/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file iris_program.c * * This file contains the driver interface for compiling shaders. * * See iris_program_cache.c for the in-memory program cache where the * compiled shaders are stored. */ #include #include #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "pipe/p_screen.h" #include "util/u_atomic.h" #include "util/u_upload_mgr.h" #include "util/debug.h" #include "compiler/nir/nir.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir/nir_serialize.h" #include "intel/compiler/brw_compiler.h" #include "intel/compiler/brw_nir.h" #include "iris_context.h" #include "nir/tgsi_to_nir.h" #define KEY_INIT_NO_ID(gen) \ .tex.swizzles[0 ... MAX_SAMPLERS - 1] = 0x688, \ .tex.compressed_multisample_layout_mask = ~0, \ .tex.msaa_16 = (gen >= 9 ? ~0 : 0) #define KEY_INIT(gen) .program_string_id = ish->program_id, KEY_INIT_NO_ID(gen) static unsigned get_new_program_id(struct iris_screen *screen) { return p_atomic_inc_return(&screen->program_id); } static void * upload_state(struct u_upload_mgr *uploader, struct iris_state_ref *ref, unsigned size, unsigned alignment) { void *p = NULL; u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p); return p; } void iris_upload_ubo_ssbo_surf_state(struct iris_context *ice, struct pipe_shader_buffer *buf, struct iris_state_ref *surf_state, bool ssbo) { struct pipe_context *ctx = &ice->ctx; struct iris_screen *screen = (struct iris_screen *) ctx->screen; // XXX: these are not retained forever, use a separate uploader? void *map = upload_state(ice->state.surface_uploader, surf_state, screen->isl_dev.ss.size, 64); if (!unlikely(map)) { surf_state->res = NULL; return; } struct iris_resource *res = (void *) buf->buffer; struct iris_bo *surf_bo = iris_resource_bo(surf_state->res); surf_state->offset += iris_bo_offset_from_base_address(surf_bo); isl_buffer_fill_state(&screen->isl_dev, map, .address = res->bo->gtt_offset + res->offset + buf->buffer_offset, .size_B = buf->buffer_size - res->offset, .format = ssbo ? ISL_FORMAT_RAW : ISL_FORMAT_R32G32B32A32_FLOAT, .swizzle = ISL_SWIZZLE_IDENTITY, .stride_B = 1, .mocs = ice->vtbl.mocs(res->bo)); } static nir_ssa_def * get_aoa_deref_offset(nir_builder *b, nir_deref_instr *deref, unsigned elem_size) { unsigned array_size = elem_size; nir_ssa_def *offset = nir_imm_int(b, 0); while (deref->deref_type != nir_deref_type_var) { assert(deref->deref_type == nir_deref_type_array); /* This level's element size is the previous level's array size */ nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1); assert(deref->arr.index.ssa); offset = nir_iadd(b, offset, nir_imul(b, index, nir_imm_int(b, array_size))); deref = nir_deref_instr_parent(deref); assert(glsl_type_is_array(deref->type)); array_size *= glsl_get_length(deref->type); } /* Accessing an invalid surface index with the dataport can result in a * hang. According to the spec "if the index used to select an individual * element is negative or greater than or equal to the size of the array, * the results of the operation are undefined but may not lead to * termination" -- which is one of the possible outcomes of the hang. * Clamp the index to prevent access outside of the array bounds. */ return nir_umin(b, offset, nir_imm_int(b, array_size - elem_size)); } static void iris_lower_storage_image_derefs(nir_shader *nir) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); nir_builder b; nir_builder_init(&b, impl); nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_image_deref_load: case nir_intrinsic_image_deref_store: case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_min: case nir_intrinsic_image_deref_atomic_max: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: case nir_intrinsic_image_deref_size: case nir_intrinsic_image_deref_samples: case nir_intrinsic_image_deref_load_raw_intel: case nir_intrinsic_image_deref_store_raw_intel: { nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); nir_variable *var = nir_deref_instr_get_variable(deref); b.cursor = nir_before_instr(&intrin->instr); nir_ssa_def *index = nir_iadd(&b, nir_imm_int(&b, var->data.driver_location), get_aoa_deref_offset(&b, deref, 1)); nir_rewrite_image_intrinsic(intrin, index, false); break; } default: break; } } } } // XXX: need unify_interfaces() at link time... /** * Fix an uncompiled shader's stream output info. * * Core Gallium stores output->register_index as a "slot" number, where * slots are assigned consecutively to all outputs in info->outputs_written. * This naive packing of outputs doesn't work for us - we too have slots, * but the layout is defined by the VUE map, which we won't have until we * compile a specific shader variant. So, we remap these and simply store * VARYING_SLOT_* in our copy's output->register_index fields. * * We also fix up VARYING_SLOT_{LAYER,VIEWPORT,PSIZ} to select the Y/Z/W * components of our VUE header. See brw_vue_map.c for the layout. */ static void update_so_info(struct pipe_stream_output_info *so_info, uint64_t outputs_written) { uint8_t reverse_map[64] = {}; unsigned slot = 0; while (outputs_written) { reverse_map[slot++] = u_bit_scan64(&outputs_written); } for (unsigned i = 0; i < so_info->num_outputs; i++) { struct pipe_stream_output *output = &so_info->output[i]; /* Map Gallium's condensed "slots" back to real VARYING_SLOT_* enums */ output->register_index = reverse_map[output->register_index]; /* The VUE header contains three scalar fields packed together: * - gl_PointSize is stored in VARYING_SLOT_PSIZ.w * - gl_Layer is stored in VARYING_SLOT_PSIZ.y * - gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z */ switch (output->register_index) { case VARYING_SLOT_LAYER: assert(output->num_components == 1); output->register_index = VARYING_SLOT_PSIZ; output->start_component = 1; break; case VARYING_SLOT_VIEWPORT: assert(output->num_components == 1); output->register_index = VARYING_SLOT_PSIZ; output->start_component = 2; break; case VARYING_SLOT_PSIZ: assert(output->num_components == 1); output->start_component = 3; break; } //info->outputs_written |= 1ull << output->register_index; } } static void setup_vec4_image_sysval(uint32_t *sysvals, uint32_t idx, unsigned offset, unsigned n) { assert(offset % sizeof(uint32_t) == 0); for (unsigned i = 0; i < n; ++i) sysvals[i] = BRW_PARAM_IMAGE(idx, offset / sizeof(uint32_t) + i); for (unsigned i = n; i < 4; ++i) sysvals[i] = BRW_PARAM_BUILTIN_ZERO; } /** * Associate NIR uniform variables with the prog_data->param[] mechanism * used by the backend. Also, decide which UBOs we'd like to push in an * ideal situation (though the backend can reduce this). */ static void iris_setup_uniforms(const struct brw_compiler *compiler, void *mem_ctx, nir_shader *nir, struct brw_stage_prog_data *prog_data, enum brw_param_builtin **out_system_values, unsigned *out_num_system_values, unsigned *out_num_cbufs) { UNUSED const struct gen_device_info *devinfo = compiler->devinfo; /* The intel compiler assumes that num_uniforms is in bytes. For * scalar that means 4 bytes per uniform slot. * * Ref: brw_nir_lower_uniforms, type_size_scalar_bytes. */ nir->num_uniforms *= 4; const unsigned IRIS_MAX_SYSTEM_VALUES = PIPE_MAX_SHADER_IMAGES * BRW_IMAGE_PARAM_SIZE; enum brw_param_builtin *system_values = rzalloc_array(mem_ctx, enum brw_param_builtin, IRIS_MAX_SYSTEM_VALUES); unsigned num_system_values = 0; unsigned patch_vert_idx = -1; unsigned ucp_idx[IRIS_MAX_CLIP_PLANES]; unsigned img_idx[PIPE_MAX_SHADER_IMAGES]; memset(ucp_idx, -1, sizeof(ucp_idx)); memset(img_idx, -1, sizeof(img_idx)); nir_function_impl *impl = nir_shader_get_entrypoint(nir); nir_builder b; nir_builder_init(&b, impl); b.cursor = nir_before_block(nir_start_block(impl)); nir_ssa_def *temp_ubo_name = nir_ssa_undef(&b, 1, 32); nir_ssa_def *temp_const_ubo_name = NULL; /* Turn system value intrinsics into uniforms */ nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); nir_ssa_def *offset; switch (intrin->intrinsic) { case nir_intrinsic_load_constant: { /* This one is special because it reads from the shader constant * data and not cbuf0 which gallium uploads for us. */ b.cursor = nir_before_instr(instr); nir_ssa_def *offset = nir_iadd_imm(&b, nir_ssa_for_src(&b, intrin->src[0], 1), nir_intrinsic_base(intrin)); if (temp_const_ubo_name == NULL) temp_const_ubo_name = nir_imm_int(&b, 0); nir_intrinsic_instr *load_ubo = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ubo); load_ubo->num_components = intrin->num_components; load_ubo->src[0] = nir_src_for_ssa(temp_const_ubo_name); load_ubo->src[1] = nir_src_for_ssa(offset); nir_ssa_dest_init(&load_ubo->instr, &load_ubo->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, intrin->dest.ssa.name); nir_builder_instr_insert(&b, &load_ubo->instr); nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(&load_ubo->dest.ssa)); nir_instr_remove(&intrin->instr); continue; } case nir_intrinsic_load_user_clip_plane: { unsigned ucp = nir_intrinsic_ucp_id(intrin); if (ucp_idx[ucp] == -1) { ucp_idx[ucp] = num_system_values; num_system_values += 4; } for (int i = 0; i < 4; i++) { system_values[ucp_idx[ucp] + i] = BRW_PARAM_BUILTIN_CLIP_PLANE(ucp, i); } b.cursor = nir_before_instr(instr); offset = nir_imm_int(&b, ucp_idx[ucp] * sizeof(uint32_t)); break; } case nir_intrinsic_load_patch_vertices_in: if (patch_vert_idx == -1) patch_vert_idx = num_system_values++; system_values[patch_vert_idx] = BRW_PARAM_BUILTIN_PATCH_VERTICES_IN; b.cursor = nir_before_instr(instr); offset = nir_imm_int(&b, patch_vert_idx * sizeof(uint32_t)); break; case nir_intrinsic_image_deref_load_param_intel: { assert(devinfo->gen < 9); nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); nir_variable *var = nir_deref_instr_get_variable(deref); /* XXX: var->data.binding is not set properly. We need to run * some form of gl_nir_lower_samplers_as_deref() to get it. * This breaks tests which use more than one image. */ if (img_idx[var->data.binding] == -1) { /* GL only allows arrays of arrays of images. */ assert(glsl_type_is_image(glsl_without_array(var->type))); unsigned num_images = MAX2(1, glsl_get_aoa_size(var->type)); for (int i = 0; i < num_images; i++) { const unsigned img = var->data.binding + i; img_idx[img] = num_system_values; num_system_values += BRW_IMAGE_PARAM_SIZE; uint32_t *img_sv = &system_values[img_idx[img]]; setup_vec4_image_sysval( img_sv + BRW_IMAGE_PARAM_OFFSET_OFFSET, img, offsetof(struct brw_image_param, offset), 2); setup_vec4_image_sysval( img_sv + BRW_IMAGE_PARAM_SIZE_OFFSET, img, offsetof(struct brw_image_param, size), 3); setup_vec4_image_sysval( img_sv + BRW_IMAGE_PARAM_STRIDE_OFFSET, img, offsetof(struct brw_image_param, stride), 4); setup_vec4_image_sysval( img_sv + BRW_IMAGE_PARAM_TILING_OFFSET, img, offsetof(struct brw_image_param, tiling), 3); setup_vec4_image_sysval( img_sv + BRW_IMAGE_PARAM_SWIZZLING_OFFSET, img, offsetof(struct brw_image_param, swizzling), 2); } } b.cursor = nir_before_instr(instr); offset = nir_iadd(&b, get_aoa_deref_offset(&b, deref, BRW_IMAGE_PARAM_SIZE * 4), nir_imm_int(&b, img_idx[var->data.binding] * 4 + nir_intrinsic_base(intrin) * 16)); break; } default: continue; } unsigned comps = nir_intrinsic_dest_components(intrin); nir_intrinsic_instr *load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_ubo); load->num_components = comps; load->src[0] = nir_src_for_ssa(temp_ubo_name); load->src[1] = nir_src_for_ssa(offset); nir_ssa_dest_init(&load->instr, &load->dest, comps, 32, NULL); nir_builder_instr_insert(&b, &load->instr); nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(&load->dest.ssa)); nir_instr_remove(instr); } } nir_validate_shader(nir, "before remapping"); /* Place the new params at the front of constant buffer 0. */ if (num_system_values > 0) { nir->num_uniforms += num_system_values * sizeof(uint32_t); system_values = reralloc(mem_ctx, system_values, enum brw_param_builtin, num_system_values); nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); if (load->intrinsic != nir_intrinsic_load_ubo) continue; b.cursor = nir_before_instr(instr); assert(load->src[0].is_ssa); if (load->src[0].ssa == temp_ubo_name) { nir_instr_rewrite_src(instr, &load->src[0], nir_src_for_ssa(nir_imm_int(&b, 0))); } else if (nir_src_is_const(load->src[0]) && nir_src_as_uint(load->src[0]) == 0) { nir_ssa_def *offset = nir_iadd(&b, load->src[1].ssa, nir_imm_int(&b, 4 * num_system_values)); nir_instr_rewrite_src(instr, &load->src[1], nir_src_for_ssa(offset)); } } } /* We need to fold the new iadds for brw_nir_analyze_ubo_ranges */ nir_opt_constant_folding(nir); } else { ralloc_free(system_values); system_values = NULL; } nir_validate_shader(nir, "after remap"); /* We don't use params[], but fs_visitor::nir_setup_uniforms() asserts * about it for compute shaders, so go ahead and make some fake ones * which the backend will dead code eliminate. */ prog_data->nr_params = nir->num_uniforms / 4; prog_data->param = rzalloc_array(mem_ctx, uint32_t, prog_data->nr_params); /* System values and uniforms are stored in constant buffer 0, the * user-facing UBOs are indexed by one. So if any constant buffer is * needed, the constant buffer 0 will be needed, so account for it. */ unsigned num_cbufs = nir->info.num_ubos; if (num_cbufs || num_system_values || nir->num_uniforms) num_cbufs++; /* Constant loads (if any) need to go at the end of the constant buffers so * we need to know num_cbufs before we can lower to them. */ if (temp_const_ubo_name != NULL) { nir_load_const_instr *const_ubo_index = nir_instr_as_load_const(temp_const_ubo_name->parent_instr); assert(const_ubo_index->def.bit_size == 32); const_ubo_index->value[0].u32 = num_cbufs; } *out_system_values = system_values; *out_num_system_values = num_system_values; *out_num_cbufs = num_cbufs; } static const char *surface_group_names[] = { [IRIS_SURFACE_GROUP_RENDER_TARGET] = "render target", [IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = "CS work groups", [IRIS_SURFACE_GROUP_TEXTURE] = "texture", [IRIS_SURFACE_GROUP_UBO] = "ubo", [IRIS_SURFACE_GROUP_SSBO] = "ssbo", [IRIS_SURFACE_GROUP_IMAGE] = "image", }; static void iris_print_binding_table(FILE *fp, const char *name, const struct iris_binding_table *bt) { STATIC_ASSERT(ARRAY_SIZE(surface_group_names) == IRIS_SURFACE_GROUP_COUNT); uint32_t total = 0; uint32_t compacted = 0; for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) { uint32_t size = bt->sizes[i]; total += size; if (size) compacted += util_bitcount64(bt->used_mask[i]); } if (total == 0) { fprintf(fp, "Binding table for %s is empty\n\n", name); return; } if (total != compacted) { fprintf(fp, "Binding table for %s " "(compacted to %u entries from %u entries)\n", name, compacted, total); } else { fprintf(fp, "Binding table for %s (%u entries)\n", name, total); } uint32_t entry = 0; for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) { uint64_t mask = bt->used_mask[i]; while (mask) { int index = u_bit_scan64(&mask); fprintf(fp, " [%u] %s #%d\n", entry++, surface_group_names[i], index); } } fprintf(fp, "\n"); } enum { /* Max elements in a surface group. */ SURFACE_GROUP_MAX_ELEMENTS = 64, }; /** * Map a pair to a binding table index. * * For example: => binding table index 12 */ uint32_t iris_group_index_to_bti(const struct iris_binding_table *bt, enum iris_surface_group group, uint32_t index) { assert(index < bt->sizes[group]); uint64_t mask = bt->used_mask[group]; uint64_t bit = 1ull << index; if (bit & mask) { return bt->offsets[group] + util_bitcount64((bit - 1) & mask); } else { return IRIS_SURFACE_NOT_USED; } } /** * Map a binding table index back to a pair. * * For example: binding table index 12 => */ uint32_t iris_bti_to_group_index(const struct iris_binding_table *bt, enum iris_surface_group group, uint32_t bti) { uint64_t used_mask = bt->used_mask[group]; assert(bti >= bt->offsets[group]); uint32_t c = bti - bt->offsets[group]; while (used_mask) { int i = u_bit_scan64(&used_mask); if (c == 0) return i; c--; } return IRIS_SURFACE_NOT_USED; } static void rewrite_src_with_bti(nir_builder *b, struct iris_binding_table *bt, nir_instr *instr, nir_src *src, enum iris_surface_group group) { assert(bt->sizes[group] > 0); b->cursor = nir_before_instr(instr); nir_ssa_def *bti; if (nir_src_is_const(*src)) { uint32_t index = nir_src_as_uint(*src); bti = nir_imm_intN_t(b, iris_group_index_to_bti(bt, group, index), src->ssa->bit_size); } else { /* Indirect usage makes all the surfaces of the group to be available, * so we can just add the base. */ assert(bt->used_mask[group] == BITFIELD64_MASK(bt->sizes[group])); bti = nir_iadd_imm(b, src->ssa, bt->offsets[group]); } nir_instr_rewrite_src(instr, src, nir_src_for_ssa(bti)); } static void mark_used_with_src(struct iris_binding_table *bt, nir_src *src, enum iris_surface_group group) { assert(bt->sizes[group] > 0); if (nir_src_is_const(*src)) { uint64_t index = nir_src_as_uint(*src); assert(index < bt->sizes[group]); bt->used_mask[group] |= 1ull << index; } else { /* There's an indirect usage, we need all the surfaces. */ bt->used_mask[group] = BITFIELD64_MASK(bt->sizes[group]); } } static bool skip_compacting_binding_tables(void) { static int skip = -1; if (skip < 0) skip = env_var_as_boolean("INTEL_DISABLE_COMPACT_BINDING_TABLE", false); return skip; } /** * Set up the binding table indices and apply to the shader. */ static void iris_setup_binding_table(struct nir_shader *nir, struct iris_binding_table *bt, unsigned num_render_targets, unsigned num_system_values, unsigned num_cbufs) { const struct shader_info *info = &nir->info; memset(bt, 0, sizeof(*bt)); /* Set the sizes for each surface group. For some groups, we already know * upfront how many will be used, so mark them. */ if (info->stage == MESA_SHADER_FRAGMENT) { bt->sizes[IRIS_SURFACE_GROUP_RENDER_TARGET] = num_render_targets; /* All render targets used. */ bt->used_mask[IRIS_SURFACE_GROUP_RENDER_TARGET] = BITFIELD64_MASK(num_render_targets); } else if (info->stage == MESA_SHADER_COMPUTE) { bt->sizes[IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = 1; bt->used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = 1; } bt->sizes[IRIS_SURFACE_GROUP_TEXTURE] = util_last_bit(info->textures_used); bt->used_mask[IRIS_SURFACE_GROUP_TEXTURE] = info->textures_used; bt->sizes[IRIS_SURFACE_GROUP_IMAGE] = info->num_images; /* Allocate an extra slot in the UBO section for NIR constants. * Binding table compaction will remove it if unnecessary. * * We don't include them in iris_compiled_shader::num_cbufs because * they are uploaded separately from shs->constbuf[], but from a shader * point of view, they're another UBO (at the end of the section). */ bt->sizes[IRIS_SURFACE_GROUP_UBO] = num_cbufs + 1; /* The first IRIS_MAX_ABOs indices in the SSBO group are for atomics, real * SSBOs start after that. Compaction will remove unused ABOs. */ bt->sizes[IRIS_SURFACE_GROUP_SSBO] = IRIS_MAX_ABOS + info->num_ssbos; for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) assert(bt->sizes[i] <= SURFACE_GROUP_MAX_ELEMENTS); /* Mark surfaces used for the cases we don't have the information available * upfront. */ nir_function_impl *impl = nir_shader_get_entrypoint(nir); nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_image_size: case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: case nir_intrinsic_image_load_raw_intel: case nir_intrinsic_image_store_raw_intel: mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_IMAGE); break; case nir_intrinsic_load_ubo: mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_UBO); break; case nir_intrinsic_store_ssbo: mark_used_with_src(bt, &intrin->src[1], IRIS_SURFACE_GROUP_SSBO); break; case nir_intrinsic_get_buffer_size: case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: case nir_intrinsic_ssbo_atomic_fmin: case nir_intrinsic_ssbo_atomic_fmax: case nir_intrinsic_ssbo_atomic_fcomp_swap: case nir_intrinsic_load_ssbo: mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_SSBO); break; default: break; } } } /* When disable we just mark everything as used. */ if (unlikely(skip_compacting_binding_tables())) { for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) bt->used_mask[i] = BITFIELD64_MASK(bt->sizes[i]); } /* Calculate the offsets and the binding table size based on the used * surfaces. After this point, the functions to go between "group indices" * and binding table indices can be used. */ uint32_t next = 0; for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) { if (bt->used_mask[i] != 0) { bt->offsets[i] = next; next += util_bitcount64(bt->used_mask[i]); } } bt->size_bytes = next * 4; if (unlikely(INTEL_DEBUG & DEBUG_BT)) { iris_print_binding_table(stderr, gl_shader_stage_name(info->stage), bt); } /* Apply the binding table indices. The backend compiler is not expected * to change those, as we haven't set any of the *_start entries in brw * binding_table. */ nir_builder b; nir_builder_init(&b, impl); nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { if (instr->type == nir_instr_type_tex) { nir_tex_instr *tex = nir_instr_as_tex(instr); tex->texture_index = iris_group_index_to_bti(bt, IRIS_SURFACE_GROUP_TEXTURE, tex->texture_index); continue; } if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_image_size: case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: case nir_intrinsic_image_load_raw_intel: case nir_intrinsic_image_store_raw_intel: rewrite_src_with_bti(&b, bt, instr, &intrin->src[0], IRIS_SURFACE_GROUP_IMAGE); break; case nir_intrinsic_load_ubo: rewrite_src_with_bti(&b, bt, instr, &intrin->src[0], IRIS_SURFACE_GROUP_UBO); break; case nir_intrinsic_store_ssbo: rewrite_src_with_bti(&b, bt, instr, &intrin->src[1], IRIS_SURFACE_GROUP_SSBO); break; case nir_intrinsic_get_buffer_size: case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: case nir_intrinsic_ssbo_atomic_fmin: case nir_intrinsic_ssbo_atomic_fmax: case nir_intrinsic_ssbo_atomic_fcomp_swap: case nir_intrinsic_load_ssbo: rewrite_src_with_bti(&b, bt, instr, &intrin->src[0], IRIS_SURFACE_GROUP_SSBO); break; default: break; } } } } static void iris_debug_recompile(struct iris_context *ice, struct shader_info *info, unsigned program_string_id, const void *key) { struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen; const struct brw_compiler *c = screen->compiler; if (!info) return; c->shader_perf_log(&ice->dbg, "Recompiling %s shader for program %s: %s\n", _mesa_shader_stage_to_string(info->stage), info->name ? info->name : "(no identifier)", info->label ? info->label : ""); const void *old_key = iris_find_previous_compile(ice, info->stage, program_string_id); brw_debug_key_recompile(c, &ice->dbg, info->stage, old_key, key); } /** * Compile a vertex shader, and upload the assembly. */ static struct iris_compiled_shader * iris_compile_vs(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_vs_prog_key *key) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; const struct gen_device_info *devinfo = &screen->devinfo; void *mem_ctx = ralloc_context(NULL); struct brw_vs_prog_data *vs_prog_data = rzalloc(mem_ctx, struct brw_vs_prog_data); struct brw_vue_prog_data *vue_prog_data = &vs_prog_data->base; struct brw_stage_prog_data *prog_data = &vue_prog_data->base; enum brw_param_builtin *system_values; unsigned num_system_values; unsigned num_cbufs; nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir); if (key->nr_userclip_plane_consts) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); nir_lower_clip_vs(nir, (1 << key->nr_userclip_plane_consts) - 1, true); nir_lower_io_to_temporaries(nir, impl, true, false); nir_lower_global_vars_to_local(nir); nir_lower_vars_to_ssa(nir); nir_shader_gather_info(nir, impl); } prog_data->use_alt_mode = ish->use_alt_mode; iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); struct iris_binding_table bt; iris_setup_binding_table(nir, &bt, /* num_render_targets */ 0, num_system_values, num_cbufs); brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); brw_compute_vue_map(devinfo, &vue_prog_data->vue_map, nir->info.outputs_written, nir->info.separate_shader); /* Don't tell the backend about our clip plane constants, we've already * lowered them in NIR and we don't want it doing it again. */ struct brw_vs_prog_key key_no_ucp = *key; key_no_ucp.nr_userclip_plane_consts = 0; char *error_str = NULL; const unsigned *program = brw_compile_vs(compiler, &ice->dbg, mem_ctx, &key_no_ucp, vs_prog_data, nir, -1, &error_str); if (program == NULL) { dbg_printf("Failed to compile vertex shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } uint32_t *so_decls = ice->vtbl.create_so_decl_list(&ish->stream_output, &vue_prog_data->vue_map); struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_VS, sizeof(*key), key, program, prog_data, so_decls, system_values, num_system_values, num_cbufs, &bt); iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } /** * Update the current vertex shader variant. * * Fill out the key, look in the cache, compile and bind if needed. */ static void iris_update_compiled_vs(struct iris_context *ice) { struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[MESA_SHADER_VERTEX]; struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_vs_prog_key key = { KEY_INIT(devinfo->gen) }; ice->vtbl.populate_vs_key(ice, &ish->nir->info, &key); struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_VS]; struct iris_compiled_shader *shader = iris_find_cached_shader(ice, IRIS_CACHE_VS, sizeof(key), &key); if (!shader) shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)); if (!shader) shader = iris_compile_vs(ice, ish, &key); if (old != shader) { ice->shaders.prog[IRIS_CACHE_VS] = shader; ice->state.dirty |= IRIS_DIRTY_VS | IRIS_DIRTY_BINDINGS_VS | IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_VF_SGVS; const struct brw_vs_prog_data *vs_prog_data = (void *) shader->prog_data; const bool uses_draw_params = vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance; const bool uses_derived_draw_params = vs_prog_data->uses_drawid || vs_prog_data->uses_is_indexed_draw; const bool needs_sgvs_element = uses_draw_params || vs_prog_data->uses_instanceid || vs_prog_data->uses_vertexid; bool needs_edge_flag = false; nir_foreach_variable(var, &ish->nir->inputs) { if (var->data.location == VERT_ATTRIB_EDGEFLAG) needs_edge_flag = true; } if (ice->state.vs_uses_draw_params != uses_draw_params || ice->state.vs_uses_derived_draw_params != uses_derived_draw_params || ice->state.vs_needs_edge_flag != needs_edge_flag) { ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS | IRIS_DIRTY_VERTEX_ELEMENTS; } ice->state.vs_uses_draw_params = uses_draw_params; ice->state.vs_uses_derived_draw_params = uses_derived_draw_params; ice->state.vs_needs_sgvs_element = needs_sgvs_element; ice->state.vs_needs_edge_flag = needs_edge_flag; } } /** * Get the shader_info for a given stage, or NULL if the stage is disabled. */ const struct shader_info * iris_get_shader_info(const struct iris_context *ice, gl_shader_stage stage) { const struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage]; if (!ish) return NULL; const nir_shader *nir = ish->nir; return &nir->info; } /** * Get the union of TCS output and TES input slots. * * TCS and TES need to agree on a common URB entry layout. In particular, * the data for all patch vertices is stored in a single URB entry (unlike * GS which has one entry per input vertex). This means that per-vertex * array indexing needs a stride. * * SSO requires locations to match, but doesn't require the number of * outputs/inputs to match (in fact, the TCS often has extra outputs). * So, we need to take the extra step of unifying these on the fly. */ static void get_unified_tess_slots(const struct iris_context *ice, uint64_t *per_vertex_slots, uint32_t *per_patch_slots) { const struct shader_info *tcs = iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL); const struct shader_info *tes = iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL); *per_vertex_slots = tes->inputs_read; *per_patch_slots = tes->patch_inputs_read; if (tcs) { *per_vertex_slots |= tcs->outputs_written; *per_patch_slots |= tcs->patch_outputs_written; } } /** * Compile a tessellation control shader, and upload the assembly. */ static struct iris_compiled_shader * iris_compile_tcs(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_tcs_prog_key *key) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; const struct nir_shader_compiler_options *options = compiler->glsl_compiler_options[MESA_SHADER_TESS_CTRL].NirOptions; void *mem_ctx = ralloc_context(NULL); struct brw_tcs_prog_data *tcs_prog_data = rzalloc(mem_ctx, struct brw_tcs_prog_data); struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base; struct brw_stage_prog_data *prog_data = &vue_prog_data->base; enum brw_param_builtin *system_values = NULL; unsigned num_system_values = 0; unsigned num_cbufs = 0; nir_shader *nir; struct iris_binding_table bt; if (ish) { nir = nir_shader_clone(mem_ctx, ish->nir); iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); iris_setup_binding_table(nir, &bt, /* num_render_targets */ 0, num_system_values, num_cbufs); brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); } else { nir = brw_nir_create_passthrough_tcs(mem_ctx, compiler, options, key); /* Reserve space for passing the default tess levels as constants. */ num_system_values = 8; system_values = rzalloc_array(mem_ctx, enum brw_param_builtin, num_system_values); prog_data->param = rzalloc_array(mem_ctx, uint32_t, num_system_values); prog_data->nr_params = num_system_values; if (key->tes_primitive_mode == GL_QUADS) { for (int i = 0; i < 4; i++) system_values[7 - i] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X + i; system_values[3] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X; system_values[2] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y; } else if (key->tes_primitive_mode == GL_TRIANGLES) { for (int i = 0; i < 3; i++) system_values[7 - i] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X + i; system_values[4] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X; } else { assert(key->tes_primitive_mode == GL_ISOLINES); system_values[7] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y; system_values[6] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X; } /* Manually setup the TCS binding table. */ memset(&bt, 0, sizeof(bt)); bt.sizes[IRIS_SURFACE_GROUP_UBO] = 1; bt.used_mask[IRIS_SURFACE_GROUP_UBO] = 1; bt.size_bytes = 4; prog_data->ubo_ranges[0].length = 1; } char *error_str = NULL; const unsigned *program = brw_compile_tcs(compiler, &ice->dbg, mem_ctx, key, tcs_prog_data, nir, -1, &error_str); if (program == NULL) { dbg_printf("Failed to compile control shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish) { if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } } struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_TCS, sizeof(*key), key, program, prog_data, NULL, system_values, num_system_values, num_cbufs, &bt); if (ish) iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } /** * Update the current tessellation control shader variant. * * Fill out the key, look in the cache, compile and bind if needed. */ static void iris_update_compiled_tcs(struct iris_context *ice) { struct iris_uncompiled_shader *tcs = ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]; struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; const struct shader_info *tes_info = iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL); struct brw_tcs_prog_key key = { KEY_INIT_NO_ID(devinfo->gen), .program_string_id = tcs ? tcs->program_id : 0, .tes_primitive_mode = tes_info->tess.primitive_mode, .input_vertices = ice->state.vertices_per_patch, }; get_unified_tess_slots(ice, &key.outputs_written, &key.patch_outputs_written); ice->vtbl.populate_tcs_key(ice, &key); struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_TCS]; struct iris_compiled_shader *shader = iris_find_cached_shader(ice, IRIS_CACHE_TCS, sizeof(key), &key); if (tcs && !shader) shader = iris_disk_cache_retrieve(ice, tcs, &key, sizeof(key)); if (!shader) shader = iris_compile_tcs(ice, tcs, &key); if (old != shader) { ice->shaders.prog[IRIS_CACHE_TCS] = shader; ice->state.dirty |= IRIS_DIRTY_TCS | IRIS_DIRTY_BINDINGS_TCS | IRIS_DIRTY_CONSTANTS_TCS; if (!tcs) { /* We're binding a passthrough TCS, which doesn't have uniforms. * Since there's no actual TCS, the state tracker doesn't bother * to call set_constant_buffers to clear stale constant buffers. * * We do upload TCS constants for the default tesslevel system * values, however. In this case, we would see stale constant * data and try and read a dangling cbuf0->user_buffer pointer. * Just zero out the stale constants to avoid the upload. */ struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL]; memset(&shs->cbuf0, 0, sizeof(shs->cbuf0)); } } } /** * Compile a tessellation evaluation shader, and upload the assembly. */ static struct iris_compiled_shader * iris_compile_tes(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_tes_prog_key *key) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; void *mem_ctx = ralloc_context(NULL); struct brw_tes_prog_data *tes_prog_data = rzalloc(mem_ctx, struct brw_tes_prog_data); struct brw_vue_prog_data *vue_prog_data = &tes_prog_data->base; struct brw_stage_prog_data *prog_data = &vue_prog_data->base; enum brw_param_builtin *system_values; unsigned num_system_values; unsigned num_cbufs; nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir); iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); struct iris_binding_table bt; iris_setup_binding_table(nir, &bt, /* num_render_targets */ 0, num_system_values, num_cbufs); brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); struct brw_vue_map input_vue_map; brw_compute_tess_vue_map(&input_vue_map, key->inputs_read, key->patch_inputs_read); char *error_str = NULL; const unsigned *program = brw_compile_tes(compiler, &ice->dbg, mem_ctx, key, &input_vue_map, tes_prog_data, nir, NULL, -1, &error_str); if (program == NULL) { dbg_printf("Failed to compile evaluation shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } uint32_t *so_decls = ice->vtbl.create_so_decl_list(&ish->stream_output, &vue_prog_data->vue_map); struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_TES, sizeof(*key), key, program, prog_data, so_decls, system_values, num_system_values, num_cbufs, &bt); iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } /** * Update the current tessellation evaluation shader variant. * * Fill out the key, look in the cache, compile and bind if needed. */ static void iris_update_compiled_tes(struct iris_context *ice) { struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL]; struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_tes_prog_key key = { KEY_INIT(devinfo->gen) }; get_unified_tess_slots(ice, &key.inputs_read, &key.patch_inputs_read); ice->vtbl.populate_tes_key(ice, &key); struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_TES]; struct iris_compiled_shader *shader = iris_find_cached_shader(ice, IRIS_CACHE_TES, sizeof(key), &key); if (!shader) shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)); if (!shader) shader = iris_compile_tes(ice, ish, &key); if (old != shader) { ice->shaders.prog[IRIS_CACHE_TES] = shader; ice->state.dirty |= IRIS_DIRTY_TES | IRIS_DIRTY_BINDINGS_TES | IRIS_DIRTY_CONSTANTS_TES; } /* TODO: Could compare and avoid flagging this. */ const struct shader_info *tes_info = &ish->nir->info; if (tes_info->system_values_read & (1ull << SYSTEM_VALUE_VERTICES_IN)) { ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TES; ice->state.shaders[MESA_SHADER_TESS_EVAL].cbuf0_needs_upload = true; } } /** * Compile a geometry shader, and upload the assembly. */ static struct iris_compiled_shader * iris_compile_gs(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_gs_prog_key *key) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; const struct gen_device_info *devinfo = &screen->devinfo; void *mem_ctx = ralloc_context(NULL); struct brw_gs_prog_data *gs_prog_data = rzalloc(mem_ctx, struct brw_gs_prog_data); struct brw_vue_prog_data *vue_prog_data = &gs_prog_data->base; struct brw_stage_prog_data *prog_data = &vue_prog_data->base; enum brw_param_builtin *system_values; unsigned num_system_values; unsigned num_cbufs; nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir); iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); struct iris_binding_table bt; iris_setup_binding_table(nir, &bt, /* num_render_targets */ 0, num_system_values, num_cbufs); brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); brw_compute_vue_map(devinfo, &vue_prog_data->vue_map, nir->info.outputs_written, nir->info.separate_shader); char *error_str = NULL; const unsigned *program = brw_compile_gs(compiler, &ice->dbg, mem_ctx, key, gs_prog_data, nir, NULL, -1, &error_str); if (program == NULL) { dbg_printf("Failed to compile geometry shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } uint32_t *so_decls = ice->vtbl.create_so_decl_list(&ish->stream_output, &vue_prog_data->vue_map); struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_GS, sizeof(*key), key, program, prog_data, so_decls, system_values, num_system_values, num_cbufs, &bt); iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } /** * Update the current geometry shader variant. * * Fill out the key, look in the cache, compile and bind if needed. */ static void iris_update_compiled_gs(struct iris_context *ice) { struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[MESA_SHADER_GEOMETRY]; struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_GS]; struct iris_compiled_shader *shader = NULL; if (ish) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_gs_prog_key key = { KEY_INIT(devinfo->gen) }; ice->vtbl.populate_gs_key(ice, &key); shader = iris_find_cached_shader(ice, IRIS_CACHE_GS, sizeof(key), &key); if (!shader) shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)); if (!shader) shader = iris_compile_gs(ice, ish, &key); } if (old != shader) { ice->shaders.prog[IRIS_CACHE_GS] = shader; ice->state.dirty |= IRIS_DIRTY_GS | IRIS_DIRTY_BINDINGS_GS | IRIS_DIRTY_CONSTANTS_GS; } } /** * Compile a fragment (pixel) shader, and upload the assembly. */ static struct iris_compiled_shader * iris_compile_fs(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_wm_prog_key *key, struct brw_vue_map *vue_map) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; void *mem_ctx = ralloc_context(NULL); struct brw_wm_prog_data *fs_prog_data = rzalloc(mem_ctx, struct brw_wm_prog_data); struct