/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ /* * Copyright (C) 2014 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_parse.h" #include "freedreno_context.h" #include "freedreno_util.h" #include "ir3_shader.h" #include "ir3_compiler.h" #include "ir3_nir.h" int ir3_glsl_type_size(const struct glsl_type *type) { return glsl_count_attribute_slots(type, false); } static void delete_variant(struct ir3_shader_variant *v) { if (v->ir) ir3_destroy(v->ir); if (v->bo) fd_bo_del(v->bo); free(v); } /* for vertex shader, the inputs are loaded into registers before the shader * is executed, so max_regs from the shader instructions might not properly * reflect the # of registers actually used, especially in case passthrough * varyings. * * Likewise, for fragment shader, we can have some regs which are passed * input values but never touched by the resulting shader (ie. as result * of dead code elimination or simply because we don't know how to turn * the reg off. */ static void fixup_regfootprint(struct ir3_shader_variant *v) { unsigned i; for (i = 0; i < v->inputs_count; i++) { /* skip frag inputs fetch via bary.f since their reg's are * not written by gpu before shader starts (and in fact the * regid's might not even be valid) */ if (v->inputs[i].bary) continue; /* ignore high regs that are global to all threads in a warp * (they exist by default) (a5xx+) */ if (v->inputs[i].regid >= regid(48,0)) continue; if (v->inputs[i].compmask) { unsigned n = util_last_bit(v->inputs[i].compmask) - 1; int32_t regid = (v->inputs[i].regid + n) >> 2; v->info.max_reg = MAX2(v->info.max_reg, regid); } } for (i = 0; i < v->outputs_count; i++) { int32_t regid = (v->outputs[i].regid + 3) >> 2; v->info.max_reg = MAX2(v->info.max_reg, regid); } if (v->type == SHADER_FRAGMENT) { /* NOTE: not sure how to turn pos_regid off.. but this could * be, for example, r1.x while max reg used by the shader is * r0.*, in which case we need to fixup the reg footprint: */ v->info.max_reg = MAX2(v->info.max_reg, v->pos_regid >> 2); if (v->frag_coord) debug_assert(v->info.max_reg >= 0); /* hard coded r0.x */ if (v->frag_face) debug_assert(v->info.max_half_reg >= 0); /* hr0.x */ } } /* wrapper for ir3_assemble() which does some info fixup based on * shader state. Non-static since used by ir3_cmdline too. */ void * ir3_shader_assemble(struct ir3_shader_variant *v, uint32_t gpu_id) { void *bin; bin = ir3_assemble(v->ir, &v->info, gpu_id); if (!bin) return NULL; if (gpu_id >= 400) { v->instrlen = v->info.sizedwords / (2 * 16); } else { v->instrlen = v->info.sizedwords / (2 * 4); } /* NOTE: if relative addressing is used, we set constlen in * the compiler (to worst-case value) since we don't know in * the assembler what the max addr reg value can be: */ v->constlen = MIN2(255, MAX2(v->constlen, v->info.max_const + 1)); fixup_regfootprint(v); return bin; } static void assemble_variant(struct ir3_shader_variant *v) { struct ir3_compiler *compiler = v->shader->compiler; uint32_t gpu_id = compiler->gpu_id; uint32_t sz, *bin; bin = ir3_shader_assemble(v, gpu_id); sz = v->info.sizedwords * 4; v->bo = fd_bo_new(compiler->dev, sz, DRM_FREEDRENO_GEM_CACHE_WCOMBINE | DRM_FREEDRENO_GEM_TYPE_KMEM); memcpy(fd_bo_map(v->bo), bin, sz); if (fd_mesa_debug & FD_DBG_DISASM) { struct ir3_shader_key key = v->key; printf("disassemble: type=%d, k={bp=%u,cts=%u,hp=%u}", v->type, key.binning_pass, key.color_two_side, key.half_precision); ir3_shader_disasm(v, bin, stdout); } if (shader_debug_enabled(v->shader->type)) { fprintf(stderr, "Native