/* * Copyright (C) 2016 Rob Clark * Copyright © 2018 Google, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "util/bitset.h" #include "freedreno_program.h" #include "fd6_program.h" #include "fd6_emit.h" #include "fd6_texture.h" #include "fd6_format.h" static struct ir3_shader * create_shader_stateobj(struct pipe_context *pctx, const struct pipe_shader_state *cso, gl_shader_stage type) { struct fd_context *ctx = fd_context(pctx); struct ir3_compiler *compiler = ctx->screen->compiler; return ir3_shader_create(compiler, cso, type, &ctx->debug, pctx->screen); } static void * fd6_fp_state_create(struct pipe_context *pctx, const struct pipe_shader_state *cso) { return create_shader_stateobj(pctx, cso, MESA_SHADER_FRAGMENT); } static void fd6_fp_state_delete(struct pipe_context *pctx, void *hwcso) { struct ir3_shader *so = hwcso; struct fd_context *ctx = fd_context(pctx); ir3_cache_invalidate(fd6_context(ctx)->shader_cache, hwcso); ir3_shader_destroy(so); } static void * fd6_vp_state_create(struct pipe_context *pctx, const struct pipe_shader_state *cso) { return create_shader_stateobj(pctx, cso, MESA_SHADER_VERTEX); } static void fd6_vp_state_delete(struct pipe_context *pctx, void *hwcso) { struct ir3_shader *so = hwcso; struct fd_context *ctx = fd_context(pctx); ir3_cache_invalidate(fd6_context(ctx)->shader_cache, hwcso); ir3_shader_destroy(so); } void fd6_emit_shader(struct fd_ringbuffer *ring, const struct ir3_shader_variant *so) { const struct ir3_info *si = &so->info; enum a6xx_state_block sb = fd6_stage2shadersb(so->type); enum a6xx_state_src src; uint32_t i, sz, *bin; unsigned opcode; if (fd_mesa_debug & FD_DBG_DIRECT) { sz = si->sizedwords; src = SS6_DIRECT; bin = fd_bo_map(so->bo); } else { sz = 0; src = SS6_INDIRECT; bin = NULL; } switch (so->type) { case MESA_SHADER_VERTEX: opcode = CP_LOAD_STATE6_GEOM; break; case MESA_SHADER_FRAGMENT: case MESA_SHADER_COMPUTE: case MESA_SHADER_KERNEL: opcode = CP_LOAD_STATE6_FRAG; break; default: unreachable("bad shader type"); } OUT_PKT7(ring, opcode, 3 + sz); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(src) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(so->instrlen)); if (bin) { OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); } else { OUT_RELOCD(ring, so->bo, 0, 0, 0); } /* for how clever coverity is, it is sometimes rather dull, and * doesn't realize that the only case where bin==NULL, sz==0: */ assume(bin || (sz == 0)); for (i = 0; i < sz; i++) { OUT_RING(ring, bin[i]); } } /* Add any missing varyings needed for stream-out. Otherwise varyings not * used by fragment shader will be stripped out. */ static void link_stream_out(struct ir3_shader_linkage *l, const struct ir3_shader_variant *v) { const struct ir3_stream_output_info *strmout = &v->shader->stream_output; /* * First, any stream-out varyings not already in linkage map (ie. also * consumed by frag shader) need to be added: */ for (unsigned i = 0; i < strmout->num_outputs; i++) { const struct ir3_stream_output *out = &strmout->output[i]; unsigned k = out->register_index; unsigned compmask = (1 << (out->num_components + out->start_component)) - 1; unsigned idx, nextloc = 0; /* psize/pos need to be the last