/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ /* * Copyright (C) 2015 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "freedreno_util.h" #include "ir3_compiler.h" #include "ir3_shader.h" #include "ir3_nir.h" #include "instr-a3xx.h" #include "ir3.h" struct ir3_compile { struct ir3_compiler *compiler; struct nir_shader *s; struct ir3 *ir; struct ir3_shader_variant *so; struct ir3_block *block; /* the current block */ struct ir3_block *in_block; /* block created for shader inputs */ nir_function_impl *impl; /* For fragment shaders, from the hw perspective the only * actual input is r0.xy position register passed to bary.f. * But TGSI doesn't know that, it still declares things as * IN[] registers. So we do all the input tracking normally * and fix things up after compile_instructions() * * NOTE that frag_pos is the hardware position (possibly it * is actually an index or tag or some such.. it is *not* * values that can be directly used for gl_FragCoord..) */ struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4]; /* For vertex shaders, keep track of the system values sources */ struct ir3_instruction *vertex_id, *basevertex, *instance_id; /* mapping from nir_register to defining instruction: */ struct hash_table *def_ht; unsigned num_arrays; /* a common pattern for indirect addressing is to request the * same address register multiple times. To avoid generating * duplicate instruction sequences (which our backend does not * try to clean up, since that should be done as the NIR stage) * we cache the address value generated for a given src value: */ struct hash_table *addr_ht; /* maps nir_block to ir3_block, mostly for the purposes of * figuring out the blocks successors */ struct hash_table *block_ht; /* a4xx (at least patchlevel 0) cannot seem to flat-interpolate * so we need to use ldlv.u32 to load the varying directly: */ bool flat_bypass; /* on a3xx, we need to add one to # of array levels: */ bool levels_add_one; /* on a3xx, we need to scale up integer coords for isaml based * on LoD: */ bool unminify_coords; /* on a4xx, for array textures we need to add 0.5 to the array * index coordinate: */ bool array_index_add_half; /* on a4xx, bitmask of samplers which need astc+srgb workaround: */ unsigned astc_srgb; unsigned max_texture_index; /* set if we encounter something we can't handle yet, so we * can bail cleanly and fallback to TGSI compiler f/e */ bool error; }; static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val); static struct ir3_block * get_block(struct ir3_compile *ctx, nir_block *nblock); static struct ir3_compile * compile_init(struct ir3_compiler *compiler, struct ir3_shader_variant *so) { struct ir3_compile *ctx = rzalloc(NULL, struct ir3_compile); if (compiler->gpu_id >= 400) { /* need special handling for "flat" */ ctx->flat_bypass = true; ctx->levels_add_one = false; ctx->unminify_coords = false; ctx->array_index_add_half = true; if (so->type == SHADER_VERTEX) ctx->astc_srgb = so->key.vastc_srgb; else if (so->type == SHADER_FRAGMENT) ctx->astc_srgb = so->key.fastc_srgb; } else { /* no special handling for "flat" */ ctx->flat_bypass = false; ctx->levels_add_one = true; ctx->unminify_coords = true; ctx->array_index_add_half = false; } ctx->compiler = compiler; ctx->ir = so->ir; ctx->so = so; ctx->def_ht = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); ctx->block_ht = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); /* TODO: maybe generate some sort of bitmask of what key * lowers vs what shader has (ie. no need to lower * texture clamp lowering if no texture sample instrs).. * although should be done further up the stack to avoid * creating duplicate variants.. */ if (ir3_key_lowers_nir(&so->key)) { nir_shader *s = nir_shader_clone(ctx, so->shader->nir); ctx->s = ir3_optimize_nir(so->shader, s, &so->key); } else { /* fast-path for shader key that lowers nothing in NIR: */ ctx->s = so->shader->nir; } if (fd_mesa_debug & FD_DBG_DISASM) { DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}", so->shader->id, so->id, so->type, so->key.binning_pass, so->key.color_two_side, so->key.half_precision); nir_print_shader(ctx->s, stdout); } so->first_driver_param = so->first_immediate = align(ctx->s->num_uniforms, 4); /* Layout of constant registers: * * num_uniform * vec4 - user consts * 4 * vec4 - UBO addresses * if (vertex shader) { * N * vec4 - driver params (IR3_DP_*) * 1 * vec4 - stream-out addresses * } * * TODO this could be made more dynamic, to at least skip sections * that we don't need.. */ /* reserve 4 (vec4) slots for ubo base addresses: */ so->first_immediate += 4; if (so->type == SHADER_VERTEX) { /* driver params (see ir3_driver_param): */ so->first_immediate += IR3_DP_COUNT/4; /* convert to vec4 */ /* one (vec4) slot for stream-output base addresses: */ so->first_immediate++; } return ctx; } static void compile_error(struct ir3_compile *ctx, const char *format, ...) { va_list ap; va_start(ap, format); _debug_vprintf(format, ap); va_end(ap); nir_print_shader(ctx->s, stdout); ctx->error = true; debug_assert(0); } #define compile_assert(ctx, cond) do { \ if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \ } while (0) static void compile_free(struct ir3_compile *ctx) { ralloc_free(ctx); } static void declare_var(struct ir3_compile *ctx, nir_variable *var) { unsigned length = glsl_get_length(var->type) * 4; /* always vec4, at least with ttn */ struct ir3_array *arr = ralloc(ctx, struct ir3_array); arr->id = ++ctx->num_arrays; arr->length = length; arr->var = var; list_addtail(&arr->node, &ctx->ir->array_list); } static struct ir3_array * get_var(struct ir3_compile *ctx, nir_variable *var) { list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) { if (arr->var == var) return arr; } compile_error(ctx, "bogus var: %s\n", var->name); return NULL; } /* allocate a n element value array (to be populated by caller) and * insert in def_ht */ static struct ir3_instruction ** __get_dst(struct ir3_compile *ctx, void *key, unsigned n) { struct ir3_instruction **value = ralloc_array(ctx->def_ht, struct ir3_instruction *, n); _mesa_hash_table_insert(ctx->def_ht, key, value); return value; } static struct ir3_instruction ** get_dst(struct ir3_compile *ctx, nir_dest *dst, unsigned n) { compile_assert(ctx, dst->is_ssa); if (dst->is_ssa) { return __get_dst(ctx, &dst->ssa, n); } else { return __get_dst(ctx, dst->reg.reg, n); } } static struct ir3_instruction ** get_dst_ssa(struct ir3_compile *ctx, nir_ssa_def *dst, unsigned n) { return __get_dst(ctx, dst, n); } static struct ir3_instruction * const * get_src(struct ir3_compile *ctx, nir_src *src) { struct hash_entry *entry; compile_assert(ctx, src->is_ssa); if (src->is_ssa) { entry = _mesa_hash_table_search(ctx->def_ht, src->ssa); } else { entry = _mesa_hash_table_search(ctx->def_ht, src->reg.reg); } compile_assert(ctx, entry); return entry->data; } static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val) { struct ir3_instruction *mov; mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; ir3_reg_create(mov, 0, 0); ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val; return mov; } static struct ir3_instruction * create_addr(struct ir3_block *block, struct ir3_instruction *src) { struct ir3_instruction *instr, *immed; /* TODO in at least some cases, the backend could probably be * made clever enough to propagate IR3_REG_HALF.. */ instr = ir3_COV(block, src, TYPE_U32, TYPE_S16); instr->regs[0]->flags |= IR3_REG_HALF; immed = create_immed(block, 2); immed->regs[0]->flags |= IR3_REG_HALF; instr = ir3_SHL_B(block, instr, 0, immed, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; instr = ir3_MOV(block, instr, TYPE_S16); instr->regs[0]->num = regid(REG_A0, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; return instr; } /* caches addr values to avoid generating multiple cov/shl/mova * sequences for each use of a given NIR level src as address */ static struct ir3_instruction * get_addr(struct ir3_compile *ctx, struct ir3_instruction *src) { struct ir3_instruction *addr; if (!ctx->addr_ht) { ctx->addr_ht = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); } else { struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->addr_ht, src); if (entry) return entry->data; } addr = create_addr(ctx->block, src); _mesa_hash_table_insert(ctx->addr_ht, src, addr); return addr; } static struct ir3_instruction * get_predicate(struct ir3_compile *ctx, struct ir3_instruction *src) { struct ir3_block *b = ctx->block; struct ir3_instruction *cond; /* NOTE: only cmps.