code for unnamed %s shader %s:\n", shader_stage_name(v->shader->type), v->shader->nir->info.name); if (v->shader->type == SHADER_FRAGMENT) fprintf(stderr, "SIMD0\n"); ir3_shader_disasm(v, bin, stderr); } free(bin); /* no need to keep the ir around beyond this point: */ ir3_destroy(v->ir); v->ir = NULL; } static void dump_shader_info(struct ir3_shader_variant *v, struct pipe_debug_callback *debug) { if (!unlikely(fd_mesa_debug & FD_DBG_SHADERDB)) return; pipe_debug_message(debug, SHADER_INFO, "\n" "SHADER-DB: %s prog %d/%d: %u instructions, %u dwords\n" "SHADER-DB: %s prog %d/%d: %u half, %u full\n" "SHADER-DB: %s prog %d/%d: %u const, %u constlen\n" "SHADER-DB: %s prog %d/%d: %u (ss), %u (sy)\n", ir3_shader_stage(v->shader), v->shader->id, v->id, v->info.instrs_count, v->info.sizedwords, ir3_shader_stage(v->shader), v->shader->id, v->id, v->info.max_half_reg + 1, v->info.max_reg + 1, ir3_shader_stage(v->shader), v->shader->id, v->id, v->info.max_const + 1, v->constlen, ir3_shader_stage(v->shader), v->shader->id, v->id, v->info.ss, v->info.sy); } static struct ir3_shader_variant * create_variant(struct ir3_shader *shader, struct ir3_shader_key key) { struct ir3_shader_variant *v = CALLOC_STRUCT(ir3_shader_variant); int ret; if (!v) return NULL; v->id = ++shader->variant_count; v->shader = shader; v->key = key; v->type = shader->type; ret = ir3_compile_shader_nir(shader->compiler, v); if (ret) { debug_error("compile failed!"); goto fail; } assemble_variant(v); if (!v->bo) { debug_error("assemble failed!"); goto fail; } return v; fail: delete_variant(v); return NULL; } struct ir3_shader_variant * ir3_shader_variant(struct ir3_shader *shader, struct ir3_shader_key key, struct pipe_debug_callback *debug) { struct ir3_shader_variant *v; /* some shader key values only apply to vertex or frag shader, * so normalize the key to avoid constructing multiple identical * variants: */ switch (shader->type) { case SHADER_FRAGMENT: key.binning_pass = false; if (key.has_per_samp) { key.vsaturate_s = 0; key.vsaturate_t = 0; key.vsaturate_r = 0; key.vastc_srgb = 0; key.vsamples = 0; } break; case SHADER_VERTEX: key.color_two_side = false; key.half_precision = false; key.rasterflat = false; if (key.has_per_samp) { key.fsaturate_s = 0; key.fsaturate_t = 0; key.fsaturate_r = 0; key.fastc_srgb = 0; key.fsamples = 0; } break; default: /* TODO */ break; } for (v = shader->variants; v; v = v->next) if (ir3_shader_key_equal(&key, &v->key)) return v; /* compile new variant if it doesn't exist already: */ v = create_variant(shader, key); if (v) { v->next = shader->variants; shader->variants = v; dump_shader_info(v, debug); } return v; } void ir3_shader_destroy(struct ir3_shader *shader) { struct ir3_shader_variant *v, *t; for (v = shader->variants; v; ) { t = v; v = v->next; delete_variant(t); } ralloc_free(shader->nir); free(shader); } struct ir3_shader * ir3_shader_create(struct ir3_compiler *compiler, const struct pipe_shader_state *cso, enum shader_t type, struct pipe_debug_callback *debug) { struct ir3_shader *shader = CALLOC_STRUCT(ir3_shader); shader->compiler = compiler; shader->id = ++shader->compiler->shader_count; shader->type = type; nir_shader *nir; if (cso->type == PIPE_SHADER_IR_NIR) { /* we take ownership of the reference: */ nir = cso->ir.nir; NIR_PASS_V(nir, nir_lower_io, nir_var_all, ir3_glsl_type_size, (nir_lower_io_options)0); } else { debug_assert(cso->type == PIPE_SHADER_IR_TGSI); if (fd_mesa_debug & FD_DBG_DISASM) { DBG("dump tgsi: