PRM, Volume 1, Part 2: * - 7.5.3.1 Depth Buffer Clear * - 7.5.3.2 Depth Buffer Resolve * - 7.5.3.3 Hierarchical Depth Buffer Resolve */ void iris_hiz_exec(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, unsigned int level, unsigned int start_layer, unsigned int num_layers, enum isl_aux_op op, bool update_clear_depth) { assert(iris_resource_level_has_hiz(res, level)); assert(op != ISL_AUX_OP_NONE); UNUSED const char *name = NULL; switch (op) { case ISL_AUX_OP_FULL_RESOLVE: name = "depth resolve"; break; case ISL_AUX_OP_AMBIGUATE: name = "hiz ambiguate"; break; case ISL_AUX_OP_FAST_CLEAR: name = "depth clear"; break; case ISL_AUX_OP_PARTIAL_RESOLVE: case ISL_AUX_OP_NONE: unreachable("Invalid HiZ op"); } //DBG("%s %s to mt %p level %d layers %d-%d\n", //__func__, name, mt, level, start_layer, start_layer + num_layers - 1); /* The following stalls and flushes are only documented to be required * for HiZ clear operations. However, they also seem to be required for * resolve operations. * * From the Ivybridge PRM, volume 2, "Depth Buffer Clear": * * "If other rendering operations have preceded this clear, a * PIPE_CONTROL with depth cache flush enabled, Depth Stall bit * enabled must be issued before the rectangle primitive used for * the depth buffer clear operation." * * Same applies for Gen8 and Gen9. * * In addition, from the Ivybridge PRM, volume 2, 1.10.4.1 * PIPE_CONTROL, Depth Cache Flush Enable: * * "This bit must not be set when Depth Stall Enable bit is set in * this packet." * * This is confirmed to hold for real, Haswell gets immediate gpu hangs. * * Therefore issue two pipe control flushes, one for cache flush and * another for depth stall. */ iris_emit_pipe_control_flush(batch, "hiz op: pre-flushes (1/2)", PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_CS_STALL); iris_emit_pipe_control_flush(batch, "hiz op: pre-flushes (2/2)", PIPE_CONTROL_DEPTH_STALL); assert(res->aux.usage == ISL_AUX_USAGE_HIZ && res->aux.bo); iris_batch_maybe_flush(batch, 1500); struct blorp_surf surf; iris_blorp_surf_for_resource(&ice->vtbl, &surf, &res->base, ISL_AUX_USAGE_HIZ, level, true); struct blorp_batch blorp_batch; enum blorp_batch_flags flags = 0; flags |= update_clear_depth ? 0 : BLORP_BATCH_NO_UPDATE_CLEAR_COLOR; blorp_batch_init(&ice->blorp, &blorp_batch, batch, flags); blorp_hiz_op(&blorp_batch, &surf, level, start_layer, num_layers, op); blorp_batch_finish(&blorp_batch); /* The following stalls and flushes are only documented to be required * for HiZ clear operations. However, they also seem to be required for * resolve operations. * * From the Broadwell PRM, volume 7, "Depth Buffer Clear": * * "Depth buffer clear pass using any of the methods (WM_STATE, * 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a * PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits * "set" before starting to render. DepthStall and DepthFlush are * not needed between consecutive depth clear passes nor is it * required if the depth clear pass was done with * 'full_surf_clear' bit set in the 3DSTATE_WM_HZ_OP." * * TODO: Such as the spec says, this could be conditional. */ iris_emit_pipe_control_flush(batch, "hiz op: post flush", PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DEPTH_STALL); } /** * Does the resource's slice have hiz enabled? */ bool iris_resource_level_has_hiz(const struct iris_resource *res, uint32_t level) { iris_resource_check_level_layer(res, level, 0); return res->aux.has_hiz & 1 << level; } /** \brief Assert that the level and layer are valid for the resource. */ void iris_resource_check_level_layer(UNUSED const struct iris_resource *res, UNUSED uint32_t level, UNUSED uint32_t layer) { assert(level < res->surf.levels); assert(layer < util_num_layers(&res->base, level)); } static inline uint32_t miptree_level_range_length(const struct iris_resource *res, uint32_t start_level, uint32_t num_levels) { assert(start_level < res->surf.levels); if (num_levels == INTEL_REMAINING_LAYERS) num_levels = res->surf.levels; /* Check for overflow */ assert(start_level + num_levels >= start_level); assert(start_level + num_levels <= res->surf.levels); return num_levels; } static inline uint32_t miptree_layer_range_length(const struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t num_layers) { assert(level <= res->base.last_level); const uint32_t total_num_layers = iris_get_num_logical_layers(res, level); assert(start_layer < total_num_layers); if (num_layers == INTEL_REMAINING_LAYERS) num_layers = total_num_layers - start_layer; /* Check for overflow */ assert(start_layer + num_layers >= start_layer); assert(start_layer + num_layers <= total_num_layers); return num_layers; } bool iris_has_color_unresolved(const struct iris_resource *res, unsigned start_level, unsigned num_levels, unsigned start_layer, unsigned num_layers) { if (!res->aux.bo) return false; /* Clamp the level range to fit the resource */ num_levels = miptree_level_range_length(res, start_level, num_levels); for (uint32_t l = 0; l < num_levels; l++) { const uint32_t level = start_level + l; const uint32_t level_layers = miptree_layer_range_length(res, level, start_layer, num_layers); for (unsigned a = 0; a < level_layers; a++) { enum isl_aux_state aux_state = iris_resource_get_aux_state(res, level, start_layer + a); assert(aux_state != ISL_AUX_STATE_AUX_INVALID); if (aux_state != ISL_AUX_STATE_PASS_THROUGH) return true; } } return false; } static enum isl_aux_op get_ccs_d_resolve_op(enum isl_aux_state aux_state, enum isl_aux_usage aux_usage, bool fast_clear_supported) { assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D); const bool ccs_supported = (aux_usage == ISL_AUX_USAGE_CCS_D) && fast_clear_supported; switch (aux_state) { case ISL_AUX_STATE_CLEAR: case ISL_AUX_STATE_PARTIAL_CLEAR: if (!ccs_supported) return ISL_AUX_OP_FULL_RESOLVE; else return ISL_AUX_OP_NONE; case ISL_AUX_STATE_PASS_THROUGH: return ISL_AUX_OP_NONE; case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_AUX_INVALID: case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: break; } unreachable("Invalid aux state for CCS_D"); } static enum isl_aux_op get_ccs_e_resolve_op(enum isl_aux_state aux_state, enum isl_aux_usage aux_usage, bool fast_clear_supported) { /* CCS_E surfaces can be accessed as CCS_D if we're careful. */ assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D || aux_usage == ISL_AUX_USAGE_CCS_E); switch (aux_state) { case ISL_AUX_STATE_CLEAR: case ISL_AUX_STATE_PARTIAL_CLEAR: if (fast_clear_supported) return ISL_AUX_OP_NONE; else if (aux_usage == ISL_AUX_USAGE_CCS_E) return ISL_AUX_OP_PARTIAL_RESOLVE; else return ISL_AUX_OP_FULL_RESOLVE; case ISL_AUX_STATE_COMPRESSED_CLEAR: if (aux_usage != ISL_AUX_USAGE_CCS_E) return ISL_AUX_OP_FULL_RESOLVE; else if (!fast_clear_supported) return ISL_AUX_OP_PARTIAL_RESOLVE; else return ISL_AUX_OP_NONE; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: if (aux_usage != ISL_AUX_USAGE_CCS_E) return ISL_AUX_OP_FULL_RESOLVE; else return ISL_AUX_OP_NONE; case ISL_AUX_STATE_PASS_THROUGH: return ISL_AUX_OP_NONE; case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_AUX_INVALID: break; } unreachable("Invalid aux state for CCS_E"); } static void iris_resource_prepare_ccs_access(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t level, uint32_t layer, enum isl_aux_usage aux_usage, bool fast_clear_supported) { enum isl_aux_state aux_state = iris_resource_get_aux_state(res, level, layer); enum isl_aux_op resolve_op; if (res->aux.usage == ISL_AUX_USAGE_CCS_E) { resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage, fast_clear_supported); } else { assert(res->aux.usage == ISL_AUX_USAGE_CCS_D); resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage, fast_clear_supported); } if (resolve_op != ISL_AUX_OP_NONE) { iris_resolve_color(ice, batch, res, level, layer, resolve_op); switch (resolve_op) { case ISL_AUX_OP_FULL_RESOLVE: /* The CCS full resolve