*.* can write p0.x: */ cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0); cond->cat2.condition = IR3_COND_NE; /* condition always goes in predicate register: */ cond->regs[0]->num = regid(REG_P0, 0); return cond; } static struct ir3_instruction * create_uniform(struct ir3_compile *ctx, unsigned n) { struct ir3_instruction *mov; mov = ir3_instr_create(ctx->block, OPC_MOV); /* TODO get types right? */ mov->cat1.src_type = TYPE_F32; mov->cat1.dst_type = TYPE_F32; ir3_reg_create(mov, 0, 0); ir3_reg_create(mov, n, IR3_REG_CONST); return mov; } static struct ir3_instruction * create_uniform_indirect(struct ir3_compile *ctx, int n, struct ir3_instruction *address) { struct ir3_instruction *mov; mov = ir3_instr_create(ctx->block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; ir3_reg_create(mov, 0, 0); ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n; ir3_instr_set_address(mov, address); return mov; } static struct ir3_instruction * create_collect(struct ir3_block *block, struct ir3_instruction **arr, unsigned arrsz) { struct ir3_instruction *collect; if (arrsz == 0) return NULL; collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz); ir3_reg_create(collect, 0, 0); /* dst */ for (unsigned i = 0; i < arrsz; i++) ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = arr[i]; return collect; } static struct ir3_instruction * create_indirect_load(struct ir3_compile *ctx, unsigned arrsz, int n, struct ir3_instruction *address, struct ir3_instruction *collect) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *src; mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; ir3_reg_create(mov, 0, 0); src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV); src->instr = collect; src->size = arrsz; src->array.offset = n; ir3_instr_set_address(mov, address); return mov; } /* relative (indirect) if address!=NULL */ static struct ir3_instruction * create_var_load(struct ir3_compile *ctx, struct ir3_array *arr, int n, struct ir3_instruction *address) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *src; mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; ir3_reg_create(mov, 0, 0); src = ir3_reg_create(mov, 0, IR3_REG_ARRAY | COND(address, IR3_REG_RELATIV)); src->instr = arr->last_write; src->size = arr->length; src->array.id = arr->id; src->array.offset = n; if (address) ir3_instr_set_address(mov, address); arr->last_access = mov; return mov; } /* relative (indirect) if address!=NULL */ static struct ir3_instruction * create_var_store(struct ir3_compile *ctx, struct ir3_array *arr, int n, struct ir3_instruction *src, struct ir3_instruction *address) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *dst; mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY | COND(address, IR3_REG_RELATIV)); dst->instr = arr->last_access; dst->size = arr->length; dst->array.id = arr->id; dst->array.offset = n; ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src; ir3_instr_set_address(mov, address); arr->last_write = arr->last_access = mov; return mov; } static struct ir3_instruction * create_input(struct ir3_block *block, unsigned n) { struct ir3_instruction *in; in = ir3_instr_create(block, OPC_META_INPUT); in->inout.block = block; ir3_reg_create(in, n, 0); return in; } static struct ir3_instruction * create_frag_input(struct ir3_compile *ctx, bool use_ldlv) { struct ir3_block *block = ctx->block; struct ir3_instruction *instr; /* actual inloc is assigned and fixed up later: */ struct ir3_instruction *inloc = create_immed(block, 0); if (use_ldlv) { instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0); instr->cat6.type = TYPE_U32; instr->cat6.iim_val = 1; } else { instr = ir3_BARY_F(block, inloc, 0, ctx->frag_pos, 0); instr->regs[2]->wrmask = 0x3; } return instr; } static struct ir3_instruction * create_frag_coord(struct ir3_compile *ctx, unsigned comp) { struct ir3_block *block = ctx->block; struct ir3_instruction *instr; compile_assert(ctx, !ctx->frag_coord[comp]); ctx->frag_coord[comp] = create_input(ctx->block, 0); switch (comp) { case 0: /* .x */ case 1: /* .y */ /* for frag_coord, we get unsigned values.. we need * to subtract (integer) 8 and divide by 16 (right- * shift by 4) then convert to float: * * sub.s tmp, src, 8 * shr.b tmp, tmp, 4 * mov.u32f32 dst, tmp * */ instr = ir3_SUB_S(block, ctx->frag_coord[comp], 0, create_immed(block, 8), 0); instr = ir3_SHR_B(block, instr, 0, create_immed(block, 4), 0); instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32); return instr; case 2: /* .z */ case 3: /* .w */ default: /* seems that we can use these as-is: */ return ctx->frag_coord[comp]; } } static struct ir3_instruction * create_driver_param(struct ir3_compile *ctx, enum ir3_driver_param dp) { /* first four vec4 sysval's reserved for UBOs: */ /* NOTE: dp is in scalar, but there can be >4 dp components: */ unsigned n = ctx->so->first_driver_param + IR3_DRIVER_PARAM_OFF; unsigned r = regid(n + dp / 4, dp % 4); return create_uniform(ctx, r); } /* helper for instructions that produce multiple consecutive scalar * outputs which need to have a split/fanout meta instruction inserted */ static void split_dest(struct ir3_block *block, struct ir3_instruction **dst, struct ir3_instruction *src, unsigned base, unsigned n) { struct ir3_instruction *prev = NULL; for (int i = 0, j = 0; i < n; i++) { struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO); ir3_reg_create(split, 0, IR3_REG_SSA); ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src; split->fo.off = i + base; if (prev) { split->cp.left = prev; split->cp.left_cnt++; prev->cp.right = split; prev->cp.right_cnt++; } prev = split; if (src->regs[0]->wrmask & (1 << (i + base))) dst[j++] = split; } } /* * Adreno uses uint rather than having dedicated bool type, * which (potentially) requires some conversion, in particular * when using output of an bool instr to int input, or visa * versa. * * | Adreno | NIR | * -------+---------+-------+- * true | 1 | ~0 | * false | 0 | 0 | * * To convert from an adreno bool (uint) to nir, use: * * absneg.s dst, (neg)src * * To convert back in the other direction: * * absneg.s dst, (abs)arc * * The CP step can clean up the absneg.s that cancel each other * out, and with a slight bit of extra cleverness (to recognize * the instructions which produce either a 0 or 1) can eliminate * the absneg.s's completely when an instruction that wants * 0/1 consumes the result. For example, when a nir 'bcsel' * consumes the result of 'feq'. So we should be able to get by * without a boolean resolve step, and without incuring any * extra penalty in instruction count. */ /* NIR bool -> native (adreno): */ static struct ir3_instruction * ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr) { return ir3_ABSNEG_S(block, instr, IR3_REG_SABS); } /* native (adreno) -> NIR bool: */ static struct ir3_instruction * ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr) { return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG); } /* * alu/sfu instructions: */ static void emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu) { const nir_op_info *info = &nir_op_infos[alu->op]; struct ir3_instruction **dst, *src[info->num_inputs]; struct ir3_block *b = ctx->block; dst = get_dst(ctx, &alu->dest.dest, MAX2(info->output_size, 1)); /* Vectors are special in that they have non-scalarized writemasks, * and just take the first swizzle channel for each argument in * order into each writemask channel. */ if ((alu->op == nir_op_vec2) || (alu->op == nir_op_vec3) || (alu->op == nir_op_vec4)) { for (int i = 0; i < info->num_inputs; i++) { nir_alu_src *asrc = &alu->src[i]; compile_assert(ctx, !asrc->abs); compile_assert(ctx, !asrc->negate); src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]]; if (!src[i]) src[i] = create_immed(ctx->block, 0); dst[i] = ir3_MOV(b, src[i], TYPE_U32); } return; } /* General case: We can just grab the one used channel per src. */ for (int i = 0; i < info->num_inputs; i++) { unsigned chan = ffs(alu->dest.write_mask) - 1; nir_alu_src *asrc = &alu->src[i]; compile_assert(ctx, !asrc->abs); compile_assert(ctx, !asrc->negate); src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]]; compile_assert(ctx, src[i]); } switch (alu->op) { case nir_op_f2i: dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_S32); break; case nir_op_f2u: dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_U32); break; case nir_op_i2f: dst[0] = ir3_COV(b, src[0], TYPE_S32, TYPE_F32); break; case nir_op_u2f: dst[0] = ir3_COV(b, src[0], TYPE_U32, TYPE_F32); break; case nir_op_imov: dst[0] = ir3_MOV(b, src[0], TYPE_S32); break; case nir_op_fmov: dst[0] = ir3_MOV(b, src[0], TYPE_F32); break; case nir_op_f2b: dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0); dst[0]->cat2.condition = IR3_COND_NE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_b2f: dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32); break; case nir_op_b2i: dst[0] = ir3_b2n(b, src[0]); break; case nir_op_i2b: dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0); dst[0]->cat2.condition = IR3_COND_NE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_fneg: dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG); break; case nir_op_fabs: dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS); break; case nir_op_fmax: dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0); break; case nir_op_fmin: dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0); break; case nir_op_fmul: dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0); break; case nir_op_fadd: dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0); break; case nir_op_fsub: dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG); break; case nir_op_ffma: dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0); break; case nir_op_fddx: dst[0] = ir3_DSX(b, src[0], 0); dst[0]->cat5.type = TYPE_F32; break; case nir_op_fddy: dst[0] = ir3_DSY(b, src[0], 0); dst[0]->cat5.type = TYPE_F32; break; break; case nir_op_flt: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_fge: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_feq: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_EQ; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_fne: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_NE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_fceil: dst[0] = ir3_CEIL_F(b, src[0], 0); break; case nir_op_ffloor: dst[0] = ir3_FLOOR_F(b, src[0], 0); break; case nir_op_ftrunc: dst[0] = ir3_TRUNC_F(b, src[0], 0); break; case nir_op_fround_even: dst[0] = ir3_RNDNE_F(b, src[0], 0); break; case nir_op_fsign: dst[0] = ir3_SIGN_F(b, src[0], 0); break; case nir_op_fsin: dst[0] = ir3_SIN(b, src[0], 0); break; case nir_op_fcos: dst[0] = ir3_COS(b, src[0], 0); break; case nir_op_frsq: dst[0] = ir3_RSQ(b, src[0], 0); break; case nir_op_frcp: dst[0] = ir3_RCP(b, src[0], 0); break; case nir_op_flog2: dst[0] = ir3_LOG2(b, src[0], 0); break; case nir_op_fexp2: dst[0] = ir3_EXP2(b, src[0], 0); break; case nir_op_fsqrt: dst[0] = ir3_SQRT(b, src[0], 0); break; case nir_op_iabs: dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS); break; case nir_op_iadd: dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0); break; case nir_op_iand: dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0); break; case nir_op_imax: dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0); break; case nir_op_umax: dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0); break; case nir_op_imin: dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0); break; case nir_op_umin: dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0); break; case nir_op_imul: /* * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16) * mull.u tmp0, a, b ; mul low, i.e. al * bl * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16 * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16 */ dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0, ir3_MADSH_M16(b, src[0], 0, src[1], 0, ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0); break; case nir_op_ineg: dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG); break; case nir_op_inot: dst[0] = ir3_NOT_B(b, src[0], 0); break; case nir_op_ior: dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0); break; case nir_op_ishl: dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0); break; case nir_op_ishr: dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0); break; case nir_op_isign: { /* maybe this would be sane to lower in nir.. */ struct ir3_instruction *neg, *pos; neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0); neg->cat2.condition = IR3_COND_LT; pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0); pos->cat2.condition = IR3_COND_GT; dst[0] = ir3_SUB_U(b, pos, 0, neg, 0); break; } case nir_op_isub: dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0); break; case nir_op_ixor: dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0); break; case nir_op_ushr: dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0); break; case nir_op_ilt: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_ige: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_ieq: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_EQ; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_ine: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_NE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_ult: dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_uge: dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; dst[0] = ir3_n2b(b, dst[0]); break; case nir_op_bcsel: dst[0] = ir3_SEL_B32(b, src[1], 0, ir3_b2n(b, src[0]), 0, src[2], 0); break; case nir_op_bit_count: dst[0] = ir3_CBITS_B(b, src[0], 0); break; case nir_op_ifind_msb: { struct ir3_instruction *cmp; dst[0] = ir3_CLZ_S(b, src[0], 0); cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0); cmp->cat2.condition = IR3_COND_GE; dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0, cmp, 0, dst[0], 0); break; } case nir_op_ufind_msb: dst[0] = ir3_CLZ_B(b, src[0], 0); dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0, src[0], 0, dst[0], 0); break; case nir_op_find_lsb: dst[0] = ir3_BFREV_B(b, src[0], 0); dst[0] = ir3_CLZ_B(b, dst[0], 0); break; case nir_op_bitfield_reverse: dst[0] = ir3_BFREV_B(b, src[0], 0); break; default: compile_error(ctx, "Unhandled ALU op: %s\n", nir_op_infos[alu->op].name); break; } } /* handles direct/indirect UBO reads: */ static void emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; struct ir3_instruction *addr, *src0, *src1; nir_const_value *const_offset; /* UBO addresses are the first driver params: */ unsigned ubo = regid(ctx->so->first_driver_param + IR3_UBOS_OFF, 0); int off = 0; /* First src is ubo index, which could either be an immed or not: */ src0 = get_src(ctx, &intr->src[0])[0]; if (is_same_type_mov(src0) && (src0->regs[1]->flags & IR3_REG_IMMED)) { addr = create_uniform(ctx, ubo + src0->regs[1]->iim_val); } else { addr = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0)); } const_offset = nir_src_as_const_value(intr->src[1]); if (const_offset) { off += const_offset->u32[0]; } else { /* For load_ubo_indirect, second src is indirect offset: */ src1 = get_src(ctx, &intr->src[1])[0]; /* and add offset to addr: */ addr = ir3_ADD_S(b, addr, 0, src1, 0); } /* if offset is to large to encode in the ldg, split it out: */ if ((off + (intr->num_components * 4)) > 1024) { /* split out the minimal amount to improve the odds that * cp can fit the immediate in the add.s instruction: */ unsigned off2 = off + (intr->num_components * 4) - 1024; addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0); off -= off2; } for (int i = 0; i < intr->num_components; i++) { struct ir3_instruction *load = ir3_LDG(b, addr, 0, create_immed(b, 1), 0); load->cat6.type = TYPE_U32; load->cat6.src_offset = off + i * 4; /* byte offset */ dst[i] = load; } } /* handles array reads: */ static void emit_intrinsic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { nir_deref_var *dvar = intr->variables[0]; nir_deref_array *darr = nir_deref_as_array(dvar->deref.child); struct ir3_array *arr = get_var(ctx, dvar->var); compile_assert(ctx, dvar->deref.child && (dvar->deref.child->deref_type == nir_deref_type_array)); switch (darr->deref_array_type) { case nir_deref_array_type_direct: /* direct access does not require anything special: */ for (int i = 0; i < intr->num_components; i++) { unsigned n = darr->base_offset * 4 + i; compile_assert(ctx, n < arr->length); dst[i] = create_var_load(ctx, arr, n, NULL); } break; case nir_deref_array_type_indirect: { /* for indirect, we need to collect all the array elements: */ struct ir3_instruction *addr = get_addr(ctx, get_src(ctx, &darr->indirect)[0]); for (int i = 0; i < intr->num_components; i++) { unsigned n = darr->base_offset * 4 + i; compile_assert(ctx, n < arr->length); dst[i] = create_var_load(ctx, arr, n, addr); } break; } default: compile_error(ctx, "Unhandled load deref type: %u\n", darr->deref_array_type); break; } } /* handles array writes: */ static void emit_intrinsic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr) { nir_deref_var *dvar = intr->variables[0]; nir_deref_array *darr = nir_deref_as_array(dvar->deref.child); struct ir3_array *arr = get_var(ctx, dvar->var); struct ir3_instruction *addr; struct ir3_instruction * const *src; unsigned wrmask = nir_intrinsic_write_mask(intr); compile_assert(ctx, dvar->deref.child && (dvar->deref.child->deref_type == nir_deref_type_array)); src = get_src(ctx, &intr->src[0]); switch (darr->deref_array_type) { case nir_deref_array_type_direct: addr = NULL; break; case nir_deref_array_type_indirect: addr = get_addr(ctx, get_src(ctx, &darr->indirect)[0]); break; default: compile_error(ctx, "Unhandled store deref type: %u\n", darr->deref_array_type); return; } for (int i = 0; i < intr->num_components; i++) { if (!(wrmask & (1 << i))) continue; unsigned n = darr->base_offset * 4 + i; compile_assert(ctx, n < arr->length); create_var_store(ctx, arr, n, src[i], addr); } } static void add_sysval_input(struct ir3_compile *ctx, gl_system_value slot, struct ir3_instruction *instr) { struct ir3_shader_variant *so = ctx->so; unsigned r = regid(so->inputs_count, 0); unsigned n = so->inputs_count++; so->inputs[n].sysval = true; so->inputs[n].slot = slot; so->inputs[n].compmask = 1; so->inputs[n].regid = r; so->inputs[n].interpolate = INTERP_MODE_FLAT; so->total_in++; ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1); ctx->ir->inputs[r] = instr; } static void emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; struct ir3_instruction **dst; struct ir3_instruction * const *src; struct ir3_block *b = ctx->block; nir_const_value *const_offset; int idx; if (info->has_dest) { dst = get_dst(ctx, &intr->dest, intr->num_components); } else { dst = NULL; } switch (intr->intrinsic) { case nir_intrinsic_load_uniform: idx = nir_intrinsic_base(intr); const_offset = nir_src_as_const_value(intr->src[0]); if (const_offset) { idx += const_offset->u32[0]; for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; dst[i] = create_uniform(ctx, n); } } else { src = get_src(ctx, &intr->src[0]); for (int i = 0; i < intr->num_components; i++) { int n = idx * 4 + i; dst[i] = create_uniform_indirect(ctx, n, get_addr(ctx, src[0])); } /* NOTE: if relative addressing is used, we set * constlen in the compiler (to worst-case value) * since we don't know in the assembler what the max * addr reg value can be: */ ctx->so->constlen = ctx->s->num_uniforms; } break; case nir_intrinsic_load_ubo: emit_intrinsic_load_ubo(ctx, intr, dst); break; case nir_intrinsic_load_input: idx = nir_intrinsic_base(intr); const_offset = nir_src_as_const_value(intr->src[0]); if (const_offset) { idx += const_offset->u32[0]; for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; dst[i] = ctx->ir->inputs[n]; } } else { src = get_src(ctx, &intr->src[0]); struct ir3_instruction *collect = create_collect(b, ctx->ir->inputs, ctx->ir->ninputs); struct ir3_instruction *addr = get_addr(ctx, src[0]); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; dst[i] = create_indirect_load(ctx, ctx->ir->ninputs, n, addr, collect); } } break; case nir_intrinsic_load_var: emit_intrinsic_load_var(ctx, intr, dst); break; case nir_intrinsic_store_var: emit_intrinsic_store_var(ctx, intr); break; case nir_intrinsic_store_output: idx = nir_intrinsic_base(intr); const_offset = nir_src_as_const_value(intr->src[1]); compile_assert(ctx, const_offset != NULL); idx += const_offset->u32[0]; src = get_src(ctx, &intr->src[0]); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; ctx->ir->outputs[n] = src[i]; } break; case nir_intrinsic_load_base_vertex: if (!ctx->basevertex) { ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE); add_sysval_input(ctx, SYSTEM_VALUE_BASE_VERTEX, ctx->basevertex); } dst[0] = ctx->basevertex; break; case nir_intrinsic_load_vertex_id_zero_base: if (!ctx->vertex_id) { ctx->vertex_id = create_input(b, 0); add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE, ctx->vertex_id); } dst[0] = ctx->vertex_id; break; case nir_intrinsic_load_instance_id: if (!ctx->instance_id) { ctx->instance_id = create_input(b, 0); add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, ctx->instance_id); } dst[0] = ctx->instance_id; break; case nir_intrinsic_load_user_clip_plane: idx = nir_intrinsic_ucp_id(intr); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n); } break; case nir_intrinsic_load_front_face: if (!ctx->frag_face) { ctx->so->frag_face = true; ctx->frag_face = create_input(b, 0); ctx->frag_face->regs[0]->flags |= IR3_REG_HALF; } /* for fragface, we always get -1 or 0, but that is inverse * of what nir expects (where ~0 is true). Unfortunately * trying to widen from half to full in add.s seems to do a * non-sign-extending widen (resulting in something that * gets interpreted as float Inf??) */ dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32); dst[0] = ir3_ADD_S(b, dst[0], 0, create_immed(b, 1), 0); break; case nir_intrinsic_discard_if: case nir_intrinsic_discard: { struct ir3_instruction *cond, *kill; if (intr->intrinsic == nir_intrinsic_discard_if) { /* conditional discard: */ src = get_src(ctx, &intr->src[0]); cond = ir3_b2n(b, src[0]); } else { /* unconditional discard: */ cond = create_immed(b, 1); } /* NOTE: only cmps.*.