brw_stage_prog_data *prog_data = &fs_prog_data->base; enum brw_param_builtin *system_values; unsigned num_system_values; unsigned num_cbufs; nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir); prog_data->use_alt_mode = ish->use_alt_mode; iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); struct iris_binding_table bt; iris_setup_binding_table(nir, &bt, MAX2(key->nr_color_regions, 1), num_system_values, num_cbufs); brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); char *error_str = NULL; const unsigned *program = brw_compile_fs(compiler, &ice->dbg, mem_ctx, key, fs_prog_data, nir, NULL, -1, -1, -1, true, false, vue_map, &error_str); if (program == NULL) { dbg_printf("Failed to compile fragment shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_FS, sizeof(*key), key, program, prog_data, NULL, system_values, num_system_values, num_cbufs, &bt); iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } /** * Update the current fragment shader variant. * * Fill out the key, look in the cache, compile and bind if needed. */ static void iris_update_compiled_fs(struct iris_context *ice) { struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[MESA_SHADER_FRAGMENT]; struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_wm_prog_key key = { KEY_INIT(devinfo->gen) }; ice->vtbl.populate_fs_key(ice, &key); if (ish->nos & (1ull << IRIS_NOS_LAST_VUE_MAP)) key.input_slots_valid = ice->shaders.last_vue_map->slots_valid; struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_FS]; struct iris_compiled_shader *shader = iris_find_cached_shader(ice, IRIS_CACHE_FS, sizeof(key), &key); if (!shader) shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)); if (!shader) shader = iris_compile_fs(ice, ish, &key, ice->shaders.last_vue_map); if (old != shader) { // XXX: only need to flag CLIP if barycentric has NONPERSPECTIVE // toggles. might be able to avoid flagging SBE too. ice->shaders.prog[IRIS_CACHE_FS] = shader; ice->state.dirty |= IRIS_DIRTY_FS | IRIS_DIRTY_BINDINGS_FS | IRIS_DIRTY_CONSTANTS_FS | IRIS_DIRTY_WM | IRIS_DIRTY_CLIP | IRIS_DIRTY_SBE; } } /** * Get the compiled shader for the last enabled geometry stage. * * This stage is the one which will feed stream output and the rasterizer. */ static gl_shader_stage last_vue_stage(struct iris_context *ice) { if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) return MESA_SHADER_GEOMETRY; if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) return MESA_SHADER_TESS_EVAL; return MESA_SHADER_VERTEX; } /** * Update the last enabled stage's VUE map. * * When the shader feeding the rasterizer's output interface changes, we * need to re-emit various packets. */ static void update_last_vue_map(struct iris_context *ice, struct brw_stage_prog_data *prog_data) { struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; struct brw_vue_map *vue_map = &vue_prog_data->vue_map; struct brw_vue_map *old_map = ice->shaders.last_vue_map; const uint64_t changed_slots = (old_map ? old_map->slots_valid : 0ull) ^ vue_map->slots_valid; if (changed_slots & VARYING_BIT_VIEWPORT) { // XXX: could use ctx->Const.MaxViewports for old API efficiency ice->state.num_viewports = (vue_map->slots_valid & VARYING_BIT_VIEWPORT) ? IRIS_MAX_VIEWPORTS : 1; ice->state.dirty |= IRIS_DIRTY_CLIP | IRIS_DIRTY_SF_CL_VIEWPORT | IRIS_DIRTY_CC_VIEWPORT | IRIS_DIRTY_SCISSOR_RECT | IRIS_DIRTY_UNCOMPILED_FS | ice->state.dirty_for_nos[IRIS_NOS_LAST_VUE_MAP]; // XXX: CC_VIEWPORT? } if (changed_slots || (old_map && old_map->separate != vue_map->separate)) { ice->state.dirty |= IRIS_DIRTY_SBE; } ice->shaders.last_vue_map = &vue_prog_data->vue_map; } /** * Get the prog_data for a given stage, or NULL if the stage is disabled. */ static struct brw_vue_prog_data * get_vue_prog_data(struct iris_context *ice, gl_shader_stage stage) { if (!ice->shaders.prog[stage]) return NULL; return (void *) ice->shaders.prog[stage]->prog_data; } // XXX: iris_compiled_shaders are space-leaking :( // XXX: do remember to unbind them if deleting them. /** * Update the current shader variants for the given state. * * This should be called on every draw call to ensure that the correct * shaders are bound. It will also flag any dirty state triggered by * swapping out those shaders. */ void iris_update_compiled_shaders(struct iris_context *ice) { const uint64_t dirty = ice->state.dirty; struct brw_vue_prog_data *old_prog_datas[4]; if (!(dirty & IRIS_DIRTY_URB)) { for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) old_prog_datas[i] = get_vue_prog_data(ice, i); } if (dirty & (IRIS_DIRTY_UNCOMPILED_TCS | IRIS_DIRTY_UNCOMPILED_TES)) { struct iris_uncompiled_shader *tes = ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL]; if (tes) { iris_update_compiled_tcs(ice); iris_update_compiled_tes(ice); } else { ice->shaders.prog[IRIS_CACHE_TCS] = NULL; ice->shaders.prog[IRIS_CACHE_TES] = NULL; ice->state.dirty |= IRIS_DIRTY_TCS | IRIS_DIRTY_TES | IRIS_DIRTY_BINDINGS_TCS | IRIS_DIRTY_BINDINGS_TES | IRIS_DIRTY_CONSTANTS_TCS | IRIS_DIRTY_CONSTANTS_TES; } } if (dirty & IRIS_DIRTY_UNCOMPILED_VS) iris_update_compiled_vs(ice); if (dirty & IRIS_DIRTY_UNCOMPILED_GS) iris_update_compiled_gs(ice); if (dirty & (IRIS_DIRTY_UNCOMPILED_GS | IRIS_DIRTY_UNCOMPILED_TES)) { const struct iris_compiled_shader *gs = ice->shaders.prog[MESA_SHADER_GEOMETRY]; const struct iris_compiled_shader *tes = ice->shaders.prog[MESA_SHADER_TESS_EVAL]; bool points_or_lines = false; if (gs) { const struct brw_gs_prog_data *gs_prog_data = (void *) gs->prog_data; points_or_lines = gs_prog_data->output_topology == _3DPRIM_POINTLIST || gs_prog_data->output_topology == _3DPRIM_LINESTRIP; } else if (tes) { const struct brw_tes_prog_data *tes_data = (void *) tes->prog_data; points_or_lines = tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_LINE || tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_POINT; } if (ice->shaders.output_topology_is_points_or_lines != points_or_lines) { /* Outbound to XY Clip enables */ ice->shaders.output_topology_is_points_or_lines = points_or_lines; ice->state.dirty |= IRIS_DIRTY_CLIP; } } gl_shader_stage last_stage = last_vue_stage(ice); struct iris_compiled_shader *shader = ice->shaders.prog[last_stage]; struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[last_stage]; update_last_vue_map(ice, shader->prog_data); if (ice->state.streamout != shader->streamout) { ice->state.streamout = shader->streamout; ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST | IRIS_DIRTY_STREAMOUT; } if (ice->state.streamout_active) { for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) { struct iris_stream_output_target *so = (void *) ice->state.so_target[i]; if (so) so->stride = ish->stream_output.stride[i] * sizeof(uint32_t); } } if (dirty & IRIS_DIRTY_UNCOMPILED_FS) iris_update_compiled_fs(ice); /* Changing shader interfaces may require a URB configuration. */ if (!