/* * Copyright (C) 2016 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "util/hash_table.h" #include "util/set.h" #include "util/list.h" #include "util/u_string.h" #include "freedreno_batch.h" #include "freedreno_batch_cache.h" #include "freedreno_context.h" #include "freedreno_resource.h" /* Overview: * * The batch cache provides lookup for mapping pipe_framebuffer_state * to a batch. * * It does this via hashtable, with key that roughly matches the * pipe_framebuffer_state, as described below. * * Batch Cache hashtable key: * * To serialize the key, and to avoid dealing with holding a reference to * pipe_surface's (which hold a reference to pipe_resource and complicate * the whole refcnting thing), the key is variable length and inline's the * pertinent details of the pipe_surface. * * Batch: * * Each batch needs to hold a reference to each resource it depends on (ie. * anything that needs a mem2gmem). And a weak reference to resources it * renders to. (If both src[n] and dst[n] are not NULL then they are the * same.) * * When a resource is destroyed, we need to remove entries in the batch * cache that reference the resource, to avoid dangling pointer issues. * So each resource holds a hashset of batches which have reference them * in their hashtable key. * * When a batch has weak reference to no more resources (ie. all the * surfaces it rendered to are destroyed) the batch can be destroyed. * Could happen in an app that renders and never uses the result. More * common scenario, I think, will be that some, but not all, of the * surfaces are destroyed before the batch is submitted. * * If (for example), batch writes to zsbuf but that surface is destroyed * before batch is submitted, we can skip gmem2mem (but still need to * alloc gmem space as before. If the batch depended on previous contents * of that surface, it would be holding a reference so the surface would * not have been destroyed. */ struct key { uint32_t width, height, layers; uint16_t samples, num_surfs; struct fd_context *ctx; struct { struct pipe_resource *texture; union pipe_surface_desc u; uint16_t pos, format; } surf[0]; }; static struct key * key_alloc(unsigned num_surfs) { struct key *key = CALLOC_VARIANT_LENGTH_STRUCT(key, sizeof(key->surf[0]) * num_surfs); return key; } static uint32_t key_hash(const void *_key) { const struct key *key = _key; uint32_t hash = _mesa_fnv32_1a_offset_bias; hash = _mesa_fnv32_1a_accumulate_block(hash, key, offsetof(struct key, surf[0])); hash = _mesa_fnv32_1a_accumulate_block(hash, key->surf, sizeof(key->surf[0]) * key->num_surfs); return hash; } static bool key_equals(const void *_a, const void *_b) { const struct key *a = _a; const struct key *b = _b; return (memcmp(a, b, offsetof(struct key, surf[0])) == 0) && (memcmp(a->surf, b->surf, sizeof(a->surf[0]) * a->num_surfs) == 0); } void fd_bc_init(struct fd_batch_cache *cache) { cache->ht = _mesa_hash_table_create(NULL, key_hash, key_equals); } void fd_bc_fini(struct fd_batch_cache *cache) { _mesa_hash_table_destroy(cache->ht, NULL); } uint32_t fd_bc_flush(struct fd_batch_cache *cache, struct fd_context *ctx) { struct hash_entry *entry; uint32_t timestamp = 0; hash_table_foreach(cache->ht, entry) { struct fd_batch *batch = NULL; fd_batch_reference(&batch, (struct fd_batch *)entry->data); if (batch->ctx == ctx) { fd_batch_flush(batch); timestamp = MAX2(timestamp, fd_ringbuffer_timestamp(batch->gmem)); } fd_batch_reference(&batch, NULL); } return timestamp; } void fd_bc_invalidate_context(struct fd_context *ctx) { struct fd_batch_cache *cache = &ctx->screen->batch_cache; struct fd_batch *batch; foreach_batch(batch, cache, cache->batch_mask) { if (batch->ctx == ctx) { fd_batch_reset(batch); fd_batch_reference(&batch, NULL); } } } void fd_bc_invalidate_batch(struct fd_batch *batch, bool destroy) { struct fd_batch_cache *cache = &batch->ctx->screen->batch_cache; struct key *key = (struct key *)batch->key; if (destroy) { cache->batches[batch->idx] = NULL; cache->batch_mask &= ~(1 << batch->idx); } if (!key) return; DBG("%p: key=%p", batch, batch->key); for (unsigned idx = 0; idx < key->num_surfs; idx++) { struct fd_resource *rsc = fd_resource(key->surf[idx].texture); rsc->bc_batch_mask &= ~(1 << batch->idx); } struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(cache->ht, batch->hash, key); _mesa_hash_table_remove(cache->ht, entry); batch->key = NULL; free(key); } void fd_bc_invalidate_resource(struct