* can write p0.x: */ cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0); cond->cat2.condition = IR3_COND_NE; /* condition always goes in predicate register: */ cond->regs[0]->num = regid(REG_P0, 0); kill = ir3_KILL(b, cond, 0); array_insert(ctx->ir->predicates, kill); array_insert(ctx->ir->keeps, kill); ctx->so->has_kill = true; break; } default: compile_error(ctx, "Unhandled intrinsic type: %s\n", nir_intrinsic_infos[intr->intrinsic].name); break; } } static void emit_load_const(struct ir3_compile *ctx, nir_load_const_instr *instr) { struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def, instr->def.num_components); for (int i = 0; i < instr->def.num_components; i++) dst[i] = create_immed(ctx->block, instr->value.u32[i]); } static void emit_undef(struct ir3_compile *ctx, nir_ssa_undef_instr *undef) { struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def, undef->def.num_components); /* backend doesn't want undefined instructions, so just plug * in 0.0.. */ for (int i = 0; i < undef->def.num_components; i++) dst[i] = create_immed(ctx->block, fui(0.0)); } /* * texture fetch/sample instructions: */ static void tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp) { unsigned coords, flags = 0; /* note: would use tex->coord_components.. except txs.. also, * since array index goes after shadow ref, we don't want to * count it: */ switch (tex->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: coords = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: case GLSL_SAMPLER_DIM_MS: coords = 2; break; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: coords = 3; flags |= IR3_INSTR_3D; break; default: unreachable("bad sampler_dim"); } if (tex->is_shadow && tex->op != nir_texop_lod) flags |= IR3_INSTR_S; if (tex->is_array && tex->op != nir_texop_lod) flags |= IR3_INSTR_A; *flagsp = flags; *coordsp = coords; } static void emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam, *src0[12], *src1[4]; struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy; struct ir3_instruction *lod, *compare, *proj; bool has_bias = false, has_lod = false, has_proj = false, has_off = false; unsigned i, coords, flags; unsigned nsrc0 = 0, nsrc1 = 0; type_t type; opc_t opc = 0; coord = off = ddx = ddy = NULL; lod = proj = compare = NULL; /* TODO: might just be one component for gathers? */ dst = get_dst(ctx, &tex->dest, 4); for (unsigned i = 0; i < tex->num_srcs; i++) { switch (tex->src[i].src_type) { case nir_tex_src_coord: coord = get_src(ctx, &tex->src[i].src); break; case nir_tex_src_bias: lod = get_src(ctx, &tex->src[i].src)[0]; has_bias = true; break; case nir_tex_src_lod: lod = get_src(ctx, &tex->src[i].src)[0]; has_lod = true; break; case nir_tex_src_comparitor: /* shadow comparator */ compare = get_src(ctx, &tex->src[i].src)[0]; break; case nir_tex_src_projector: proj = get_src(ctx, &tex->src[i].src)[0]; has_proj = true; break; case nir_tex_src_offset: off = get_src(ctx, &tex->src[i].src); has_off = true; break; case nir_tex_src_ddx: ddx = get_src(ctx, &tex->src[i].src); break; case nir_tex_src_ddy: ddy = get_src(ctx, &tex->src[i].src); break; default: compile_error(ctx, "Unhandled NIR tex src type: %d\n", tex->src[i].src_type); return; } } switch (tex->op) { case nir_texop_tex: opc = OPC_SAM; break; case nir_texop_txb: opc = OPC_SAMB; break; case nir_texop_txl: opc = OPC_SAML; break; case nir_texop_txd: opc = OPC_SAMGQ; break; case nir_texop_txf: opc = OPC_ISAML; break; case nir_texop_lod: opc = OPC_GETLOD; break; case nir_texop_txf_ms: case nir_texop_txs: case nir_texop_tg4: case nir_texop_query_levels: case nir_texop_texture_samples: case nir_texop_samples_identical: case nir_texop_txf_ms_mcs: compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op); return; } tex_info(tex, &flags, &coords); /* * lay out the first argument in the proper order: * - actual coordinates first * - shadow reference * - array index * - projection w * - starting at offset 4, dpdx.xy, dpdy.xy * * bias/lod go into the second arg */ /* insert tex coords: */ for (i = 0; i < coords; i++) src0[i] = coord[i]; nsrc0 = i; /* scale up integer coords for TXF based on the LOD */ if (ctx->unminify_coords && (opc == OPC_ISAML)) { assert(has_lod); for (i = 0; i < coords; i++) src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0); } if (coords == 1) { /* hw doesn't do 1d, so we treat it as 2d with * height of 1, and patch up the y coord. * TODO: y coord should be (int)0 in some cases.. */ src0[nsrc0++] = create_immed(b, fui(0.5)); } if (tex->is_shadow && tex->op != nir_texop_lod) src0[nsrc0++] = compare; if (tex->is_array && tex->op != nir_texop_lod) { struct ir3_instruction *idx = coord[coords]; /* the array coord for cube arrays needs 0.5 added to it */ if (ctx->array_index_add_half && (opc != OPC_ISAML)) idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0); src0[nsrc0++] = idx; } if (has_proj) { src0[nsrc0++] = proj; flags |= IR3_INSTR_P; } /* pad to 4, then ddx/ddy: */ if (tex->op == nir_texop_txd) { while (nsrc0 < 4) src0[nsrc0++] = create_immed(b, fui(0.0)); for (i = 0; i < coords; i++) src0[nsrc0++] = ddx[i]; if (coords < 2) src0[nsrc0++] = create_immed(b, fui(0.0)); for (i = 0; i < coords; i++) src0[nsrc0++] = ddy[i]; if (coords < 2) src0[nsrc0++] = create_immed(b, fui(0.0)); } /* * second argument (if applicable): * - offsets * - lod * - bias */ if (has_off | has_lod | has_bias) { if (has_off) { for (i = 0; i < coords; i++) src1[nsrc1++] = off[i]; if (coords < 2) src1[nsrc1++] = create_immed(b, fui(0.0)); flags |= IR3_INSTR_O; } if (has_lod | has_bias) src1[nsrc1++] = lod; } switch (tex->dest_type) { case nir_type_invalid: case nir_type_float: type = TYPE_F32; break; case nir_type_int: type = TYPE_S32; break; case nir_type_uint: case nir_type_bool: type = TYPE_U32; break; default: unreachable("bad dest_type"); } if (opc == OPC_GETLOD) type = TYPE_U32; unsigned tex_idx = tex->texture_index; ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx); struct ir3_instruction *col0 = create_collect(b, src0, nsrc0); struct ir3_instruction *col1 = create_collect(b, src1, nsrc1); sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW, flags, tex_idx, tex_idx, col0, col1); if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) { /* only need first 3 components: */ sam->regs[0]->wrmask = 0x7; split_dest(b, dst, sam, 0, 3); /* we need to sample the alpha separately with a non-ASTC * texture state: */ sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_W, flags, tex_idx, tex_idx, col0, col1); array_insert(ctx->ir->astc_srgb, sam); /* fixup .w component: */ split_dest(b, &dst[3], sam, 3, 1); } else { /* normal (non-workaround) case: */ split_dest(b, dst, sam, 0, 4); } /* GETLOD returns results in 4.8 fixed point */ if (opc == OPC_GETLOD) { struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256)); compile_assert(ctx, tex->dest_type == nir_type_float); for (i = 0; i < 2; i++) { dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0, factor, 0); } } } static void emit_tex_query_levels(struct ir3_compile *ctx, nir_tex_instr *tex) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam; dst = get_dst(ctx, &tex->dest, 1); sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, TGSI_WRITEMASK_Z, 0, tex->texture_index, tex->texture_index, NULL, NULL); /* even though there is only one component, since it ends * up in .z rather than .x, we need a split_dest() */ split_dest(b, dst, sam, 0, 3); /* The # of levels comes from getinfo.z. We need to add 1 to it, since * the value in TEX_CONST_0 is zero-based. */ if (ctx->levels_add_one) dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0); } static void emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam; struct ir3_instruction *lod; unsigned