operation destroys the CCS and sets it to the * pass-through state. (You can also think of this as being both a * resolve and an ambiguate in one operation.) */ iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_PASS_THROUGH); break; case ISL_AUX_OP_PARTIAL_RESOLVE: iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_NO_CLEAR); break; default: unreachable("Invalid resolve op"); } } } static void iris_resource_finish_ccs_write(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t layer, enum isl_aux_usage aux_usage) { assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D || aux_usage == ISL_AUX_USAGE_CCS_E); enum isl_aux_state aux_state = iris_resource_get_aux_state(res, level, layer); if (res->aux.usage == ISL_AUX_USAGE_CCS_E) { switch (aux_state) { case ISL_AUX_STATE_CLEAR: case ISL_AUX_STATE_PARTIAL_CLEAR: assert(aux_usage == ISL_AUX_USAGE_CCS_E || aux_usage == ISL_AUX_USAGE_CCS_D); if (aux_usage == ISL_AUX_USAGE_CCS_E) { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_CLEAR); } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_PARTIAL_CLEAR); } break; case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: assert(aux_usage == ISL_AUX_USAGE_CCS_E); break; /* Nothing to do */ case ISL_AUX_STATE_PASS_THROUGH: if (aux_usage == ISL_AUX_USAGE_CCS_E) { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_NO_CLEAR); } else { /* Nothing to do */ } break; case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_AUX_INVALID: unreachable("Invalid aux state for CCS_E"); } } else { assert(res->aux.usage == ISL_AUX_USAGE_CCS_D); /* CCS_D is a bit simpler */ switch (aux_state) { case ISL_AUX_STATE_CLEAR: assert(aux_usage == ISL_AUX_USAGE_CCS_D); iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_PARTIAL_CLEAR); break; case ISL_AUX_STATE_PARTIAL_CLEAR: assert(aux_usage == ISL_AUX_USAGE_CCS_D); break; /* Nothing to do */ case ISL_AUX_STATE_PASS_THROUGH: /* Nothing to do */ break; case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_AUX_INVALID: unreachable("Invalid aux state for CCS_D"); } } } static void iris_resource_prepare_mcs_access(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t layer, enum isl_aux_usage aux_usage, bool fast_clear_supported) { assert(aux_usage == ISL_AUX_USAGE_MCS); switch (iris_resource_get_aux_state(res, 0, layer)) { case ISL_AUX_STATE_CLEAR: case ISL_AUX_STATE_COMPRESSED_CLEAR: if (!fast_clear_supported) { iris_mcs_partial_resolve(ice, batch, res, layer, 1); iris_resource_set_aux_state(ice, res, 0, layer, 1, ISL_AUX_STATE_COMPRESSED_NO_CLEAR); } break; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: break; /* Nothing to do */ case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: case ISL_AUX_STATE_PARTIAL_CLEAR: unreachable("Invalid aux state for MCS"); } } static void iris_resource_finish_mcs_write(struct iris_context *ice, struct iris_resource *res, uint32_t layer, enum isl_aux_usage aux_usage) { assert(aux_usage == ISL_AUX_USAGE_MCS); switch (iris_resource_get_aux_state(res, 0, layer)) { case ISL_AUX_STATE_CLEAR: iris_resource_set_aux_state(ice, res, 0, layer, 1, ISL_AUX_STATE_COMPRESSED_CLEAR); break; case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: break; /* Nothing to do */ case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: case ISL_AUX_STATE_PARTIAL_CLEAR: unreachable("Invalid aux state for MCS"); } } static void iris_resource_prepare_hiz_access(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t level, uint32_t layer, enum isl_aux_usage aux_usage, bool fast_clear_supported) { assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ); enum isl_aux_op hiz_op = ISL_AUX_OP_NONE; switch (iris_resource_get_aux_state(res, level, layer)) { case ISL_AUX_STATE_CLEAR: case ISL_AUX_STATE_COMPRESSED_CLEAR: if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported) hiz_op = ISL_AUX_OP_FULL_RESOLVE; break; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: if (aux_usage != ISL_AUX_USAGE_HIZ) hiz_op = ISL_AUX_OP_FULL_RESOLVE; break; case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_RESOLVED: break; case ISL_AUX_STATE_AUX_INVALID: if (aux_usage == ISL_AUX_USAGE_HIZ) hiz_op = ISL_AUX_OP_AMBIGUATE; break; case ISL_AUX_STATE_PARTIAL_CLEAR: unreachable("Invalid HiZ state"); } if (hiz_op != ISL_AUX_OP_NONE) { iris_hiz_exec(ice, batch, res, level, layer, 1, hiz_op, false); switch (hiz_op) { case ISL_AUX_OP_FULL_RESOLVE: iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_RESOLVED); break; case ISL_AUX_OP_AMBIGUATE: /* The HiZ resolve operation is actually an ambiguate */ iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_PASS_THROUGH); break; default: unreachable("Invalid HiZ op"); } } } static void iris_resource_finish_hiz_write(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t layer, enum isl_aux_usage aux_usage) { assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ); switch (iris_resource_get_aux_state(res, level, layer)) { case ISL_AUX_STATE_CLEAR: assert(aux_usage == ISL_AUX_USAGE_HIZ); iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_CLEAR); break; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: case ISL_AUX_STATE_COMPRESSED_CLEAR: assert(aux_usage == ISL_AUX_USAGE_HIZ); break; /* Nothing to do */ case ISL_AUX_STATE_RESOLVED: if (aux_usage == ISL_AUX_USAGE_HIZ) { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_NO_CLEAR); } else { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_AUX_INVALID); } break; case ISL_AUX_STATE_PASS_THROUGH: if (aux_usage == ISL_AUX_USAGE_HIZ) { iris_resource_set_aux_state(ice, res, level, layer, 1, ISL_AUX_STATE_COMPRESSED_NO_CLEAR); } break; case ISL_AUX_STATE_AUX_INVALID: assert(aux_usage != ISL_AUX_USAGE_HIZ); break; case ISL_AUX_STATE_PARTIAL_CLEAR: unreachable("Invalid HiZ state"); } } void iris_resource_prepare_access(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t start_level, uint32_t num_levels, uint32_t start_layer, uint32_t num_layers, enum isl_aux_usage aux_usage, bool fast_clear_supported) { num_levels = miptree_level_range_length(res, start_level, num_levels); switch (res->aux.usage) { case ISL_AUX_USAGE_NONE: /* Nothing to do */ break; case ISL_AUX_USAGE_MCS: assert(start_level == 0 && num_levels == 1); const uint32_t level_layers = miptree_layer_range_length(res, 0, start_layer, num_layers); for (uint32_t a = 0; a < level_layers; a++) { iris_resource_prepare_mcs_access(ice, batch, res, start_layer + a, aux_usage, fast_clear_supported); } break; case ISL_AUX_USAGE_CCS_D: case ISL_AUX_USAGE_CCS_E: for (uint32_t l = 0; l < num_levels; l++) { const uint32_t level = start_level + l; const uint32_t level_layers = miptree_layer_range_length(res, level, start_layer, num_layers); for (uint32_t a = 0; a < level_layers; a++) { iris_resource_prepare_ccs_access(ice, batch, res, level, start_layer + a, aux_usage, fast_clear_supported); } } break; case ISL_AUX_USAGE_HIZ: for (uint32_t l = 0; l < num_levels; l++) { const uint32_t level = start_level + l; if (!iris_resource_level_has_hiz(res, level)) continue; const uint32_t level_layers = miptree_layer_range_length(res, level, start_layer, num_layers); for (uint32_t a = 0; a < level_layers; a++) { iris_resource_prepare_hiz_access(ice, batch, res, level, start_layer + a, aux_usage, fast_clear_supported); } } break; default: unreachable("Invalid aux usage"); } } void iris_resource_finish_write(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t num_layers, enum isl_aux_usage aux_usage) { num_layers = miptree_layer_range_length(res, level, start_layer, num_layers); switch (res->aux.usage) { case ISL_AUX_USAGE_NONE: break; case ISL_AUX_USAGE_MCS: for (uint32_t a = 0; a < num_layers; a++) { iris_resource_finish_mcs_write(ice, res, start_layer + a, aux_usage); } break; case ISL_AUX_USAGE_CCS_D: case ISL_AUX_USAGE_CCS_E: for (uint32_t a = 0; a < num_layers; a++) { iris_resource_finish_ccs_write(ice, res, level, start_layer + a, aux_usage); } break; case