entries in linkage map, and will * get added link_stream_out, so skip over them: */ if ((v->outputs[k].slot == VARYING_SLOT_PSIZ) || (v->outputs[k].slot == VARYING_SLOT_POS)) continue; for (idx = 0; idx < l->cnt; idx++) { if (l->var[idx].regid == v->outputs[k].regid) break; nextloc = MAX2(nextloc, l->var[idx].loc + 4); } /* add if not already in linkage map: */ if (idx == l->cnt) ir3_link_add(l, v->outputs[k].regid, compmask, nextloc); /* expand component-mask if needed, ie streaming out all components * but frag shader doesn't consume all components: */ if (compmask & ~l->var[idx].compmask) { l->var[idx].compmask |= compmask; l->max_loc = MAX2(l->max_loc, l->var[idx].loc + util_last_bit(l->var[idx].compmask)); } } } static void setup_stream_out(struct fd6_program_state *state, const struct ir3_shader_variant *v, struct ir3_shader_linkage *l) { const struct ir3_stream_output_info *strmout = &v->shader->stream_output; struct fd6_streamout_state *tf = &state->tf; memset(tf, 0, sizeof(*tf)); tf->prog_count = align(l->max_loc, 2) / 2; debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog)); for (unsigned i = 0; i < strmout->num_outputs; i++) { const struct ir3_stream_output *out = &strmout->output[i]; unsigned k = out->register_index; unsigned idx; tf->ncomp[out->output_buffer] += out->num_components; /* linkage map sorted by order frag shader wants things, so * a bit less ideal here.. */ for (idx = 0; idx < l->cnt; idx++) if (l->var[idx].regid == v->outputs[k].regid) break; debug_assert(idx < l->cnt); for (unsigned j = 0; j < out->num_components; j++) { unsigned c = j + out->start_component; unsigned loc = l->var[idx].loc + c; unsigned off = j + out->dst_offset; /* in dwords */ if (loc & 1) { tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN | A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) | A6XX_VPC_SO_PROG_B_OFF(off * 4); } else { tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN | A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) | A6XX_VPC_SO_PROG_A_OFF(off * 4); } } } tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE | COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) | COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) | COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) | COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3); } struct stage { const struct ir3_shader_variant *v; const struct ir3_info *i; /* const sizes are in units of vec4, aligned to 4*vec4 */ uint16_t constlen; /* instr sizes are in units of 16 instructions */ uint16_t instrlen; }; enum { VS = 0, FS = 1, HS = 2, DS = 3, GS = 4, MAX_STAGES }; static void setup_stages(struct fd6_program_state *state, struct stage *s, bool binning_pass) { unsigned i; if (binning_pass) { static const struct ir3_shader_variant dummy_fs = {0}; s[VS].v = state->bs; s[FS].v = &dummy_fs; } else { s[VS].v = state->vs; s[FS].v = state->fs; } s[HS].v = s[DS].v = s[GS].v = NULL; /* for now */ for (i = 0; i < MAX_STAGES; i++) { if (s[i].v) { s[i].i = &s[i].v->info; s[i].constlen = align(s[i].v->constlen, 4); /* instrlen is already in units of 16 instr.. although * probably we should ditch that and not make the compiler * care