flags, coords; tex_info(tex, &flags, &coords); /* Actually we want the number of dimensions, not coordinates. This * distinction only matters for cubes. */ if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) coords = 2; dst = get_dst(ctx, &tex->dest, 4); compile_assert(ctx, tex->num_srcs == 1); compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod); lod = get_src(ctx, &tex->src[0].src)[0]; sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags, tex->texture_index, tex->texture_index, lod, NULL); split_dest(b, dst, sam, 0, 4); /* Array size actually ends up in .w rather than .z. This doesn't * matter for miplevel 0, but for higher mips the value in z is * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is * returned, which means that we have to add 1 to it for arrays. */ if (tex->is_array) { if (ctx->levels_add_one) { dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0); } else { dst[coords] = ir3_MOV(b, dst[3], TYPE_U32); } } } static void emit_phi(struct ir3_compile *ctx, nir_phi_instr *nphi) { struct ir3_instruction *phi, **dst; /* NOTE: phi's should be lowered to scalar at this point */ compile_assert(ctx, nphi->dest.ssa.num_components == 1); dst = get_dst(ctx, &nphi->dest, 1); phi = ir3_instr_create2(ctx->block, OPC_META_PHI, 1 + exec_list_length(&nphi->srcs)); ir3_reg_create(phi, 0, 0); /* dst */ phi->phi.nphi = nphi; dst[0] = phi; } /* phi instructions are left partially constructed. We don't resolve * their srcs until the end of the block, since (eg. loops) one of * the phi's srcs might be defined after the phi due to back edges in * the CFG. */ static void resolve_phis(struct ir3_compile *ctx, struct ir3_block *block) { list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { nir_phi_instr *nphi; /* phi's only come at start of block: */ if (instr->opc != OPC_META_PHI) break; if (!instr->phi.nphi) break; nphi = instr->phi.nphi; instr->phi.nphi = NULL; foreach_list_typed(nir_phi_src, nsrc, node, &nphi->srcs) { struct ir3_instruction *src = get_src(ctx, &nsrc->src)[0]; /* NOTE: src might not be in the same block as it comes from * according to the phi.. but in the end the backend assumes * it will be able to assign the same register to each (which * only works if it is assigned in the src block), so insert * an extra mov to make sure the phi src is assigned in the * block it comes from: */ src = ir3_MOV(get_block(ctx, nsrc->pred), src, TYPE_U32); ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src; } } } static void emit_jump(struct ir3_compile *ctx, nir_jump_instr *jump) { switch (jump->type) { case nir_jump_break: case nir_jump_continue: /* I *think* we can simply just ignore this, and use the * successor block link to figure out where we need to * jump to for break/continue */ break; default: compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type); break; } } static void emit_instr(struct ir3_compile *ctx, nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: emit_alu(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_intrinsic: emit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_load_const: emit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_ssa_undef: emit_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_tex: { nir_tex_instr *tex = nir_instr_as_tex(instr); /* couple tex instructions get special-cased: */ switch (tex->op) { case nir_texop_txs: emit_tex_txs(ctx, tex); break; case nir_texop_query_levels: emit_tex_query_levels(ctx, tex); break; default: emit_tex(ctx, tex); break; } break; } case nir_instr_type_phi: emit_phi(ctx, nir_instr_as_phi(instr)); break; case nir_instr_type_jump: emit_jump(ctx, nir_instr_as_jump(instr)); break; case nir_instr_type_call: case nir_instr_type_parallel_copy: compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type); break; } } static struct ir3_block * get_block(struct ir3_compile *ctx, nir_block *nblock) { struct ir3_block *block; struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->block_ht, nblock); if (entry) return entry->data; block = ir3_block_create(ctx->ir); block->nblock = nblock; _mesa_hash_table_insert(ctx->block_ht, nblock, block); return block; } static void emit_block(struct ir3_compile *ctx, nir_block *nblock) { struct ir3_block *block = get_block(ctx, nblock); for (int i = 0; i < ARRAY_SIZE(block->successors); i++) { if (nblock->successors[i]) { block->successors[i] = get_block(ctx, nblock->successors[i]); } } ctx->block = block; list_addtail(&block->node, &ctx->ir->block_list); /* re-emit addr register in each block if needed: */ _mesa_hash_table_destroy(ctx->addr_ht, NULL); ctx->addr_ht = NULL; nir_foreach_instr(instr, nblock) { emit_instr(ctx, instr); if (ctx->error) return; } } static void emit_cf_list(struct ir3_compile *ctx, struct exec_list *list); static void emit_if(struct ir3_compile *ctx, nir_if *nif) { struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0]; ctx->block->condition = get_predicate(ctx, ir3_b2n(condition->block, condition)); emit_cf_list(ctx, &nif->then_list); emit_cf_list(ctx, &nif->else_list); } static void emit_loop(struct ir3_compile *ctx, nir_loop *nloop) { emit_cf_list(ctx, &nloop->body); } static void emit_cf_list(struct ir3_compile *ctx, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: emit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: emit_if(ctx, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: emit_loop(ctx, nir_cf_node_as_loop(node)); break; case nir_cf_node_function: compile_error(ctx, "TODO\n"); break; } } } /* emit stream-out code. At this point, the current block is the original * (nir) end block, and nir ensures that all flow control paths terminate * into the end block. We re-purpose the original end block to generate * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional * block holding stream-out write instructions, followed by the new end * block: * * blockOrigEnd { * p0.x = (vtxcnt < maxvtxcnt) * // succs: blockStreamOut, blockNewEnd * } * blockStreamOut { * ... stream-out instructions ... * // succs: blockNewEnd * } * blockNewEnd { * } */ static void emit_stream_out(struct ir3_compile *ctx) { struct ir3_shader_variant *v = ctx->so; struct ir3 *ir = ctx->ir; struct pipe_stream_output_info *strmout = &ctx->so->shader->stream_output; struct ir3_block *orig_end_block, *stream_out_block, *new_end_block; struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond; struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS]; /* create vtxcnt input in input block at top of shader, * so that it is seen as live over the entire duration * of the shader: */ vtxcnt = create_input(ctx->in_block, 0); add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt); maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX); /* at this point, we are at the original 'end' block, * re-purpose this block to stream-out condition, then * append stream-out block and new-end block */ orig_end_block = ctx->block; stream_out_block = ir3_block_create(ir); list_addtail(&stream_out_block->node, &ir->block_list); new_end_block = ir3_block_create(ir); list_addtail(&new_end_block->node, &ir->block_list); orig_end_block->successors[0] = stream_out_block; orig_end_block->successors[1] = new_end_block; stream_out_block->successors[0] = new_end_block; /* setup 'if (vtxcnt < maxvtxcnt)' condition: */ cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0); cond->regs[0]->num = regid(REG_P0, 0); cond->cat2.condition = IR3_COND_LT; /* condition goes on previous block to the conditional, * since it is used to pick which of the two successor * paths to take: */ orig_end_block->condition = cond; /* switch to stream_out_block to generate the stream-out * instructions: */ ctx->block = stream_out_block; /* Calculate base