ISL_AUX_USAGE_HIZ: if (!iris_resource_level_has_hiz(res, level)) return; for (uint32_t a = 0; a < num_layers; a++) { iris_resource_finish_hiz_write(ice, res, level, start_layer + a, aux_usage); } break; default: unreachable("Invavlid aux usage"); } } enum isl_aux_state iris_resource_get_aux_state(const struct iris_resource *res, uint32_t level, uint32_t layer) { iris_resource_check_level_layer(res, level, layer); if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) { assert(iris_resource_level_has_hiz(res, level)); } else if (res->surf.usage & ISL_SURF_USAGE_STENCIL_BIT) { unreachable("Cannot get aux state for stencil"); } else { assert(res->surf.samples == 1 || res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY); } return res->aux.state[level][layer]; } void iris_resource_set_aux_state(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t num_layers, enum isl_aux_state aux_state) { num_layers = miptree_layer_range_length(res, level, start_layer, num_layers); if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) { assert(iris_resource_level_has_hiz(res, level)); } else if (res->surf.usage & ISL_SURF_USAGE_STENCIL_BIT) { unreachable("Cannot set aux state for stencil"); } else { assert(res->surf.samples == 1 || res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY); } for (unsigned a = 0; a < num_layers; a++) { if (res->aux.state[level][start_layer + a] != aux_state) { res->aux.state[level][start_layer + a] = aux_state; /* XXX: Need to track which bindings to make dirty */ ice->state.dirty |= IRIS_ALL_DIRTY_BINDINGS; } } } /* On Gen9 color buffers may be compressed by the hardware (lossless * compression). There are, however, format restrictions and care needs to be * taken that the sampler engine is capable for re-interpreting a buffer with * format different the buffer was originally written with. * * For example, SRGB formats are not compressible and the sampler engine isn't * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying * color buffer needs to be resolved so that the sampling surface can be * sampled as non-compressed (i.e., without the auxiliary MCS buffer being * set). */ static bool can_texture_with_ccs(const struct gen_device_info *devinfo, struct pipe_debug_callback *dbg, const struct iris_resource *res, enum isl_format view_format) { if (res->aux.usage != ISL_AUX_USAGE_CCS_E) return false; if (!format_ccs_e_compat_with_resource(devinfo, res, view_format)) { const struct isl_format_layout *res_fmtl = isl_format_get_layout(res->surf.format); const struct isl_format_layout *view_fmtl = isl_format_get_layout(view_format); perf_debug(dbg, "Incompatible sampling format (%s) for CCS (%s)\n", view_fmtl->name, res_fmtl->name); return false; } return true; } enum isl_aux_usage iris_resource_texture_aux_usage(struct iris_context *ice, const struct iris_resource *res, enum isl_format view_format, enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits) { struct iris_screen *screen = (void *) ice->ctx.screen; struct gen_device_info *devinfo = &screen->devinfo; assert(devinfo->gen == 9 || astc5x5_wa_bits == 0); /* On gen9, ASTC 5x5 textures cannot live in the sampler cache along side * CCS or HiZ compressed textures. See gen9_apply_astc5x5_wa_flush() for * details. */ if ((astc5x5_wa_bits & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) && res->aux.usage != ISL_AUX_USAGE_MCS) return ISL_AUX_USAGE_NONE; switch (res->aux.usage) { case ISL_AUX_USAGE_HIZ: if (sample_with_hiz(devinfo, res)) return ISL_AUX_USAGE_HIZ; break; case ISL_AUX_USAGE_MCS: return ISL_AUX_USAGE_MCS; case ISL_AUX_USAGE_CCS_D: case ISL_AUX_USAGE_CCS_E: /* If we don't have any unresolved color, report an aux usage of * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the * aux surface and we can save some bandwidth. */ if (!iris_has_color_unresolved(res, 0, INTEL_REMAINING_LEVELS, 0, INTEL_REMAINING_LAYERS)) return ISL_AUX_USAGE_NONE; if (can_texture_with_ccs(devinfo, &ice->dbg, res, view_format)) return