/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ /* * Copyright (C) 2012 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "freedreno_gmem.h" #include "freedreno_context.h" #include "freedreno_resource.h" #include "freedreno_query_hw.h" #include "freedreno_util.h" /* * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer * inside the GPU. All rendering happens to GMEM. Larger render targets * are split into tiles that are small enough for the color (and depth and/or * stencil, if enabled) buffers to fit within GMEM. Before rendering a tile, * if there was not a clear invalidating the previous tile contents, we need * to restore the previous tiles contents (system mem -> GMEM), and after all * the draw calls, before moving to the next tile, we need to save the tile * contents (GMEM -> system mem). * * The code in this file handles dealing with GMEM and tiling. * * The structure of the ringbuffer ends up being: * * +--<---<-- IB ---<---+---<---+---<---<---<--+ * | | | | * v ^ ^ ^ * ------------------------------------------------------ * | clear/draw cmds | Tile0 | Tile1 | .... | TileN | * ------------------------------------------------------ * ^ * | * address submitted in issueibcmds * * Where the per-tile section handles scissor setup, mem2gmem restore (if * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem * resolve. */ static uint32_t bin_width(struct fd_context *ctx) { if (is_a4xx(ctx->screen)) return 1024; if (is_a3xx(ctx->screen)) return 992; return 512; } static uint32_t total_size(uint8_t cbuf_cpp[], uint8_t zsbuf_cpp[2], uint32_t bin_w, uint32_t bin_h, struct fd_gmem_stateobj *gmem) { uint32_t total = 0, i; for (i = 0; i < MAX_RENDER_TARGETS; i++) { if (cbuf_cpp[i]) { gmem->cbuf_base[i] = align(total, 0x4000); total = gmem->cbuf_base[i] + cbuf_cpp[i] * bin_w * bin_h; } } if (zsbuf_cpp[0]) { gmem->zsbuf_base[0] = align(total, 0x4000); total = gmem->zsbuf_base[0] + zsbuf_cpp[0] * bin_w * bin_h; } if (zsbuf_cpp[1]) { gmem->zsbuf_base[1] = align(total, 0x4000); total = gmem->zsbuf_base[1] + zsbuf_cpp[1] * bin_w * bin_h; } return total; } static void calculate_tiles(struct fd_context *ctx) { struct fd_gmem_stateobj *gmem = &ctx->gmem; struct pipe_scissor_state *scissor = &ctx->max_scissor; struct pipe_framebuffer_state *pfb = &ctx->framebuffer; uint32_t gmem_size = ctx->screen->gmemsize_bytes; uint32_t minx, miny, width, height; uint32_t nbins_x = 1, nbins_y = 1; uint32_t bin_w, bin_h; uint32_t max_width = bin_width(ctx); uint8_t cbuf_cpp[MAX_RENDER_TARGETS] = {0}, zsbuf_cpp[2] = {0}; uint32_t i, j, t, xoff, yoff; uint32_t tpp_x, tpp_y; bool has_zs = !!(ctx->resolve & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL)); int tile_n[ARRAY_SIZE(ctx->pipe)]; if (has_zs) { struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture); zsbuf_cpp[0] = rsc->cpp; if (rsc->stencil) zsbuf_cpp[1] = rsc->stencil->cpp; } for (i = 0; i < pfb->nr_cbufs; i++) { if (pfb->cbufs[i]) cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format); else cbuf_cpp[i] = 4; } if (!memcmp(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp)) && !memcmp(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp)) && !memcmp(&gmem->scissor, scissor, sizeof(gmem->scissor))) { /* everything is up-to-date */ return; } if (fd_mesa_debug & FD_DBG_NOSCIS) { minx = 0; miny = 0; width = pfb->width; height = pfb->height; } else { minx = scissor->minx & ~31; /* round down to multiple of 32 */ miny = scissor->miny & ~31; width = scissor->maxx - minx; height = scissor->maxy - miny; } bin_w = align(width, 32); bin_h = align(height, 32); /* first, find a bin width that satisfies the maximum width * restrictions: */ while (bin_w > max_width) { nbins_x++; bin_w = align(width / nbins_x, 32); } if (fd_mesa_debug & FD_DBG_MSGS) { debug_printf("binning input: cbuf cpp:"); for (i = 0; i < pfb->nr_cbufs; i++) debug_printf(" %d", cbuf_cpp[i]); debug_printf(", zsbuf cpp: %d; %dx%d\n", zsbuf_cpp[0], width, height); } /* then find a bin width/height that satisfies the memory * constraints: */ while (total_size(cbuf_cpp, zsbuf_cpp, bin_w, bin_h, gmem) > gmem_size) { if (bin_w > bin_h) { nbins_x++; bin_w = align(width / nbins_x, 32); } else { nbins_y++; bin_h = align(height / nbins_y, 32); } } DBG("using %d bins of size %dx%d", nbins_x*nbins_y, bin_w, bin_h); gmem->scissor = *scissor; memcpy(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp)); memcpy(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp)); gmem->bin_h = bin_h; gmem->bin_w = bin_w; gmem->nbins_x = nbins_x; gmem->nbins_y = nbins_y; gmem->minx = minx; gmem->miny = miny; gmem->width = width; gmem->height = height; /* * Assign tiles and pipes: * * At some point it might be worth playing with different * strategies and seeing if that makes much impact on * performance. */ #define div_round_up(v, a) (((v) + (a) - 1) / (a)) /* figure out number of tiles per pipe: */ tpp_x = tpp_y = 1; while (div_round_up(nbins_y, tpp_y) > 8) tpp_y += 2; while ((div_round_up(nbins_y, tpp_y) * div_round_up(nbins_x, tpp_x)) > 8) tpp_x += 1; /* configure pipes: */ xoff = yoff = 0; for (i = 0; i < ARRAY_SIZE(ctx->pipe); i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; if (xoff >= nbins_x) { xoff = 0; yoff += tpp_y; } if (yoff >= nbins_y) { break; } pipe->x = xoff; pipe->y = yoff; pipe->w = MIN2(tpp_x, nbins_x - xoff); pipe->h = MIN2(tpp_y, nbins_y - yoff); xoff += tpp_x; } for (; i < ARRAY_SIZE(ctx->pipe); i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; pipe->x = pipe->y = pipe->w = pipe->h = 0; } #if 0 /* debug */ printf("%dx%d ... tpp=%dx%d\n", nbins_x, nbins_y, tpp_x, tpp_y); for (i = 0; i < 8; i++) { struct fd_vsc_pipe *pipe = &ctx->pipe[i]; printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x, pipe->y); } #endif /* configure tiles: */ t = 0; yoff = miny; memset(tile_n, 0, sizeof(tile_n)); for (i = 0; i < nbins_y; i++) { uint32_t bw, bh; xoff = minx; /* clip bin height: */ bh = MIN2(bin_h, miny + height - yoff); for (j = 0; j < nbins_x; j++) { struct fd_tile *tile = &ctx->tile[t]; uint32_t p; assert(t < ARRAY_SIZE(ctx->tile)); /* pipe number: */ p = ((i / tpp_y) * div_round_up(nbins_x, tpp_x)) + (j / tpp_x); /* clip bin width: */ bw = MIN2(bin_w, minx + width - xoff); tile->n = tile_n[p]++; tile->p = p; tile->bin_w = bw; tile->bin_h = bh; tile->xoff = xoff; tile->yoff = yoff; t++; xoff += bw; } yoff += bh; } #if 0 /* debug */ t = 0; for (i = 0; i < nbins_y; i++) { for (j = 0; j < nbins_x; j++) { struct fd_tile *tile = &ctx->tile[t++]; printf("|p:%u n:%u|", tile->p, tile->n); } printf("\n"); } #endif } static void render_tiles(struct fd_context *ctx) { struct fd_gmem_stateobj *gmem = &ctx->gmem; int i; ctx->emit_tile_init(ctx); if (ctx->restore) ctx->stats.batch_restore++; for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) { struct fd_tile *tile = &ctx->tile[i]; DBG("bin_h=%d, yoff=%d, bin_w=%d, xoff=%d", tile->bin_h, tile->yoff, tile->bin_w, tile->xoff); ctx->emit_tile_prep(ctx, tile); if (ctx->restore) { fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_MEM2GMEM); ctx->emit_tile_mem2gmem(ctx, tile); fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_NULL); } ctx->emit_tile_renderprep(ctx, tile); fd_hw_query_prepare_tile(ctx, i, ctx->ring); /* emit IB to drawcmds: */ ctx->emit_ib(ctx->ring, ctx->batch->draw); fd_reset_wfi(ctx); /* emit gmem2mem to transfer tile back to system memory: */ fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_GMEM2MEM); ctx->emit_tile_gmem2mem(ctx, tile); fd_hw_query_set_stage(ctx, ctx->ring, FD_STAGE_NULL); } } static void render_sysmem(struct fd_context *ctx) { ctx->emit_sysmem_prep(ctx); fd_hw_query_prepare_tile(ctx, 0, ctx->ring); /* emit IB to drawcmds: */ ctx->emit_ib(ctx->ring, ctx->batch->draw); fd_reset_wfi(ctx); } void fd_gmem_render_tiles(struct fd_context *ctx) { struct pipe_framebuffer_state *pfb = &ctx->framebuffer; struct fd_batch *batch = ctx->batch; bool sysmem = false; if (ctx->emit_sysmem_prep) { if (ctx->cleared || ctx->gmem_reason || (ctx->num_draws > 5)) { DBG("GMEM: cleared=%x, gmem_reason=%x, num_draws=%u", ctx->cleared, ctx->gmem_reason, ctx->num_draws); } else if (!(fd_mesa_debug & FD_DBG_NOBYPASS)) { sysmem = true; } } /* close out the draw cmds by making sure any active queries are * paused: */ fd_hw_query_set_stage(ctx, batch->draw, FD_STAGE_NULL); fd_reset_wfi(ctx); ctx->stats.batch_total++; ctx->ring = batch->gmem; if (sysmem) { DBG("rendering sysmem (%s/%s)", util_format_short_name(pipe_surface_format(pfb->cbufs[0])), util_format_short_name(pipe_surface_format(pfb->zsbuf))); fd_hw_query_prepare(ctx, 1); render_sysmem(ctx); ctx->stats.batch_sysmem++; } else { struct fd_gmem_stateobj *gmem = &ctx->gmem; calculate_tiles(ctx); DBG("rendering %dx%d tiles (%s/%s)", gmem->nbins_x, gmem->nbins_y, util_format_short_name(pipe_surface_format(pfb->cbufs[0])), util_format_short_name(pipe_surface_format(pfb->zsbuf))); fd_hw_query_prepare(ctx, gmem->nbins_x * gmem->nbins_y); render_tiles(ctx); ctx->stats.batch_gmem++; } fd_ringbuffer_flush(batch->gmem); ctx->ring = NULL; fd_reset_wfi(ctx); /* reset maximal bounds: */ ctx->max_scissor.minx = ctx->max_scissor.miny = ~0; ctx->max_scissor.maxx = ctx->max_scissor.maxy = 0; ctx->dirty = ~0; } /* tile needs restore if it isn't completely contained within the * cleared scissor: */ static bool skip_restore(struct pipe_scissor_state *scissor, struct fd_tile *tile) { unsigned minx = tile->xoff; unsigned maxx = tile->xoff + tile->bin_w; unsigned miny = tile->yoff; unsigned maxy = tile->yoff + tile->bin_h; return (minx >= scissor->minx) && (maxx <= scissor->maxx) && (miny >= scissor->miny) && (maxy <= scissor->maxy); } /* When deciding whether a tile needs mem2gmem, we need to take into * account the scissor rect(s) that were cleared. To simplify we only * consider the last scissor rect for each buffer, since the common * case would be a single clear. */ bool fd_gmem_needs_restore(struct fd_context *ctx, struct fd_tile *tile, uint32_t buffers) { if (!(ctx->restore & buffers)) return false; /* if buffers partially cleared, then slow-path to figure out * if this particular tile needs restoring: */ if ((buffers & FD_BUFFER_COLOR) && (ctx->partial_cleared & FD_BUFFER_COLOR) && skip_restore(&ctx->cleared_scissor.color, tile)) return false; if ((buffers & FD_BUFFER_DEPTH) && (ctx->partial_cleared & FD_BUFFER_DEPTH) && skip_restore(&ctx->cleared_scissor.depth, tile)) return false; if ((buffers & FD_BUFFER_STENCIL) && (ctx->partial_cleared & FD_BUFFER_STENCIL) && skip_restore(&ctx->cleared_scissor.stencil, tile)) return false; return true; }