type=%d", shader->type); tgsi_dump(cso->tokens, 0); } nir = ir3_tgsi_to_nir(cso->tokens); } /* do first pass optimization, ignoring the key: */ shader->nir = ir3_optimize_nir(shader, nir, NULL); if (fd_mesa_debug & FD_DBG_DISASM) { DBG("dump nir%d: type=%d", shader->id, shader->type); nir_print_shader(shader->nir, stdout); } shader->stream_output = cso->stream_output; if (fd_mesa_debug & FD_DBG_SHADERDB) { /* if shader-db run, create a standard variant immediately * (as otherwise nothing will trigger the shader to be * actually compiled) */ static struct ir3_shader_key key; memset(&key, 0, sizeof(key)); ir3_shader_variant(shader, key, debug); } return shader; } /* a bit annoying that compute-shader and normal shader state objects * aren't a bit more aligned. */ struct ir3_shader * ir3_shader_create_compute(struct ir3_compiler *compiler, const struct pipe_compute_state *cso, struct pipe_debug_callback *debug) { struct ir3_shader *shader = CALLOC_STRUCT(ir3_shader); shader->compiler = compiler; shader->id = ++shader->compiler->shader_count; shader->type = SHADER_COMPUTE; nir_shader *nir; if (cso->ir_type == PIPE_SHADER_IR_NIR) { /* we take ownership of the reference: */ nir = (nir_shader *)cso->prog; NIR_PASS_V(nir, nir_lower_io, nir_var_all, ir3_glsl_type_size, (nir_lower_io_options)0); } else { debug_assert(cso->ir_type == PIPE_SHADER_IR_TGSI); if (fd_mesa_debug & FD_DBG_DISASM) { DBG("dump tgsi: type=%d", shader->type); tgsi_dump(cso->prog, 0); } nir = ir3_tgsi_to_nir(cso->prog); } /* do first pass optimization, ignoring the key: */ shader->nir = ir3_optimize_nir(shader, nir, NULL); if (fd_mesa_debug & FD_DBG_DISASM) { printf("dump nir%d: type=%d\n", shader->id, shader->type); nir_print_shader(shader->nir, stdout); } return shader; } static void dump_reg(FILE *out, const char *name, uint32_t r) { if (r != regid(63,0)) fprintf(out, "; %s: r%d.%c\n", name, r >> 2, "xyzw"[r & 0x3]); } static void dump_output(FILE *out, struct ir3_shader_variant *so, unsigned slot, const char *name) { uint32_t regid; regid = ir3_find_output_regid(so, slot); dump_reg(out, name, regid); } void ir3_shader_disasm(struct ir3_shader_variant *so, uint32_t *bin, FILE *out) { struct ir3 *ir = so->ir; struct ir3_register *reg; const char *type = ir3_shader_stage(so->shader); uint8_t regid; unsigned i; for (i = 0; i < ir->ninputs; i++) { if (!ir->inputs[i]) { fprintf(out, "; in%d unused\n", i); continue; } reg = ir->inputs[i]->regs[0]; regid = reg->num; fprintf(out, "@in(%sr%d.%c)\tin%d\n", (reg->flags & IR3_REG_HALF) ? "h" : "", (regid >> 2), "xyzw"[regid & 0x3], i); } for (i = 0; i < ir->noutputs; i++) { if (!ir->outputs[i]) { fprintf(out, "; out%d unused\n", i); continue; } /* kill shows up as a virtual output.. skip it! */ if (is_kill(ir->outputs[i])) continue; reg = ir->outputs[i]->regs[0]; regid = reg->num; fprintf(out, "@out(%sr%d.%c)\tout%d\n", (reg->flags & IR3_REG_HALF) ? "h" : "", (regid >> 2), "xyzw"[regid & 0x3], i); } for (i = 0; i < so->immediates_count; i++) { fprintf(out, "@const(c%d.x)\t", so->constbase.immediate + i); fprintf(out, "0x%08x, 0x%08x, 0x%08x, 0x%08x\n", so->immediates[i].val[0], so->immediates[i].val[1], so->immediates[i].val[2], so->immediates[i].val[3]); } disasm_a3xx(bin, so->info.sizedwords, 0, out); switch (so->type) { case SHADER_VERTEX: fprintf(out, "; %s: outputs:", type); for (i = 0; i < so->outputs_count; i++) { uint8_t regid = so->outputs[i].regid; fprintf(out, " r%d.