(dirty & IRIS_DIRTY_URB)) { for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { struct brw_vue_prog_data *old = old_prog_datas[i]; struct brw_vue_prog_data *new = get_vue_prog_data(ice, i); if (!!old != !!new || (new && new->urb_entry_size != old->urb_entry_size)) { ice->state.dirty |= IRIS_DIRTY_URB; break; } } } } static struct iris_compiled_shader * iris_compile_cs(struct iris_context *ice, struct iris_uncompiled_shader *ish, const struct brw_cs_prog_key *key) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct brw_compiler *compiler = screen->compiler; void *mem_ctx = ralloc_context(NULL); struct brw_cs_prog_data *cs_prog_data = rzalloc(mem_ctx, struct brw_cs_prog_data); struct brw_stage_prog_data *prog_data = &cs_prog_data->base; enum brw_param_builtin *system_values; unsigned num_system_values; unsigned num_cbufs; nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir); prog_data->total_shared = nir->info.cs.shared_size; iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values, &num_system_values, &num_cbufs); struct iris_binding_table bt; iris_setup_binding_table(nir, &bt, /* num_render_targets */ 0, num_system_values, num_cbufs); char *error_str = NULL; const unsigned *program = brw_compile_cs(compiler, &ice->dbg, mem_ctx, key, cs_prog_data, nir, -1, &error_str); if (program == NULL) { dbg_printf("Failed to compile compute shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (ish->compiled_once) { iris_debug_recompile(ice, &nir->info, key->program_string_id, key); } else { ish->compiled_once = true; } struct iris_compiled_shader *shader = iris_upload_shader(ice, IRIS_CACHE_CS, sizeof(*key), key, program, prog_data, NULL, system_values, num_system_values, num_cbufs, &bt); iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key)); ralloc_free(mem_ctx); return shader; } void iris_update_compiled_compute_shader(struct iris_context *ice) { struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[MESA_SHADER_COMPUTE]; struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_cs_prog_key key = { KEY_INIT(devinfo->gen) }; ice->vtbl.populate_cs_key(ice, &key); struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_CS]; struct iris_compiled_shader *shader = iris_find_cached_shader(ice, IRIS_CACHE_CS, sizeof(key), &key); if (!shader) shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)); if (!shader) shader = iris_compile_cs(ice, ish, &key); if (old != shader) { ice->shaders.prog[IRIS_CACHE_CS] = shader; ice->state.dirty |= IRIS_DIRTY_CS | IRIS_DIRTY_BINDINGS_CS | IRIS_DIRTY_CONSTANTS_CS; } } void iris_fill_cs_push_const_buffer(struct brw_cs_prog_data *cs_prog_data, uint32_t *dst) { assert(cs_prog_data->push.total.size > 0); assert(cs_prog_data->push.cross_thread.size == 0); assert(cs_prog_data->push.per_thread.dwords == 1); assert(cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID); for (unsigned t = 0; t < cs_prog_data->threads; t++) dst[8 * t] = t; } /** * Allocate scratch BOs as needed for the given per-thread size and stage. */ struct iris_bo * iris_get_scratch_space(struct iris_context *ice, unsigned per_thread_scratch, gl_shader_stage stage) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; struct iris_bufmgr *bufmgr = screen->bufmgr; const struct gen_device_info *devinfo = &screen->devinfo; unsigned encoded_size = ffs(per_thread_scratch) - 11; assert(encoded_size < (1 << 16)); struct iris_bo **bop = &ice->shaders.scratch_bos[encoded_size][stage]; /* The documentation for 3DSTATE_PS "Scratch Space Base Pointer" says: * * "Scratch Space per slice is computed based on 4 sub-slices. SW * must allocate scratch space enough so that each slice has 4 * slices allowed." * * According to the other driver team, this applies to compute shaders * as well. This is not currently documented at all. * * This hack is no longer necessary on Gen11+. */ unsigned subslice_total = screen->subslice_total; if (devinfo->gen < 11) subslice_total = 4 * devinfo->num_slices; assert(subslice_total >= screen->subslice_total); if (!*bop) { unsigned scratch_ids_per_subslice = devinfo->max_cs_threads; uint32_t max_threads[] = { [MESA_SHADER_VERTEX] = devinfo->max_vs_threads, [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads, [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads, [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads, [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads, [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslice_total, }; uint32_t size = per_thread_scratch * max_threads[stage]; *bop = iris_bo_alloc(bufmgr, "scratch", size, IRIS_MEMZONE_SHADER); } return *bop; } /* ------------------------------------------------------------------- */ /** * The pipe->create_[stage]_state() driver hooks. * * Performs basic NIR preprocessing, records any state dependencies, and * returns an iris_uncompiled_shader as the Gallium CSO. * * Actual shader compilation to assembly happens later, at first use. */ static void * iris_create_uncompiled_shader(struct pipe_context *ctx, nir_shader *nir, const struct pipe_stream_output_info *so_info) { struct iris_context *ice = (void *)ctx; struct iris_screen *screen = (struct iris_screen *)ctx->screen; const struct gen_device_info *devinfo = &screen->devinfo; struct iris_uncompiled_shader *ish = calloc(1, sizeof(struct iris_uncompiled_shader)); if (!ish) return NULL; brw_preprocess_nir(screen->compiler, nir, NULL); NIR_PASS_V(nir, brw_nir_lower_image_load_store, devinfo); NIR_PASS_V(nir, iris_lower_storage_image_derefs); nir_sweep(nir); if (nir->constant_data_size > 0) { unsigned data_offset; u_upload_data(ice->shaders.uploader, 0, nir->constant_data_size, 32, nir->constant_data, &data_offset, &ish->const_data); struct pipe_shader_buffer psb = { .buffer = ish->const_data, .buffer_offset = data_offset, .buffer_size = nir->constant_data_size, }; iris_upload_ubo_ssbo_surf_state(ice, &psb, &ish->const_data_state, false); } ish->program_id = get_new_program_id(screen); ish->nir = nir; if (so_info) { memcpy(&ish->stream_output, so_info, sizeof(*so_info)); update_so_info(&ish->stream_output, nir->info.outputs_written); } /* Save this now before potentially dropping nir->info.name */ if (nir->info.name && strncmp(nir->info.name, "ARB", 3) == 0) ish->use_alt_mode = true; if (screen->disk_cache) { /* Serialize the NIR to a binary blob that we can hash for the disk * cache. First, drop unnecessary information (like variable names) * so the serialized NIR is smaller, and also to let us detect more * isomorphic shaders when hashing, increasing cache hits. We clone * the NIR before stripping away this info because it can be useful * when inspecting and debugging shaders. */ nir_shader *clone = nir_shader_clone(NULL, nir); nir_strip(clone); struct blob blob; blob_init(&blob); nir_serialize(&blob, clone); _mesa_sha1_compute(blob.data, blob.size, ish->nir_sha1); blob_finish(&blob); ralloc_free(clone); } return ish; } static struct iris_uncompiled_shader * iris_create_shader_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct nir_shader *nir; if (state->type == PIPE_SHADER_IR_TGSI) nir = tgsi_to_nir(state->tokens, ctx->screen); else nir = state->ir.nir; return iris_create_uncompiled_shader(ctx, nir, &state->stream_output); } static void * iris_create_vs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state); /* User clip planes */ if (ish->nir->info.clip_distance_array_size == 0) ish->nos |= (1ull << IRIS_NOS_RASTERIZER); if (screen->precompile) { const struct gen_device_info *devinfo = &screen->devinfo; struct brw_vs_prog_key key = { KEY_INIT(devinfo->gen) }; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_vs(ice, ish, &key); } return ish; } static void * iris_create_tcs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; const struct brw_compiler *compiler = screen->compiler; struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state); struct shader_info *info = &ish->nir->info; // XXX: NOS? if (screen->precompile) { const unsigned _GL_TRIANGLES = 0x0004; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_tcs_prog_key key = { KEY_INIT(devinfo->gen), // XXX: make sure the linker fills this out from the TES... .tes_primitive_mode = info->tess.primitive_mode ? info->tess.primitive_mode : _GL_TRIANGLES, .outputs_written = info->outputs_written, .patch_outputs_written = info->patch_outputs_written, }; /* 8_PATCH mode needs the key to contain the input patch dimensionality. * We don't have that information, so we randomly guess that the input * and output patches are the same size. This is a bad guess, but