about instruction group size of a3xx vs a5xx */ s[i].instrlen = s[i].v->instrlen; } else { s[i].i = NULL; s[i].constlen = 0; s[i].instrlen = 0; } } } static void setup_stateobj(struct fd_ringbuffer *ring, struct fd6_program_state *state, bool binning_pass) { struct stage s[MAX_STAGES]; uint32_t pos_regid, psize_regid, color_regid[8], posz_regid; uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid, samp_mask_regid; uint32_t vcoord_regid, vertex_regid, instance_regid; enum a3xx_threadsize fssz; uint8_t psize_loc = ~0; int i, j; setup_stages(state, s, binning_pass); fssz = FOUR_QUADS; pos_regid = ir3_find_output_regid(s[VS].v, VARYING_SLOT_POS); psize_regid = ir3_find_output_regid(s[VS].v, VARYING_SLOT_PSIZ); vertex_regid = ir3_find_sysval_regid(s[VS].v, SYSTEM_VALUE_VERTEX_ID); instance_regid = ir3_find_sysval_regid(s[VS].v, SYSTEM_VALUE_INSTANCE_ID); if (s[FS].v->color0_mrt) { color_regid[0] = color_regid[1] = color_regid[2] = color_regid[3] = color_regid[4] = color_regid[5] = color_regid[6] = color_regid[7] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_COLOR); } else { color_regid[0] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA0); color_regid[1] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA1); color_regid[2] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA2); color_regid[3] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA3); color_regid[4] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA4); color_regid[5] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA5); color_regid[6] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA6); color_regid[7] = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DATA7); } samp_id_regid = ir3_find_sysval_regid(s[FS].v, SYSTEM_VALUE_SAMPLE_ID); samp_mask_regid = ir3_find_sysval_regid(s[FS].v, SYSTEM_VALUE_SAMPLE_MASK_IN); face_regid = ir3_find_sysval_regid(s[FS].v, SYSTEM_VALUE_FRONT_FACE); coord_regid = ir3_find_sysval_regid(s[FS].v, SYSTEM_VALUE_FRAG_COORD); zwcoord_regid = (coord_regid == regid(63,0)) ? regid(63,0) : (coord_regid + 2); vcoord_regid = ir3_find_sysval_regid(s[FS].v, SYSTEM_VALUE_VARYING_COORD); posz_regid = ir3_find_output_regid(s[FS].v, FRAG_RESULT_DEPTH); /* we could probably divide this up into things that need to be * emitted if frag-prog is dirty vs if vert-prog is dirty.. */ OUT_PKT4(ring, REG_A6XX_SP_VS_CONFIG, 2); OUT_RING(ring, COND(s[VS].v, A6XX_SP_VS_CONFIG_ENABLED) | A6XX_SP_VS_CONFIG_NIBO(s[VS].v->image_mapping.num_ibo) | A6XX_SP_VS_CONFIG_NTEX(s[VS].v->num_samp) | A6XX_SP_VS_CONFIG_NSAMP(s[VS].v->num_samp)); /* SP_VS_CONFIG */ OUT_RING(ring, s[VS].instrlen); /* SP_VS_INSTRLEN */ OUT_PKT4(ring, REG_A6XX_SP_HS_UNKNOWN_A831, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_HS_CONFIG, 2); OUT_RING(ring, COND(s[HS].v, A6XX_SP_HS_CONFIG_ENABLED)); /* SP_HS_CONFIG */ OUT_RING(ring, s[HS].instrlen); /* SP_HS_INSTRLEN */ OUT_PKT4(ring, REG_A6XX_SP_DS_CONFIG, 2); OUT_RING(ring, COND(s[DS].v, A6XX_SP_DS_CONFIG_ENABLED)); /* SP_DS_CONFIG */ OUT_RING(ring, s[DS].instrlen); /* SP_DS_INSTRLEN */ OUT_PKT4(ring, REG_A6XX_SP_GS_UNKNOWN_A871, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_GS_CONFIG, 