ISL_AUX_USAGE_CCS_E; break; default: break; } return ISL_AUX_USAGE_NONE; } static bool isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b) { /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear * values so sRGB curve application was a no-op for all fast-clearable * formats. * * On gen9+, the hardware supports arbitrary clear values. For sRGB clear * values, the hardware interprets the floats, not as what would be * returned from the sampler (or written by the shader), but as being * between format conversion and sRGB curve application. This means that * we can switch between sRGB and UNORM without having to whack the clear * color. */ return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b); } void iris_resource_prepare_texture(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, enum isl_format view_format, uint32_t start_level, uint32_t num_levels, uint32_t start_layer, uint32_t num_layers, enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits) { enum isl_aux_usage aux_usage = iris_resource_texture_aux_usage(ice, res, view_format, astc5x5_wa_bits); bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE; /* Clear color is specified as ints or floats and the conversion is done by * the sampler. If we have a texture view, we would have to perform the * clear color conversion manually. Just disable clear color. */ if (!isl_formats_are_fast_clear_compatible(res->surf.format, view_format)) clear_supported = false; iris_resource_prepare_access(ice, batch, res, start_level, num_levels, start_layer, num_layers, aux_usage, clear_supported); } void iris_resource_prepare_image(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res) { /* The data port doesn't understand any compression */ iris_resource_prepare_access(ice, batch, res, 0, INTEL_REMAINING_LEVELS, 0, INTEL_REMAINING_LAYERS, ISL_AUX_USAGE_NONE, false); } enum isl_aux_usage iris_resource_render_aux_usage(struct iris_context *ice, struct iris_resource *res, enum isl_format render_format, bool blend_enabled, bool draw_aux_disabled) { struct iris_screen *screen = (void *) ice->ctx.screen; struct gen_device_info *devinfo = &screen->devinfo; if (draw_aux_disabled) return ISL_AUX_USAGE_NONE; switch (res->aux.usage) { case ISL_AUX_USAGE_MCS: return ISL_AUX_USAGE_MCS; case ISL_AUX_USAGE_CCS_D: case ISL_AUX_USAGE_CCS_E: /* Gen9+ hardware technically supports non-0/1 clear colors with sRGB * formats. However, there are issues with blending where it doesn't * properly apply the sRGB curve to the clear color when blending. */ if (devinfo->gen >= 9 && blend_enabled && isl_format_is_srgb(render_format) && !isl_color_value_is_zero_one(res->aux.clear_color, render_format)) return ISL_AUX_USAGE_NONE; if (res->aux.usage == ISL_AUX_USAGE_CCS_E && format_ccs_e_compat_with_resource(devinfo, res, render_format)) return ISL_AUX_USAGE_CCS_E; /* Otherwise, we have to fall back to CCS_D */ return ISL_AUX_USAGE_CCS_D; default: return ISL_AUX_USAGE_NONE; } } void iris_resource_prepare_render(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t layer_count, enum isl_aux_usage aux_usage) { iris_resource_prepare_access(ice, batch, res, level, 1, start_layer, layer_count, aux_usage, aux_usage != ISL_AUX_USAGE_NONE); } void iris_resource_finish_render(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t layer_count, enum isl_aux_usage aux_usage) { iris_resource_finish_write(ice, res, level, start_layer, layer_count, aux_usage); } void iris_resource_prepare_depth(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t layer_count) { iris_resource_prepare_access(ice, batch, res, level, 1, start_layer, layer_count, res->aux.usage, !!res->aux.bo); } void iris_resource_finish_depth(struct iris_context *ice, struct iris_resource *res, uint32_t level, uint32_t start_layer, uint32_t layer_count, bool depth_written) { if (depth_written) { iris_resource_finish_write(ice, res, level, start_layer, layer_count, res->aux.usage); } }