we * can't do much better. */ if (compiler->use_tcs_8_patch) key.input_vertices = info->tess.tcs_vertices_out; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_tcs(ice, ish, &key); } return ish; } static void * iris_create_tes_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state); struct shader_info *info = &ish->nir->info; // XXX: NOS? if (screen->precompile) { const struct gen_device_info *devinfo = &screen->devinfo; struct brw_tes_prog_key key = { KEY_INIT(devinfo->gen), // XXX: not ideal, need TCS output/TES input unification .inputs_read = info->inputs_read, .patch_inputs_read = info->patch_inputs_read, }; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_tes(ice, ish, &key); } return ish; } static void * iris_create_gs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state); // XXX: NOS? if (screen->precompile) { const struct gen_device_info *devinfo = &screen->devinfo; struct brw_gs_prog_key key = { KEY_INIT(devinfo->gen) }; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_gs(ice, ish, &key); } return ish; } static void * iris_create_fs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state); struct shader_info *info = &ish->nir->info; ish->nos |= (1ull << IRIS_NOS_FRAMEBUFFER) | (1ull << IRIS_NOS_DEPTH_STENCIL_ALPHA) | (1ull << IRIS_NOS_RASTERIZER) | (1ull << IRIS_NOS_BLEND); /* The program key needs the VUE map if there are > 16 inputs */ if (util_bitcount64(ish->nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK) > 16) { ish->nos |= (1ull << IRIS_NOS_LAST_VUE_MAP); } if (screen->precompile) { const uint64_t color_outputs = info->outputs_written & ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) | BITFIELD64_BIT(FRAG_RESULT_STENCIL) | BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)); bool can_rearrange_varyings = util_bitcount64(info->inputs_read & BRW_FS_VARYING_INPUT_MASK) <= 16; const struct gen_device_info *devinfo = &screen->devinfo; struct brw_wm_prog_key key = { KEY_INIT(devinfo->gen), .nr_color_regions = util_bitcount(color_outputs), .coherent_fb_fetch = true, .input_slots_valid = can_rearrange_varyings ? 0 : info->inputs_read | VARYING_BIT_POS, }; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_fs(ice, ish, &key, NULL); } return ish; } static void * iris_create_compute_state(struct pipe_context *ctx, const struct pipe_compute_state *state) { assert(state->ir_type == PIPE_SHADER_IR_NIR); struct iris_context *ice = (void *) ctx; struct iris_screen *screen = (void *) ctx->screen; struct iris_uncompiled_shader *ish = iris_create_uncompiled_shader(ctx, (void *) state->prog, NULL); // XXX: disallow more than 64KB of shared variables if (screen->precompile) { const struct gen_device_info *devinfo = &screen->devinfo; struct brw_cs_prog_key key = { KEY_INIT(devinfo->gen) }; if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key))) iris_compile_cs(ice, ish, &key); } return ish; } /** * The pipe->delete_[stage]_state() driver hooks. * * Frees the iris_uncompiled_shader. */ static void iris_delete_shader_state(struct pipe_context *ctx, void *state, gl_shader_stage stage) { struct iris_uncompiled_shader *ish = state; struct iris_context *ice = (void *) ctx; if (ice->shaders.uncompiled[stage] == ish) { ice->shaders.uncompiled[stage] = NULL; ice->state.dirty |= IRIS_DIRTY_UNCOMPILED_VS << stage; } if (ish->const_data) { pipe_resource_reference(&ish->const_data, NULL); pipe_resource_reference(&ish->const_data_state.res, NULL); } ralloc_free(ish->nir); free(ish); } static void iris_delete_vs_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_VERTEX); } static void iris_delete_tcs_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_TESS_CTRL); } static void iris_delete_tes_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_TESS_EVAL); } static void iris_delete_gs_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_GEOMETRY); } static void iris_delete_fs_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_FRAGMENT); } static void iris_delete_cs_state(struct pipe_context *ctx, void *state) { iris_delete_shader_state(ctx, state, MESA_SHADER_COMPUTE); } /** * The pipe->bind_[stage]_state() driver hook. * * Binds an uncompiled shader as the current one for a particular stage. * Updates dirty tracking to account for the shader's NOS. */ static void bind_shader_state(struct iris_context *ice, struct iris_uncompiled_shader *ish, gl_shader_stage stage) { uint64_t dirty_bit = IRIS_DIRTY_UNCOMPILED_VS << stage; const uint64_t nos = ish ? ish->nos : 0; const struct shader_info *old_info = iris_get_shader_info(ice, stage); const struct shader_info *new_info = ish ? &ish->nir->info : NULL; if ((old_info ? util_last_bit(old_info->textures_used) : 0) != (new_info ? util_last_bit(new_info->textures_used) : 0)) { ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage; } ice->shaders.uncompiled[stage] = ish; ice->state.dirty |= dirty_bit; /* Record that CSOs need to mark IRIS_DIRTY_UNCOMPILED_XS when they change * (or that they no longer need to do so). */ for (int i = 0; i < IRIS_NOS_COUNT; i++) { if (nos & (1 << i)) ice->state.dirty_for_nos[i] |= dirty_bit; else ice->state.dirty_for_nos[i] &= ~dirty_bit; } } static void iris_bind_vs_state(struct pipe_context *ctx, void *state) { bind_shader_state((void *) ctx, state, MESA_SHADER_VERTEX); } static void iris_bind_tcs_state(struct pipe_context *ctx, void *state) { bind_shader_state((void *) ctx, state, MESA_SHADER_TESS_CTRL); } static void iris_bind_tes_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *)ctx; /* Enabling/disabling optional stages requires a URB reconfiguration. */ if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL]) ice->state.dirty |= IRIS_DIRTY_URB; bind_shader_state((void *) ctx, state, MESA_SHADER_TESS_EVAL); } static void iris_bind_gs_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *)ctx; /* Enabling/disabling optional stages requires a URB reconfiguration. */ if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_GEOMETRY]) ice->state.dirty |= IRIS_DIRTY_URB; bind_shader_state((void *) ctx, state, MESA_SHADER_GEOMETRY); } static void iris_bind_fs_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_uncompiled_shader *old_ish = ice->shaders.uncompiled[MESA_SHADER_FRAGMENT]; struct iris_uncompiled_shader *new_ish = state; const unsigned color_bits = BITFIELD64_BIT(FRAG_RESULT_COLOR) | BITFIELD64_RANGE(FRAG_RESULT_DATA0, BRW_MAX_DRAW_BUFFERS); /* Fragment shader outputs influence HasWriteableRT */ if (!old_ish || !new_ish || (old_ish->nir->info.outputs_written & color_bits) != (new_ish->nir->info.outputs_written & color_bits)) ice->state.dirty |= IRIS_DIRTY_PS_BLEND; bind_shader_state((void *) ctx, state, MESA_SHADER_FRAGMENT); } static void iris_bind_cs_state(struct pipe_context *ctx, void *state) { bind_shader_state((void *) ctx, state, MESA_SHADER_COMPUTE); } void iris_init_program_functions(struct pipe_context *ctx) { ctx->create_vs_state = iris_create_vs_state; ctx->create_tcs_state = iris_create_tcs_state; ctx->create_tes_state = iris_create_tes_state; ctx->create_gs_state = iris_create_gs_state; ctx->create_fs_state = iris_create_fs_state; ctx->create_compute_state = iris_create_compute_state; ctx->delete_vs_state = iris_delete_vs_state; ctx->delete_tcs_state = iris_delete_tcs_state; ctx->delete_tes_state = iris_delete_tes_state; ctx->delete_gs_state = iris_delete_gs_state; ctx->delete_fs_state = iris_delete_fs_state; ctx->delete_compute_state = iris_delete_cs_state; ctx->bind_vs_state = iris_bind_vs_state; ctx->bind_tcs_state = iris_bind_tcs_state; ctx->bind_tes_state = iris_bind_tes_state; ctx->bind_gs_state = iris_bind_gs_state; ctx->bind_fs_state = iris_bind_fs_state; ctx->bind_compute_state = iris_bind_cs_state; }