%c (%s)", (regid >> 2), "xyzw"[regid & 0x3], gl_varying_slot_name(so->outputs[i].slot)); } fprintf(out, "\n"); fprintf(out, "; %s: inputs:", type); for (i = 0; i < so->inputs_count; i++) { uint8_t regid = so->inputs[i].regid; fprintf(out, " r%d.%c (cm=%x,il=%u,b=%u)", (regid >> 2), "xyzw"[regid & 0x3], so->inputs[i].compmask, so->inputs[i].inloc, so->inputs[i].bary); } fprintf(out, "\n"); break; case SHADER_FRAGMENT: fprintf(out, "; %s: outputs:", type); for (i = 0; i < so->outputs_count; i++) { uint8_t regid = so->outputs[i].regid; fprintf(out, " r%d.%c (%s)", (regid >> 2), "xyzw"[regid & 0x3], gl_frag_result_name(so->outputs[i].slot)); } fprintf(out, "\n"); fprintf(out, "; %s: inputs:", type); for (i = 0; i < so->inputs_count; i++) { uint8_t regid = so->inputs[i].regid; fprintf(out, " r%d.%c (%s,cm=%x,il=%u,b=%u)", (regid >> 2), "xyzw"[regid & 0x3], gl_varying_slot_name(so->inputs[i].slot), so->inputs[i].compmask, so->inputs[i].inloc, so->inputs[i].bary); } fprintf(out, "\n"); break; default: /* TODO */ break; } /* print generic shader info: */ fprintf(out, "; %s prog %d/%d: %u instructions, %d half, %d full\n", type, so->shader->id, so->id, so->info.instrs_count, so->info.max_half_reg + 1, so->info.max_reg + 1); fprintf(out, "; %d const, %u constlen\n", so->info.max_const + 1, so->constlen); fprintf(out, "; %u (ss), %u (sy)\n", so->info.ss, so->info.sy); /* print shader type specific info: */ switch (so->type) { case SHADER_VERTEX: dump_output(out, so, VARYING_SLOT_POS, "pos"); dump_output(out, so, VARYING_SLOT_PSIZ, "psize"); break; case SHADER_FRAGMENT: dump_reg(out, "pos (bary)", so->pos_regid); dump_output(out, so, FRAG_RESULT_DEPTH, "posz"); if (so->color0_mrt) { dump_output(out, so, FRAG_RESULT_COLOR, "color"); } else { dump_output(out, so, FRAG_RESULT_DATA0, "data0"); dump_output(out, so, FRAG_RESULT_DATA1, "data1"); dump_output(out, so, FRAG_RESULT_DATA2, "data2"); dump_output(out, so, FRAG_RESULT_DATA3, "data3"); dump_output(out, so, FRAG_RESULT_DATA4, "data4"); dump_output(out, so, FRAG_RESULT_DATA5, "data5"); dump_output(out, so, FRAG_RESULT_DATA6, "data6"); dump_output(out, so, FRAG_RESULT_DATA7, "data7"); } /* these two are hard-coded since we don't know how to * program them to anything but all 0's... */ if (so->frag_coord) fprintf(out, "; fragcoord: r0.x\n"); if (so->frag_face) fprintf(out, "; fragface: hr0.x\n"); break; default: /* TODO */ break; } fprintf(out, "\n"); } uint64_t ir3_shader_outputs(const struct ir3_shader *so) { return so->nir->info.outputs_written; } /* This has to reach into the fd_context a bit more than the rest of * ir3, but it needs to be aligned with the compiler, so both agree * on which const regs hold what. And the logic is identical between * a3xx/a4xx, the only difference is small details in the actual * CP_LOAD_STATE packets (which is handled inside the generation * specific ctx->emit_const(_bo)() fxns) */ #include "freedreno_resource.h" static void emit_user_consts(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_constbuf_stateobj *constbuf) { const unsigned index = 0; /* user consts are index 0 */ if (constbuf->enabled_mask & (1 << index)) { struct pipe_constant_buffer *cb = &constbuf->cb[index]; unsigned size = align(cb->buffer_size, 4) / 4; /* size in dwords */ /* in particular, with binning shader we may end up with * unused consts, ie. we could end up w/ constlen that is * smaller than first_driver_param. In that case truncate * the user consts early to avoid HLSQ lockup caused by * writing too many consts */ uint32_t max_const = MIN2(v->num_uniforms, v->constlen); // I expect that size should be