fd_resource *rsc, bool destroy) { struct fd_screen *screen = fd_screen(rsc->base.b.screen); struct fd_batch *batch; if (destroy) { foreach_batch(batch, &screen->batch_cache, rsc->batch_mask) { struct set_entry *entry = _mesa_set_search(batch->resources, rsc); _mesa_set_remove(batch->resources, entry); } rsc->batch_mask = 0; fd_batch_reference(&rsc->write_batch, NULL); } foreach_batch(batch, &screen->batch_cache, rsc->bc_batch_mask) fd_bc_invalidate_batch(batch, false); rsc->bc_batch_mask = 0; } struct fd_batch * fd_bc_alloc_batch(struct fd_batch_cache *cache, struct fd_context *ctx) { struct fd_batch *batch; uint32_t idx; while ((idx = ffs(~cache->batch_mask)) == 0) { #if 0 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) { batch = cache->batches[i]; debug_printf("%d: needs_flush=%d, depends:", batch->idx, batch->needs_flush); struct set_entry *entry; set_foreach(batch->dependencies, entry) { struct fd_batch *dep = (struct fd_batch *)entry->key; debug_printf(" %d", dep->idx); } debug_printf("\n"); } #endif /* TODO: is LRU the better policy? Or perhaps the batch that * depends on the fewest other batches? */ struct fd_batch *flush_batch = NULL; for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) { if ((cache->batches[i] == ctx->batch) || !cache->batches[i]->needs_flush) continue; if (!flush_batch || (cache->batches[i]->seqno < flush_batch->seqno)) fd_batch_reference(&flush_batch, cache->batches[i]); } DBG("%p: too many batches! flush forced!", flush_batch); fd_batch_flush(flush_batch); /* While the resources get cleaned up automatically, the flush_batch * doesn't get removed from the dependencies of other batches, so * it won't be unref'd and will remain in the table. * * TODO maybe keep a bitmask of batches that depend on me, to make * this easier: */ for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) { struct fd_batch *other = cache->batches[i]; if (!other) continue; if (other->dependents_mask & (1 << flush_batch->idx)) { other->dependents_mask &= ~(1 << flush_batch->idx); struct fd_batch *ref = flush_batch; fd_batch_reference(&ref, NULL); } } fd_batch_reference(&flush_batch, NULL); } idx--; /* bit zero returns 1 for ffs() */ batch = fd_batch_create(ctx); if (!batch) return NULL; batch->seqno = cache->cnt++; batch->idx = idx; cache->batch_mask |= (1 << idx); debug_assert(cache->batches[idx] == NULL); cache->batches[idx] = batch; return batch; } static struct fd_batch * batch_from_key(struct fd_batch_cache *cache, struct key *key, struct fd_context *ctx) { struct fd_batch *batch = NULL; uint32_t hash = key_hash(key); struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(cache->ht, hash, key); if (entry) { free(key); fd_batch_reference(&batch, (struct fd_batch *)entry->data); return batch; } batch = fd_bc_alloc_batch(cache, ctx); #ifdef DEBUG DBG("%p: hash=0x%08x, %ux%u, %u layers, %u samples", batch, hash, key->width, key->height, key->layers, key->samples); for (unsigned idx = 0; idx < key->num_surfs; idx++) { DBG("%p: surf[%u]: %p (%s) (%u,%u / %u,%u,%u)", batch, key->surf[idx].pos, key->surf[idx].texture, util_format_name(key->surf[idx].format), key->surf[idx].u.buf.first_element, key->surf[idx].u.buf.last_element, key->surf[idx].u.tex.first_layer, key->surf[idx].u.tex.last_layer, key->surf[idx].u.tex.level); } #endif if (!batch) return NULL; _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key, batch); batch->key = key; batch->hash = hash; for (unsigned idx = 0; idx < key->num_surfs; idx++) { struct fd_resource *rsc = fd_resource(key->surf[idx].texture); rsc->bc_batch_mask = (1 << batch->idx); } return batch; } static void key_surf(struct key *key, unsigned idx, unsigned pos, struct pipe_surface *psurf) { key->surf[idx].texture = psurf->texture; key->surf[idx].u = psurf->u; key->surf[idx].pos = pos; key->surf[idx].format = psurf->format; } struct fd_batch * fd_batch_from_fb(struct fd_batch_cache *cache, struct fd_context *ctx, const struct pipe_framebuffer_state *pfb) { unsigned idx = 0, n = pfb->nr_cbufs + (pfb->zsbuf ? 1 : 0); struct key *key = key_alloc(n); key->width = pfb->width; key->height = pfb->height; key->layers = pfb->layers; key->samples = pfb->samples; key->ctx = ctx; if (pfb->zsbuf) key_surf(key, idx++, 0, pfb->zsbuf); for (unsigned i = 0; i < pfb->nr_cbufs; i++) if (pfb->cbufs[i]) key_surf(key, idx++, i + 1, pfb->cbufs[i]); key->num_surfs = idx; return batch_from_key(cache, key, ctx); }