2); OUT_RING(ring, COND(s[GS].v, A6XX_SP_GS_CONFIG_ENABLED)); /* SP_GS_CONFIG */ OUT_RING(ring, s[GS].instrlen); /* SP_GS_INSTRLEN */ OUT_PKT4(ring, REG_A6XX_SP_UNKNOWN_A99E, 1); OUT_RING(ring, 0x7fc0); OUT_PKT4(ring, REG_A6XX_SP_UNKNOWN_A9A8, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_UNKNOWN_AB00, 1); OUT_RING(ring, 0x5); OUT_PKT4(ring, REG_A6XX_SP_FS_CONFIG, 2); OUT_RING(ring, COND(s[FS].v, A6XX_SP_FS_CONFIG_ENABLED) | A6XX_SP_FS_CONFIG_NIBO(s[FS].v->image_mapping.num_ibo) | A6XX_SP_FS_CONFIG_NTEX(s[FS].v->num_samp) | A6XX_SP_FS_CONFIG_NSAMP(s[FS].v->num_samp)); /* SP_FS_CONFIG */ OUT_RING(ring, s[FS].instrlen); /* SP_FS_INSTRLEN */ OUT_PKT4(ring, REG_A6XX_SP_FS_OUTPUT_CNTL0, 1); OUT_RING(ring, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) | 0xfcfc0000); OUT_PKT4(ring, REG_A6XX_HLSQ_VS_CNTL, 4); OUT_RING(ring, A6XX_HLSQ_VS_CNTL_CONSTLEN(s[VS].constlen) | A6XX_HLSQ_VS_CNTL_ENABLED); OUT_RING(ring, A6XX_HLSQ_HS_CNTL_CONSTLEN(s[HS].constlen)); /* HLSQ_HS_CONSTLEN */ OUT_RING(ring, A6XX_HLSQ_DS_CNTL_CONSTLEN(s[DS].constlen)); /* HLSQ_DS_CONSTLEN */ OUT_RING(ring, A6XX_HLSQ_GS_CNTL_CONSTLEN(s[GS].constlen)); /* HLSQ_GS_CONSTLEN */ OUT_PKT4(ring, REG_A6XX_HLSQ_FS_CNTL, 1); OUT_RING(ring, A6XX_HLSQ_FS_CNTL_CONSTLEN(s[FS].constlen) | A6XX_HLSQ_FS_CNTL_ENABLED); OUT_PKT4(ring, REG_A6XX_SP_VS_CTRL_REG0, 1); OUT_RING(ring, A6XX_SP_VS_CTRL_REG0_THREADSIZE(fssz) | A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(s[VS].i->max_reg + 1) | A6XX_SP_VS_CTRL_REG0_MERGEDREGS | A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(s[VS].v->branchstack) | COND(s[VS].v->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE)); struct ir3_shader_linkage l = {0}; ir3_link_shaders(&l, s[VS].v, s[FS].v); if ((s[VS].v->shader->stream_output.num_outputs > 0) && !binning_pass) link_stream_out(&l, s[VS].v); BITSET_DECLARE(varbs, 128) = {0}; uint32_t *varmask = (uint32_t *)varbs; for (i = 0; i < l.cnt; i++) for (j = 0; j < util_last_bit(l.var[i].compmask); j++) BITSET_SET(varbs, l.var[i].loc + j); OUT_PKT4(ring, REG_A6XX_VPC_VAR_DISABLE(0), 4); OUT_RING(ring, ~varmask[0]); /* VPC_VAR[0].DISABLE */ OUT_RING(ring, ~varmask[1]); /* VPC_VAR[1].DISABLE */ OUT_RING(ring, ~varmask[2]); /* VPC_VAR[2].DISABLE */ OUT_RING(ring, ~varmask[3]); /* VPC_VAR[3].DISABLE */ /* a6xx appends pos/psize to end of the linkage map: */ if (pos_regid != regid(63,0)) ir3_link_add(&l, pos_regid, 0xf, l.max_loc); if (psize_regid != regid(63,0)) { psize_loc = l.max_loc; ir3_link_add(&l, psize_regid, 0x1, l.max_loc); } if ((s[VS].v->shader->stream_output.num_outputs > 0) && !binning_pass) { setup_stream_out(state, s[VS].v, &l); } for (i = 0, j = 0; (i < 16) && (j < l.cnt); i++) { uint32_t reg = 0; OUT_PKT4(ring, REG_A6XX_SP_VS_OUT_REG(i), 1); reg |= A6XX_SP_VS_OUT_REG_A_REGID(l.var[j].regid); reg |= A6XX_SP_VS_OUT_REG_A_COMPMASK(l.var[j].compmask); j++; reg |= A6XX_SP_VS_OUT_REG_B_REGID(l.var[j].regid); reg |= A6XX_SP_VS_OUT_REG_B_COMPMASK(l.var[j].compmask); j++; OUT_RING(ring, reg); } for (i = 0, j = 0; (i < 8) && (j < l.cnt); i++) { uint32_t reg = 0; OUT_PKT4(ring, REG_A6XX_SP_VS_VPC_DST_REG(i), 1); reg |= A6XX_SP_VS_VPC_DST_REG_OUTLOC0(l.var[j++].loc); reg |= A6XX_SP_VS_VPC_DST_REG_OUTLOC1(l.var[j++].loc); reg |= A6XX_SP_VS_VPC_DST_REG_OUTLOC2(l.var[j++].loc); reg |= A6XX_SP_VS_VPC_DST_REG_OUTLOC3(l.var[j++].loc); OUT_RING(ring, reg); } OUT_PKT4(ring, REG_A6XX_SP_VS_OBJ_START_LO, 2); OUT_RELOC(ring, s[VS].v->bo, 0, 0, 0); /* SP_VS_OBJ_START_LO/HI */ if (s[VS].instrlen) fd6_emit_shader(ring, s[VS].v); // TODO depending on other bits in this reg (if any) set somewhere else? #if 0 OUT_PKT4(ring, REG_A6XX_PC_PRIM_VTX_CNTL, 1); OUT_RING(ring, COND(s[VS].v->writes_psize, A6XX_PC_PRIM_VTX_CNTL_PSIZE)); #endif OUT_PKT4(ring, REG_A6XX_SP_PRIMITIVE_CNTL, 1); OUT_RING(ring, A6XX_SP_PRIMITIVE_CNTL_VSOUT(l.cnt)); bool enable_varyings = s[FS].v->total_in > 0; OUT_PKT4(ring, REG_A6XX_VPC_CNTL_0, 1); OUT_RING(ring, A6XX_VPC_CNTL_0_NUMNONPOSVAR(s[FS].v->total_in) | COND(enable_varyings, A6XX_VPC_CNTL_0_VARYING) | 0xff00ff00); OUT_PKT4(ring, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1); OUT_RING(ring, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(l.max_loc) | COND(psize_regid != regid(63,0), 0x100)); if (binning_pass) { OUT_PKT4(ring, REG_A6XX_SP_FS_OBJ_START_LO, 2); OUT_RING(ring, 0x00000000); /* SP_FS_OBJ_START_LO */ OUT_RING(ring, 0x00000000); /* SP_FS_OBJ_START_HI */ } else { OUT_PKT4(ring, REG_A6XX_SP_FS_OBJ_START_LO, 2); OUT_RELOC(ring, s[FS].v->bo, 0, 0, 0); /* SP_FS_OBJ_START_LO/HI */ } OUT_PKT4(ring, REG_A6XX_HLSQ_CONTROL_1_REG, 5); OUT_RING(ring, 0x7); /* XXX */ OUT_RING(ring, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(samp_mask_regid) | 0xfc000000); /* XXX */ OUT_RING(ring, A6XX_HLSQ_CONTROL_3_REG_FRAGCOORDXYREGID(vcoord_regid) | 0xfcfcfc00); /* XXX */ OUT_RING(ring, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) | A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) | 0x0000fcfc); /* XXX */ OUT_RING(ring, 0xfc); /* XXX */ OUT_PKT4(ring, REG_A6XX_HLSQ_UNKNOWN_B980, 1); OUT_RING(ring, s[FS].v->total_in > 0 ? 3 : 1); OUT_PKT4(ring, REG_A6XX_SP_FS_CTRL_REG0, 1); OUT_RING(ring, A6XX_SP_FS_CTRL_REG0_THREADSIZE(fssz) | COND(s[FS].v->total_in > 0, A6XX_SP_FS_CTRL_REG0_VARYING) | COND(s[FS].v->frag_coord, A6XX_SP_FS_CTRL_REG0_VARYING) | 0x1000000 | A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(s[FS].i->max_reg + 1) | A6XX_SP_FS_CTRL_REG0_MERGEDREGS | A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(s[FS].v->branchstack) | COND(s[FS].v->need_pixlod, A6XX_SP_FS_CTRL_REG0_PIXLODENABLE)); OUT_PKT4(ring, REG_A6XX_SP_UNKNOWN_A982, 1); OUT_RING(ring, 0); /* XXX */ OUT_PKT4(ring, REG_A6XX_HLSQ_UPDATE_CNTL, 1); OUT_RING(ring, 0xff); /* XXX */ OUT_PKT4(ring, REG_A6XX_VPC_GS_SIV_CNTL, 1); OUT_RING(ring, 0x0000ffff); /* XXX */ #if 0 OUT_PKT4(ring, REG_A6XX_SP_SP_CNTL, 1); OUT_RING(ring, 0x00000010); /* XXX */ #endif OUT_PKT4(ring, REG_A6XX_GRAS_CNTL, 1); OUT_RING(ring, COND(enable_varyings, A6XX_GRAS_CNTL_VARYING) | COND(s[FS].v->frag_coord, A6XX_GRAS_CNTL_UNK3 | A6XX_GRAS_CNTL_XCOORD | A6XX_GRAS_CNTL_YCOORD | A6XX_GRAS_CNTL_ZCOORD | A6XX_GRAS_CNTL_WCOORD) | COND(s[FS].v->frag_face, A6XX_GRAS_CNTL_UNK3)); OUT_PKT4(ring, REG_A6XX_RB_RENDER_CONTROL0, 2); OUT_RING(ring, COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_VARYING | A6XX_RB_RENDER_CONTROL0_UNK10) | COND(s[FS].v->frag_coord, A6XX_RB_RENDER_CONTROL0_UNK3 | A6XX_RB_RENDER_CONTROL0_XCOORD | A6XX_RB_RENDER_CONTROL0_YCOORD | A6XX_RB_RENDER_CONTROL0_ZCOORD | A6XX_RB_RENDER_CONTROL0_WCOORD) | COND(s[FS].v->frag_face, A6XX_RB_RENDER_CONTROL0_UNK3)); OUT_RING(ring, COND(samp_mask_regid != regid(63, 0), A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) | COND(samp_id_regid != regid(63, 0), A6XX_RB_RENDER_CONTROL1_SAMPLEID) | COND(s[FS].v->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS)); OUT_PKT4(ring, REG_A6XX_SP_FS_OUTPUT_REG(0), 8); for (i = 0; i < 8; i++) { // TODO we could have a mix of half and full precision outputs, // we really need to figure out half-precision from IR3_REG_HALF OUT_RING(ring, A6XX_SP_FS_OUTPUT_REG_REGID(color_regid[i]) | COND(false, A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION)); } OUT_PKT4(ring, REG_A6XX_VPC_PACK, 1); OUT_RING(ring, A6XX_VPC_PACK_NUMNONPOSVAR(s[FS].v->total_in) | A6XX_VPC_PACK_PSIZELOC(psize_loc) | A6XX_VPC_PACK_STRIDE_IN_VPC(l.max_loc)); if (!binning_pass) { /* figure out VARYING_INTERP / VARYING_PS_REPL register values: */ for (j = -1; (j = ir3_next_varying(s[FS].v, j)) < (int)s[FS].v->inputs_count; ) { /* NOTE: varyings are packed, so if compmask is 0xb * then first, third, and fourth component occupy * three consecutive varying slots: */ unsigned compmask = s[FS].v->inputs[j].compmask; uint32_t inloc = s[FS].v->inputs[j].inloc; if (s[FS].v->inputs[j].interpolate == INTERP_MODE_FLAT) { uint32_t loc = inloc; for (i = 0; i < 4; i++) { if (compmask & (1 << i)) { state->vinterp[loc / 16] |= 1 << ((loc % 16) * 2); loc++; } } } } } if (!binning_pass) if (s[FS].instrlen) fd6_emit_shader(ring, s[FS].v); OUT_PKT4(ring, REG_A6XX_VFD_CONTROL_1, 6); OUT_RING(ring, A6XX_VFD_CONTROL_1_REGID4VTX(vertex_regid) | A6XX_VFD_CONTROL_1_REGID4INST(instance_regid) | 0xfcfc0000); OUT_RING(ring, 0x0000fcfc); /* VFD_CONTROL_2 */ OUT_RING(ring, 0xfcfcfcfc); /* VFD_CONTROL_3 */ OUT_RING(ring, 0x000000fc); /* VFD_CONTROL_4 */ OUT_RING(ring, 0x0000fcfc); /* VFD_CONTROL_5 */ OUT_RING(ring, 0x00000000); /* VFD_CONTROL_6 */ bool fragz = s[FS].v->no_earlyz | s[FS].v->writes_pos; OUT_PKT4(ring, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1); OUT_RING(ring, COND(fragz, A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z)); OUT_PKT4(ring, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1); OUT_RING(ring, COND(fragz, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z)); } /* emits the program state which is not part of the stateobj because of * dependency on other gl state (rasterflat or sprite-coord-replacement) */ void fd6_program_emit(struct fd_ringbuffer *ring, struct fd6_emit *emit) { const struct fd6_program_state *state = fd6_emit_get_prog(emit); if (!unlikely(emit->rasterflat || emit->sprite_coord_enable)) { /* fastpath: */ OUT_PKT4(ring, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8); for (int i = 0; i < 8; i++) OUT_RING(ring, state->vinterp[i]); /* VPC_VARYING_INTERP[i].MODE */ OUT_PKT4(ring, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8); for (int i = 0; i < 8; i++) OUT_RING(ring, 0x00000000); /* VPC_VARYING_PS_REPL[i] */ } else { /* slow-path: */ struct ir3_shader_variant *fs = state->fs; uint32_t vinterp[8], vpsrepl[8]; memset(vinterp, 0, sizeof(vinterp)); memset(vpsrepl, 0, sizeof(vpsrepl)); for (int j = -1; (j = ir3_next_varying(fs, j)) < (int)fs->inputs_count; ) { /* NOTE: varyings are packed, so if compmask is 0xb * then first, third, and fourth component occupy * three consecutive varying slots: */ unsigned compmask = fs->inputs[j].compmask; uint32_t inloc = fs->inputs[j].inloc; if ((fs->inputs[j].interpolate == INTERP_MODE_FLAT) || (fs->inputs[j].rasterflat && emit->rasterflat)) { uint32_t loc = inloc; for (int i = 0; i < 4; i++) { if (compmask & (1 << i)) { vinterp[loc / 16] |= 1 << ((loc % 16) * 2); loc++; } } } gl_varying_slot slot = fs->inputs[j].slot; /* since we don't enable PIPE_CAP_TGSI_TEXCOORD: */ if (slot >= VARYING_SLOT_VAR0) { unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0); /* Replace the .xy coordinates with S/T from the point sprite. Set * interpolation bits for .zw such that they become .01 */ if (emit->sprite_coord_enable & texmask) { /* mask is two 2-bit fields, where: * '01' -> S * '10' -> T * '11' -> 1 - T (flip mode) */ unsigned mask = emit->sprite_coord_mode ? 0b1101 : 0b1001; uint32_t loc = inloc; if (compmask & 0x1) { vpsrepl[loc / 16] |= ((mask >> 0) & 0x3) << ((loc % 16) * 2); loc++; } if (compmask & 0x2) { vpsrepl[loc / 16] |= ((mask >> 2) & 0x3) << ((loc % 16) * 2); loc++; } if (compmask & 0x4) { /* .z <- 0.0f */ vinterp[loc / 16] |= 0b10 << ((loc % 16) * 2); loc++; } if (compmask & 0x8) { /* .w <- 1.0f */ vinterp[loc / 16] |= 0b11 << ((loc % 16) * 2); loc++; } } } } OUT_PKT4(ring, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8); for (int i = 0; i < 8; i++) OUT_RING(ring, vinterp[i]); /* VPC_VARYING_INTERP[i].MODE */ OUT_PKT4(ring, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8); for (int i = 0; i < 8; i++) OUT_RING(ring, vpsrepl[i]); /* VPC_VARYING_PS_REPL[i] */ } } static struct ir3_program_state * fd6_program_create(void *data, struct ir3_shader_variant *bs, struct ir3_shader_variant *vs, struct ir3_shader_variant *fs, const struct ir3_shader_key *key) { struct fd_context *ctx = data; struct fd6_program_state *state = CALLOC_STRUCT(fd6_program_state); state->bs = bs; state->vs = vs; state->fs = fs; state->binning_stateobj = fd_ringbuffer_new_object(ctx->pipe, 0x1000); state->stateobj = fd_ringbuffer_new_object(ctx->pipe, 0x1000); setup_stateobj(state->binning_stateobj, state, true); setup_stateobj(state->stateobj, state, false); return &state->base; } static void fd6_program_destroy(void *data, struct ir3_program_state *state) { struct fd6_program_state *so = fd6_program_state(state); fd_ringbuffer_del(so->stateobj); fd_ringbuffer_del(so->binning_stateobj); free(so); } static const struct ir3_cache_funcs cache_funcs = { .create_state = fd6_program_create, .destroy_state = fd6_program_destroy, }; void fd6_prog_init(struct pipe_context *pctx) { struct fd_context *ctx = fd_context(pctx); fd6_context(ctx)->shader_cache = ir3_cache_create(&cache_funcs, ctx); pctx->create_fs_state = fd6_fp_state_create; pctx->delete_fs_state = fd6_fp_state_delete; pctx->create_vs_state = fd6_vp_state_create; pctx->delete_vs_state = fd6_vp_state_delete; fd_prog_init(pctx); }