addresses based on vtxcnt. Instructions * generated for bases not used in following loop will be * stripped out in the backend. */ for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) { unsigned stride = strmout->stride[i]; struct ir3_instruction *base, *off; base = create_uniform(ctx, regid(v->first_driver_param + IR3_TFBOS_OFF, i)); /* 24-bit should be enough: */ off = ir3_MUL_U(ctx->block, vtxcnt, 0, create_immed(ctx->block, stride * 4), 0); bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0); } /* Generate the per-output store instructions: */ for (unsigned i = 0; i < strmout->num_outputs; i++) { for (unsigned j = 0; j < strmout->output[i].num_components; j++) { unsigned c = j + strmout->output[i].start_component; struct ir3_instruction *base, *out, *stg; base = bases[strmout->output[i].output_buffer]; out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)]; stg = ir3_STG(ctx->block, base, 0, out, 0, create_immed(ctx->block, 1), 0); stg->cat6.type = TYPE_U32; stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4; array_insert(ctx->ir->keeps, stg); } } /* and finally switch to the new_end_block: */ ctx->block = new_end_block; } static void emit_function(struct ir3_compile *ctx, nir_function_impl *impl) { nir_metadata_require(impl, nir_metadata_block_index); emit_cf_list(ctx, &impl->body); emit_block(ctx, impl->end_block); /* at this point, we should have a single empty block, * into which we emit the 'end' instruction. */ compile_assert(ctx, list_empty(&ctx->block->instr_list)); /* If stream-out (aka transform-feedback) enabled, emit the * stream-out instructions, followed by a new empty block (into * which the 'end' instruction lands). * * NOTE: it is done in this order, rather than inserting before * we emit end_block, because NIR guarantees that all blocks * flow into end_block, and that end_block has no successors. * So by re-purposing end_block as the first block of stream- * out, we guarantee that all exit paths flow into the stream- * out instructions. */ if ((ctx->so->shader->stream_output.num_outputs > 0) && !ctx->so->key.binning_pass) { debug_assert(ctx->so->type == SHADER_VERTEX); emit_stream_out(ctx); } ir3_END(ctx->block); } static void setup_input(struct ir3_compile *ctx, nir_variable *in) { struct ir3_shader_variant *so = ctx->so; unsigned array_len = MAX2(glsl_get_length(in->type), 1); unsigned ncomp = glsl_get_components(in->type); unsigned n = in->data.driver_location; unsigned slot = in->data.location; DBG("; in: slot=%u, len=%ux%u, drvloc=%u", slot, array_len, ncomp, n); /* let's pretend things other than vec4 don't exist: */ ncomp = MAX2(ncomp, 4); compile_assert(ctx, ncomp == 4); so->inputs[n].slot = slot; so->inputs[n].compmask = (1 << ncomp) - 1; so->inputs_count = MAX2(so->inputs_count, n + 1); so->inputs[n].interpolate = in->data.interpolation; if (ctx->so->type == SHADER_FRAGMENT) { for (int i = 0; i < ncomp; i++) { struct ir3_instruction *instr = NULL; unsigned idx = (n * 4) + i; if (slot == VARYING_SLOT_POS) { so->inputs[n].bary = false; so->frag_coord = true; instr = create_frag_coord(ctx, i); } else if (slot == VARYING_SLOT_PNTC) { /* see for example st_get_generic_varying_index().. this is * maybe a bit mesa/st specific. But we need things to line * up for this in fdN_program: * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0); * if (emit->sprite_coord_enable & texmask) { * ... * } */ so->inputs[n].slot = VARYING_SLOT_VAR8; so->inputs[n].bary = true; instr = create_frag_input(ctx, false); } else { bool use_ldlv = false; /* detect the special case for front/back colors where * we need to do flat vs smooth shading depending on * rast state: */ if (in->data.interpolation == INTERP_MODE_NONE) { switch (slot) { case VARYING_SLOT_COL0: case VARYING_SLOT_COL1: case VARYING_SLOT_BFC0: case VARYING_SLOT_BFC1: so->inputs[n].rasterflat = true; break; default: break; } } if (ctx->flat_bypass) { if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) || (so->inputs[n].rasterflat && ctx->so->key.rasterflat)) use_ldlv = true; } so->inputs[n].bary = true; instr = create_frag_input(ctx, use_ldlv); } compile_assert(ctx, idx < ctx->ir->ninputs); ctx->ir->inputs[idx] = instr; } } else if (ctx->so->type == SHADER_VERTEX) { for (int i = 0; i < ncomp; i++) { unsigned idx = (n * 4) + i; compile_assert(ctx, idx < ctx->ir->ninputs); ctx->ir->inputs[idx] = create_input(ctx->block, idx); } } else { compile_error(ctx, "unknown shader type: %d\n", ctx->so->type); } if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) { so->total_in += ncomp; } } static void setup_output(struct ir3_compile *ctx, nir_variable *out) { struct ir3_shader_variant *so = ctx->so; unsigned array_len = MAX2(glsl_get_length(out->type), 1); unsigned ncomp = glsl_get_components(out->type); unsigned n = out->data.driver_location; unsigned slot = out->data.location; unsigned comp = 0; DBG("; out: slot=%u, len=%ux%u, drvloc=%u", slot, array_len, ncomp, n); /* let's pretend things other than vec4 don't exist: */ ncomp = MAX2(ncomp, 4); compile_assert(ctx, ncomp == 4); if (ctx->so->type == SHADER_FRAGMENT) { switch (slot) { case FRAG_RESULT_DEPTH: comp = 2; /* tgsi will write to .z component */ so->writes_pos = true; break; case FRAG_RESULT_COLOR: so->color0_mrt = 1; break; default: if (slot >= FRAG_RESULT_DATA0) break; compile_error(ctx, "unknown FS output name: %s\n", gl_frag_result_name(slot)); } } else if (ctx->so->type == SHADER_VERTEX) { switch (slot) { case VARYING_SLOT_POS: so->writes_pos = true; break; case VARYING_SLOT_PSIZ: so->writes_psize = true; break; case VARYING_SLOT_COL0: case VARYING_SLOT_COL1: case VARYING_SLOT_BFC0: case VARYING_SLOT_BFC1: case VARYING_SLOT_FOGC: case VARYING_SLOT_CLIP_DIST0: case VARYING_SLOT_CLIP_DIST1: break; case VARYING_SLOT_CLIP_VERTEX: /* handled entirely in nir_lower_clip: */ return; default: if (slot >= VARYING_SLOT_VAR0) break; if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7)) break; compile_error(ctx, "unknown VS output name: %s\n", gl_varying_slot_name(slot)); } } else { compile_error(ctx, "unknown shader type: %d\n", ctx->so->type); } compile_assert(ctx, n < ARRAY_SIZE(so->outputs)); so->outputs[n].slot = slot; so->outputs[n].regid = regid(n, comp); so->outputs_count = MAX2(so->outputs_count, n + 1); for (int i = 0; i < ncomp; i++) { unsigned idx = (n * 4) + i; compile_assert(ctx, idx < ctx->ir->noutputs); ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0)); } } static int max_drvloc(struct exec_list *vars) { int drvloc = -1; nir_foreach_variable(var, vars) { drvloc = MAX2(drvloc, (int)var->data.driver_location); } return drvloc; } static void emit_instructions(struct ir3_compile *ctx) { unsigned ninputs, noutputs; nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s); ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4; noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4; /* or vtx shaders, we need to leave room for sysvals: */ if (ctx->so->type == SHADER_VERTEX) { ninputs += 16; } ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs); /* Create inputs in first block: */ ctx->block = get_block(ctx, nir_start_block(fxn)); ctx->in_block = ctx->block; list_addtail(&ctx->block->node, &ctx->ir->block_list); if (ctx->so->type == SHADER_VERTEX) { ctx->ir->ninputs -= 16; } /* for fragment shader, we have a single input register (usually * r0.xy) which is used as the base for bary.f varying fetch instrs: */ if (ctx->so->type == SHADER_FRAGMENT) { // TODO maybe a helper for fi since we need it a few places.. struct ir3_instruction *instr; instr = ir3_instr_create(ctx->block, OPC_META_FI); ir3_reg_create(instr, 0, 0); ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */ ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */ ctx->frag_pos = instr; } /* Setup inputs: */ nir_foreach_variable(var, &ctx->s->inputs) { setup_input(ctx, var); } /* Setup outputs: */ nir_foreach_variable(var, &ctx->s->outputs) { setup_output(ctx, var); } /* Setup global variables (which should only be arrays): */ nir_foreach_variable(var, &ctx->s->globals) { declare_var(ctx, var); } /* Setup local variables (which should only be arrays): */ /* NOTE: need to do something more clever when we support >1 fxn */ nir_foreach_variable(var, &fxn->locals) { declare_var(ctx, var); } /* And emit the body: */ ctx->impl = fxn; emit_function(ctx, fxn); list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) { resolve_phis(ctx, block); } } /* from NIR perspective, we actually have inputs. But most of the "inputs" * for a fragment shader are just bary.f instructions. The *actual* inputs * from the hw perspective are the frag_pos and optionally frag_coord and * frag_face. */ static void fixup_frag_inputs(struct ir3_compile *ctx) { struct ir3_shader_variant *so = ctx->so; struct ir3 *ir = ctx->ir; struct ir3_instruction **inputs; struct ir3_instruction *instr; int n, regid = 0; ir->ninputs = 0; n = 4; /* always have frag_pos */ n += COND(so->frag_face, 4); n += COND(so->frag_coord, 4); inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *))); if (so->frag_face) { /* this ultimately gets assigned to hr0.x so doesn't conflict * with frag_coord/frag_pos.. */ inputs[ir->ninputs++] = ctx->frag_face; ctx->frag_face->regs[0]->num = 0; /* remaining channels not used, but let's avoid confusing * other parts that expect inputs to come in groups of vec4 */ inputs[ir->ninputs++] = NULL; inputs[ir->ninputs++] = NULL; inputs[ir->ninputs++] = NULL; } /* since we don't know where to set the regid for frag_coord, * we have to use r0.x for it. But we don't want to *always* * use r1.x for frag_pos as that could increase the register * footprint on simple shaders: */ if (so->frag_coord) { ctx->frag_coord[0]->regs[0]->num = regid++; ctx->frag_coord[1]->regs[0]->num = regid++; ctx->frag_coord[2]->regs[0]->num = regid++; ctx->frag_coord[3]->regs[0]->num = regid++; inputs[ir->ninputs++] = ctx->frag_coord[0]; inputs[ir->ninputs++] = ctx->frag_coord[1]; inputs[ir->ninputs++] = ctx->frag_coord[2]; inputs[ir->ninputs++] = ctx->frag_coord[3]; } /* we always have frag_pos: */ so->pos_regid = regid; /* r0.x */ instr = create_input(ctx->in_block, ir->ninputs); instr->regs[0]->num = regid++; inputs[ir->ninputs++] = instr; ctx->frag_pos->regs[1]->instr = instr; /* r0.y */ instr = create_input(ctx->in_block, ir->ninputs); instr->regs[0]->num = regid++; inputs[ir->ninputs++] = instr; ctx->frag_pos->regs[2]->instr = instr; ir->inputs = inputs; } /* Fixup tex sampler state for astc/srgb workaround instructions. We * need to assign the tex state indexes for these after we know the * max tex index. */ static void fixup_astc_srgb(struct ir3_compile *ctx) { struct ir3_shader_variant *so = ctx->so; /* indexed by original tex idx, value is newly assigned alpha sampler * state tex idx. Zero is invalid since there is at least one sampler * if we get here. */ unsigned alt_tex_state[16] = {0}; unsigned tex_idx = ctx->max_texture_index + 1; unsigned idx = 0; so->astc_srgb.base = tex_idx; for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) { struct ir3_instruction *sam = ctx->ir->astc_srgb[i]; compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state)); if (alt_tex_state[sam->cat5.tex] == 0) { /* assign new alternate/alpha tex state slot: */ alt_tex_state[sam->cat5.tex] = tex_idx++; so->astc_srgb.orig_idx[idx++] = sam->cat5.tex; so->astc_srgb.count++; } sam->cat5.tex = alt_tex_state[sam->cat5.tex]; } } int ir3_compile_shader_nir(struct ir3_compiler *compiler, struct ir3_shader_variant *so) { struct ir3_compile *ctx; struct ir3 *ir; struct ir3_instruction **inputs; unsigned i, j, actual_in, inloc; int ret = 0, max_bary; assert(!so->ir); ctx = compile_init(compiler, so); if (!ctx) { DBG("INIT failed!"); ret = -1; goto out; } emit_instructions(ctx); if (ctx->error) { DBG("EMIT failed!"); ret = -1; goto out; } ir = so->ir = ctx->ir; /* keep track of the inputs from TGSI perspective.. */ inputs = ir->inputs; /* but fixup actual inputs for frag shader: */ if (so->type == SHADER_FRAGMENT) fixup_frag_inputs(ctx); /* at this point, for binning pass, throw away unneeded outputs: */ if (so->key.binning_pass) { for (i = 0, j = 0; i < so->outputs_count; i++) { unsigned slot = so->outputs[i].slot; /* throw away everything but first position/psize */ if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) { if (i != j) { so->outputs[j] = so->outputs[i]; ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0]; ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1]; ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2]; ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3]; } j++; } } so->outputs_count = j; ir->noutputs = j * 4; } /* if we want half-precision outputs, mark the output registers * as half: */ if (so->key.half_precision) { for (i = 0; i < ir->noutputs; i++) { struct ir3_instruction *out = ir->outputs[i]; if (!out) continue; out->regs[0]->flags |= IR3_REG_HALF; /* output could be a fanout (ie. texture fetch output) * in which case we need to propagate the half-reg flag * up to the definer so that RA sees it: */ if (out->opc == OPC_META_FO) { out = out->regs[1]->instr; out->regs[0]->flags |= IR3_REG_HALF; } if (out->opc == OPC_MOV) { out->cat1.dst_type = half_type(out->cat1.dst_type); } } } if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("BEFORE CP:\n"); ir3_print(ir); } ir3_cp(ir, so); if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("BEFORE GROUPING:\n"); ir3_print(ir); } /* Group left/right neighbors, inserting mov's where needed to * solve conflicts: */ ir3_group(ir); ir3_depth(ir); if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("AFTER DEPTH:\n"); ir3_print(ir); } ret = ir3_sched(ir); if (ret) { DBG("SCHED failed!"); goto out; } if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("AFTER SCHED:\n"); ir3_print(ir); } ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face); if (ret) { DBG("RA failed!"); goto out; } if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("AFTER RA:\n"); ir3_print(ir); } /* fixup input/outputs: */ for (i = 0; i < so->outputs_count; i++) { so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num; } /* Note that some or all channels of an input may be unused: */ actual_in = 0; inloc = 0; for (i = 0; i < so->inputs_count; i++) { unsigned j, regid = ~0, compmask = 0; so->inputs[i].ncomp = 0; so->inputs[i].inloc = inloc + 8; for (j = 0; j < 4; j++) { struct ir3_instruction *in = inputs[(i*4) + j]; if (in && !(in->flags & IR3_INSTR_UNUSED)) { compmask |= (1 << j); regid = in->regs[0]->num - j; actual_in++; so->inputs[i].ncomp++; if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) { /* assign inloc: */ assert(in->regs[1]->flags & IR3_REG_IMMED); in->regs[1]->iim_val = inloc++; } } } if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary) so->varying_in++; so->inputs[i].regid = regid; so->inputs[i].compmask = compmask; } if (ctx->astc_srgb) fixup_astc_srgb(ctx); /* We need to do legalize after (for frag shader's) the "bary.f" * offsets (inloc) have been assigned. */ ir3_legalize(ir, &so->has_samp, &max_bary); if (fd_mesa_debug & FD_DBG_OPTMSGS) { printf("AFTER LEGALIZE:\n"); ir3_print(ir); } /* Note that actual_in counts inputs that are not bary.f'd for FS: */ if (so->type == SHADER_VERTEX) so->total_in = actual_in; else so->total_in = max_bary + 1; out: if (ret) { if (so->ir) ir3_destroy(so->ir); so->ir = NULL; } compile_free(ctx); return ret; }