/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ /* * Copyright (C) 2012 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "freedreno_gmem.h" #include "freedreno_context.h" #include "freedreno_resource.h" #include "freedreno_query_hw.h" #include "freedreno_util.h" /* * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer * inside the GPU. All rendering happens to GMEM. Larger render targets * are split into tiles that are small enough for the color (and depth and/or * stencil, if enabled) buffers to fit within GMEM. Before rendering a tile, * if there was not a clear invalidating the previous tile contents, we need * to restore the previous tiles contents (system mem -> GMEM), and after all * the draw calls, before moving to the next tile, we need to save the tile * contents (GMEM -> system mem). * * The code in this file handles dealing with GMEM and tiling. * * The structure of the ringbuffer ends up being: * * +--<---<-- IB ---<---+---<---+---<---<---<--+ * | | | | * v ^ ^ ^ * ------------------------------------------------------ * | clear/draw cmds | Tile0 | Tile1 | .... | TileN | * ------------------------------------------------------ * ^ * | * address submitted in issueibcmds * * Where the per-tile section handles scissor setup, mem2gmem restore (if * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem * resolve. */ static uint32_t bin_width(struct fd_context *ctx) { if (ctx->screen->gpu_id >= 300) return 992; return 512; } static void calculate_tiles(struct fd_context *ctx) { struct fd_gmem_stateobj *gmem = &ctx->gmem; struct pipe_scissor_state *scissor = &ctx->max_scissor; struct pipe_framebuffer_state *pfb = &ctx->framebuffer; uint32_t gmem_size = ctx->screen->gmemsize_bytes; uint32_t minx, miny, width, height; uint32_t nbins_x = 1, nbins_y = 1; uint32_t bin_w, bin_h; uint32_t max_width = bin_width(ctx); uint32_t cpp = 4; uint32_t i, j, t, xoff, yoff; uint32_t tpp_x, tpp_y; bool has_zs = !!(ctx->resolve & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL)); if (pfb->cbufs[0]) cpp = util_format_get_blocksize(pfb->cbufs[0]->format); if ((gmem->cpp == cpp) && (gmem->has_zs == has_zs) && !memcmp(&gmem->scissor, scissor, sizeof(gmem->scissor))) { /* everything is up-to-date */ return; } /* if have depth/stencil, we need to leave room: */ if (has_zs) { gmem_size /= 2; max_width /= 2; } if (fd_mesa_debug & FD_DBG_DSCIS) { minx = 0; miny = 0; width = pfb->width; height = pfb->height; } else { minx = scissor->minx & ~31; /* round down to multiple of 32 */ miny = scissor->miny & ~31; width = scissor->maxx - minx; height = scissor->maxy - miny; } bin_w = align(width, 32); bin_h = align(height, 32); /* first, find a bin width that satisfies the maximum width * restrictions: */ while (bin_w > max_width) { nbins_x++; bin_w = align(width / nbins_x, 32); } /* then find a bin width/height that satisfies the memory * constraints: */ while ((bin_w * bin_h * cpp) > gmem_size) { if (bin_w > bin_h) { nbins_x++; bin_w = align(width / nbins_x, 32); } else { nbins_y++; bin_h = align(height / nbins_y, 32); } } DBG("using %d bins of size %dx%d", nbins_x*nbins_y, bin_w, bin_h); gmem->scissor = *scissor; gmem->cpp = cpp; gmem->has_zs = has_zs; gmem->bin_h = bin_h; gmem->bin_w = bin_w; gmem->nbins_x = nbins_x; gmem->nbins_y = nbins_y; gmem->minx = minx; gmem->miny = miny; gmem->width = width; gmem->height = height; /* * Assign tiles and pipes: * * At some point it might be worth playing with different * strategies and seeing if that makes much impact on * performance. */ #define div_round_up(v, a) (((v) + (a) - 1) / (a)) /* figure out number of tiles per pipe: */ tpp_x = tpp_y = 1; while (div_round_up(nbins_y, tpp_y) > 8) tpp_y += 2; while ((div_round_up(nbins_y, tpp_y) * div_round_up(nbins_x, tpp_x)) > 8) tpp_x += 1; /* configure pipes: */ xoff = yoff = 0; for (i = 0; i < ARRAY_SIZE(ctx->pipe); i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; if (xoff >= nbins_x) { xoff = 0; yoff += tpp_y; } if (yoff >= nbins_y) { break; } pipe->x = xoff; pipe->y = yoff; pipe->w = MIN2(tpp_x, nbins_x - xoff); pipe->h = MIN2(tpp_y, nbins_y - yoff); xoff += tpp_x; } for (; i < ARRAY_SIZE(ctx->pipe); i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; pipe->x = pipe->y = pipe->w = pipe->h = 0; } #if 0 /* debug */ printf("%dx%d ... tpp=%dx%d\n", nbins_x, nbins_y, tpp_x, tpp_y); for (i = 0; i < 8; i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x, pipe->y); } #endif /* configure tiles: */ t = 0; yoff = miny; for (i = 0; i < nbins_y; i++) { uint32_t bw, bh; xoff = minx; /* clip bin height: */ bh = MIN2(bin_h, miny + height - yoff); for (j = 0; j < nbins_x; j++) { struct fd_tile *tile = &ctx->tile[t]; uint32_t n, p; assert(t < ARRAY_SIZE(ctx->tile)); /* pipe number: */ p = ((i / tpp_y) * div_round_up(nbins_x, tpp_x)) + (j / tpp_x); /* slot number: */ n = ((i % tpp_y) * tpp_x) + (j % tpp_x); /* clip bin width: */ bw = MIN2(bin_w, minx + width - xoff); tile->n = n; tile->p = p; tile->bin_w = bw; tile->bin_h = bh; tile->xoff = xoff; tile->yoff = yoff; t++; xoff += bw; } yoff += bh; } #if 0 /* debug */ t = 0; for (i = 0; i < nbins_y; i++) { for (j = 0; j < nbins_x; j++) { struct fd_tile *tile = &ctx->tile[t++]; printf("|p:%u n:%u|", tile->p, tile->n); } printf("\n"); } #endif } static void render_tiles(struct fd_context *ctx) { struct fd_gmem_stateobj *gmem = &ctx->gmem; int i; ctx->emit_tile_init(ctx); if (ctx->restore) ctx->stats.batch_restore++; for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) { struct fd_tile *tile = &ctx->tile[i]; DBG("bin_h=%d, yoff=%d, bin_w=%d, xoff=%d", tile->bin_h, tile->yoff, tile->bin_w, tile->xoff); ctx->emit_tile_prep(ctx, tile); if (ctx->restore) { fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_MEM2GMEM); ctx->emit_tile_mem2gmem(ctx, tile); fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_NULL); } ctx->emit_tile_renderprep(ctx, tile); fd_hw_query_prepare_tile(ctx, i, ctx->ring); /* emit IB to drawcmds: */ OUT_IB(ctx->ring, ctx->draw_start, ctx->draw_end); fd_reset_wfi(ctx); /* emit gmem2mem to transfer tile back to system memory: */ fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_GMEM2MEM); ctx->emit_tile_gmem2mem(ctx, tile); fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_NULL); } } static void render_sysmem(struct fd_context *ctx) { ctx->emit_sysmem_prep(ctx); fd_hw_query_prepare_tile(ctx, 0, ctx->ring); /* emit IB to drawcmds: */ OUT_IB(ctx->ring, ctx->draw_start, ctx->draw_end); fd_reset_wfi(ctx); } void fd_gmem_render_tiles(struct pipe_context *pctx) { struct fd_context *ctx = fd_context(pctx); struct pipe_framebuffer_state *pfb = &ctx->framebuffer; uint32_t timestamp = 0; bool sysmem = false; if (ctx->emit_sysmem_prep) { if (ctx->cleared || ctx->gmem_reason || (ctx->num_draws > 5)) { DBG("GMEM: cleared=%x, gmem_reason=%x, num_draws=%u", ctx->cleared, ctx->gmem_reason, ctx->num_draws); } else if (!(fd_mesa_debug & FD_DBG_DBYPASS)) { sysmem = true; } } /* close out the draw cmds by making sure any active queries are * paused: */ fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_NULL); /* mark the end of the clear/draw cmds before emitting per-tile cmds: */ fd_ringmarker_mark(ctx->draw_end); fd_ringmarker_mark(ctx->binning_end); fd_reset_wfi(ctx); ctx->stats.batch_total++; if (sysmem) { DBG("rendering sysmem (%s/%s)", util_format_short_name(pipe_surface_format(pfb->cbufs[0])), util_format_short_name(pipe_surface_format(pfb->zsbuf))); fd_hw_query_prepare(ctx, 1); render_sysmem(ctx); ctx->stats.batch_sysmem++; } else { struct fd_gmem_stateobj *gmem = &ctx->gmem; calculate_tiles(ctx); DBG("rendering %dx%d tiles (%s/%s)", gmem->nbins_x, gmem->nbins_y, util_format_short_name(pipe_surface_format(pfb->cbufs[0])), util_format_short_name(pipe_surface_format(pfb->zsbuf))); fd_hw_query_prepare(ctx, gmem->nbins_x * gmem->nbins_y); render_tiles(ctx); ctx->stats.batch_gmem++; } /* GPU executes starting from tile cmds, which IB back to draw cmds: */ fd_ringmarker_flush(ctx->draw_end); /* mark start for next draw/binning cmds: */ fd_ringmarker_mark(ctx->draw_start); fd_ringmarker_mark(ctx->binning_start); fd_reset_wfi(ctx); /* update timestamps on render targets: */ timestamp = fd_ringbuffer_timestamp(ctx->ring); if (pfb->cbufs[0]) fd_resource(pfb->cbufs[0]->texture)->timestamp = timestamp; if (pfb->zsbuf) fd_resource(pfb->zsbuf->texture)->timestamp = timestamp; /* reset maximal bounds: */ ctx->max_scissor.minx = ctx->max_scissor.miny = ~0; ctx->max_scissor.maxx = ctx->max_scissor.maxy = 0; ctx->dirty = ~0; }