a multiple of vec4's: assert(size == align(size, 4)); /* and even if the start of the const buffer is before * first_immediate, the end may not be: */ size = MIN2(size, 4 * max_const); if (size > 0) { fd_wfi(ctx->batch, ring); ctx->emit_const(ring, v->type, 0, cb->buffer_offset, size, cb->user_buffer, cb->buffer); } } } static void emit_ubos(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_constbuf_stateobj *constbuf) { uint32_t offset = v->constbase.ubo; if (v->constlen > offset) { uint32_t params = v->num_ubos; uint32_t offsets[params]; struct pipe_resource *prscs[params]; for (uint32_t i = 0; i < params; i++) { const uint32_t index = i + 1; /* UBOs start at index 1 */ struct pipe_constant_buffer *cb = &constbuf->cb[index]; assert(!cb->user_buffer); if ((constbuf->enabled_mask & (1 << index)) && cb->buffer) { offsets[i] = cb->buffer_offset; prscs[i] = cb->buffer; } else { offsets[i] = 0; prscs[i] = NULL; } } fd_wfi(ctx->batch, ring); ctx->emit_const_bo(ring, v->type, false, offset * 4, params, prscs, offsets); } } static void emit_ssbo_sizes(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_shaderbuf_stateobj *sb) { uint32_t offset = v->constbase.ssbo_sizes; if (v->constlen > offset) { uint32_t sizes[align(v->const_layout.ssbo_size.count, 4)]; unsigned mask = v->const_layout.ssbo_size.mask; while (mask) { unsigned index = u_bit_scan(&mask); unsigned off = v->const_layout.ssbo_size.off[index]; sizes[off] = sb->sb[index].buffer_size; } fd_wfi(ctx->batch, ring); ctx->emit_const(ring, v->type, offset * 4, 0, ARRAY_SIZE(sizes), sizes, NULL); } } static void emit_image_dims(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_shaderimg_stateobj *si) { uint32_t offset = v->constbase.image_dims; if (v->constlen > offset) { uint32_t dims[align(v->const_layout.image_dims.count, 4)]; unsigned mask = v->const_layout.image_dims.mask; while (mask) { struct pipe_image_view *img; struct fd_resource *rsc; unsigned index = u_bit_scan(&mask); unsigned off = v->const_layout.image_dims.off[index]; img = &si->si[index]; rsc = fd_resource(img->resource); dims[off + 0] = util_format_get_blocksize(img->format); if (img->resource->target != PIPE_BUFFER) { unsigned lvl = img->u.tex.level; /* note for 2d/cube/etc images, even if re-interpreted * as a different color format, the pixel size should * be the same, so use original dimensions for y and z * stride: */ dims[off + 1] = rsc->slices[lvl].pitch * rsc->cpp; /* see corresponding logic in fd_resource_offset(): */ if (rsc->layer_first) { dims[off + 2] = rsc->layer_size; } else { dims[off + 2] = rsc->slices[lvl].size0; } } } fd_wfi(ctx->batch, ring); ctx->emit_const(ring, v->type, offset * 4, 0, ARRAY_SIZE(dims), dims, NULL); } } static void emit_immediates(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring) { int size = v->immediates_count; uint32_t base = v->constbase.immediate; /* truncate size to avoid writing constants that shader * does not use: */ size = MIN2(size + base, v->constlen) - base; /* convert out of vec4: */ base *= 4; size *= 4; if (size > 0) { fd_wfi(ctx->batch, ring); ctx->emit_const(ring, v->type, base, 0, size, v->immediates[0].val, NULL); } } /* emit stream-out buffers: */ static void emit_tfbos(struct fd_context *ctx, const struct ir3_shader_variant *v, struct fd_ringbuffer *ring) { /* streamout addresses after driver-params: */ uint32_t offset = v->constbase.tfbo; if (v->constlen > offset) { struct fd_streamout_stateobj *so = &ctx->streamout; struct pipe_stream_output_info *info = &v->shader->stream_output; uint32_t params = 4; uint32_t offsets[params]; struct pipe_resource *prscs[params]; for (uint32_t i = 0; i < params; i++) { struct pipe_stream_output_target *target = so->targets[i]; if (target) { offsets[i] = (so->offsets[i] * info->stride[i] * 4) + target->buffer_offset; prscs[i] = target->buffer; } else { offsets[i] = 0; prscs[i] = NULL; } } fd_wfi(ctx->batch, ring); ctx->emit_const_bo(ring, v->type, true, offset * 4, params, prscs, offsets); } } static uint32_t max_tf_vtx(struct fd_context *ctx, const struct ir3_shader_variant *v) { struct fd_streamout_stateobj *so = &ctx->streamout; struct pipe_stream_output_info *info = &v->shader->stream_output; uint32_t maxvtxcnt = 0x7fffffff; if (ctx->screen->gpu_id >= 500) return 0; if (v->key.binning_pass) return 0; if (v->shader->stream_output.num_outputs == 0) return 0; if (so->num_targets == 0) return 0; /* offset to write to is: * * total_vtxcnt = vtxcnt + offsets[i] * offset = total_vtxcnt * stride[i] * * offset = vtxcnt * stride[i] ; calculated in shader * + offsets[i] * stride[i] ; calculated at emit_tfbos() * * assuming for each vtx, each target buffer will have data written * up to 'offset + stride[i]', that leaves maxvtxcnt as: * * buffer_size = (maxvtxcnt * stride[i]) + stride[i] * maxvtxcnt = (buffer_size - stride[i]) / stride[i] * * but shader is actually doing a less-than (rather than less-than- * equal) check, so we can drop the -stride[i]. * * TODO is assumption about `offset + stride[i]` legit? */ for (unsigned i = 0; i < so->num_targets; i++) { struct pipe_stream_output_target *target = so->targets[i]; unsigned stride = info->stride[i] * 4; /* convert dwords->bytes */ if (target) { uint32_t max = target->buffer_size / stride; maxvtxcnt = MIN2(maxvtxcnt, max); } } return maxvtxcnt; } static void emit_common_consts(const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_context *ctx, enum pipe_shader_type t) { enum fd_dirty_shader_state dirty = ctx->dirty_shader[t]; if (dirty & (FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_CONST)) { struct fd_constbuf_stateobj *constbuf; bool shader_dirty; constbuf = &ctx->constbuf[t]; shader_dirty = !!(dirty & FD_DIRTY_SHADER_PROG); emit_user_consts(ctx, v, ring, constbuf); emit_ubos(ctx, v, ring, constbuf); if (shader_dirty) emit_immediates(ctx, v, ring); } if (dirty & (FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_SSBO)) { struct fd_shaderbuf_stateobj *sb = &ctx->shaderbuf[t]; emit_ssbo_sizes(ctx, v, ring, sb); } if (dirty & (FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_IMAGE)) { struct fd_shaderimg_stateobj *si = &ctx->shaderimg[t]; emit_image_dims(ctx, v, ring, si); } } void ir3_emit_vs_consts(const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_context *ctx, const struct pipe_draw_info *info) { debug_assert(v->type == SHADER_VERTEX); emit_common_consts(v, ring, ctx, PIPE_SHADER_VERTEX); /* emit driver params every time: */ /* TODO skip emit if shader doesn't use driver params to avoid WFI.. */ if (info) { uint32_t offset = v->constbase.driver_param; if (v->constlen > offset) { uint32_t vertex_params[IR3_DP_VS_COUNT] = { [IR3_DP_VTXID_BASE] = info->index_size ? info->index_bias : info->start, [IR3_DP_VTXCNT_MAX] = max_tf_vtx(ctx, v), }; /* if no user-clip-planes, we don't need to emit the * entire thing: */ uint32_t vertex_params_size = 4; if (v->key.ucp_enables) { struct pipe_clip_state *ucp = &ctx->ucp; unsigned pos = IR3_DP_UCP0_X; for (unsigned i = 0; pos <= IR3_DP_UCP7_W; i++) { for (unsigned j = 0; j < 4; j++) { vertex_params[pos] = fui(ucp->ucp[i][j]); pos++; } } vertex_params_size = ARRAY_SIZE(vertex_params); } fd_wfi(ctx->batch, ring); bool needs_vtxid_base = ir3_find_sysval_regid(v, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) != regid(63, 0); /* for indirect draw, we need to copy VTXID_BASE from * indirect-draw parameters buffer.. which is annoying * and means we can't easily emit these consts in cmd * stream so need to copy them to bo. */ if (info->indirect && needs_vtxid_base) { struct pipe_draw_indirect_info *indirect = info->indirect; struct pipe_resource *vertex_params_rsc = pipe_buffer_create(&ctx->screen->base, PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM, vertex_params_size * 4); unsigned src_off = info->indirect->offset;; void *ptr; ptr = fd_bo_map(fd_resource(vertex_params_rsc)->bo); memcpy(ptr, vertex_params, vertex_params_size * 4); if (info->index_size) { /* indexed draw, index_bias is 4th field: */ src_off += 3 * 4; } else { /* non-indexed draw, start is 3rd field: */ src_off += 2 * 4; } /* copy index_bias or start from draw params: */ ctx->mem_to_mem(ring, vertex_params_rsc, 0, indirect->buffer, src_off, 1); ctx->emit_const(ring, SHADER_VERTEX, offset * 4, 0, vertex_params_size, NULL, vertex_params_rsc); pipe_resource_reference(&vertex_params_rsc, NULL); } else { ctx->emit_const(ring, SHADER_VERTEX, offset * 4, 0, vertex_params_size, vertex_params, NULL); } /* if needed, emit stream-out buffer addresses: */ if (vertex_params[IR3_DP_VTXCNT_MAX] > 0) { emit_tfbos(ctx, v, ring); } } } } void ir3_emit_fs_consts(const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_context *ctx) { debug_assert(v->type == SHADER_FRAGMENT); emit_common_consts(v, ring, ctx, PIPE_SHADER_FRAGMENT); } /* emit compute-shader consts: */ void ir3_emit_cs_consts(const struct ir3_shader_variant *v, struct fd_ringbuffer *ring, struct fd_context *ctx, const struct pipe_grid_info *info) { debug_assert(v->type == SHADER_COMPUTE); emit_common_consts(v, ring, ctx, PIPE_SHADER_COMPUTE); /* emit compute-shader driver-params: */ uint32_t offset = v->constbase.driver_param; if (v->constlen > offset) { fd_wfi(ctx->batch, ring); if (info->indirect) { struct pipe_resource *indirect = NULL; unsigned indirect_offset; /* This is a bit awkward, but CP_LOAD_STATE.EXT_SRC_ADDR needs * to be aligned more strongly than 4 bytes. So in this case * we need a temporary buffer to copy NumWorkGroups.xyz to. * * TODO if previous compute job is writing to info->indirect, * we might need a WFI.. but since we currently flush for each * compute job, we are probably ok for now. */ if (info->indirect_offset & 0xf) { indirect = pipe_buffer_create(&ctx->screen->base, PIPE_BIND_COMMAND_ARGS_BUFFER, PIPE_USAGE_STREAM, 0x1000); indirect_offset = 0; ctx->mem_to_mem(ring, indirect, 0, info->indirect, info->indirect_offset, 3); } else { pipe_resource_reference(&indirect, info->indirect); indirect_offset = info->indirect_offset; } ctx->emit_const(ring, SHADER_COMPUTE, offset * 4, indirect_offset, 4, NULL, indirect); pipe_resource_reference(&indirect, NULL); } else { uint32_t compute_params[IR3_DP_CS_COUNT] = { [IR3_DP_NUM_WORK_GROUPS_X] = info->grid[0], [IR3_DP_NUM_WORK_GROUPS_Y] = info->grid[1], [IR3_DP_NUM_WORK_GROUPS_Z] = info->grid[2], [IR3_DP_LOCAL_GROUP_SIZE_X] = info->block[0], [IR3_DP_LOCAL_GROUP_SIZE_Y] = info->block[1], [IR3_DP_LOCAL_GROUP_SIZE_Z] = info->block[2], }; ctx->emit_const(ring, SHADER_COMPUTE, offset * 4, 0, ARRAY_SIZE(compute_params), compute_params, NULL); } } }