/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ /* * Copyright (C) 2013 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_ureg.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_strings.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "freedreno_lowering.h" #include "fd3_compiler.h" #include "fd3_program.h" #include "fd3_util.h" #include "instr-a3xx.h" #include "ir3.h" struct fd3_compile_context { const struct tgsi_token *tokens; bool free_tokens; struct ir3_shader *ir; struct ir3_block *block; struct fd3_shader_variant *so; struct tgsi_parse_context parser; unsigned type; struct tgsi_shader_info info; /* last input dst (for setting (ei) flag): */ struct ir3_register *last_input; /* last instruction with relative addressing: */ struct ir3_instruction *last_rel; /* for calculating input/output positions/linkages: */ unsigned next_inloc; unsigned num_internal_temps; struct tgsi_src_register internal_temps[6]; /* track registers which need to synchronize w/ "complex alu" cat3 * instruction pipeline: */ regmask_t needs_ss; /* track registers which need to synchronize with texture fetch * pipeline: */ regmask_t needs_sy; /* inputs start at r0, temporaries start after last input, and * outputs start after last temporary. * * We could be more clever, because this is not a hw restriction, * but probably best just to implement an optimizing pass to * reduce the # of registers used and get rid of redundant mov's * (to output register). */ unsigned base_reg[TGSI_FILE_COUNT]; /* idx/slot for last compiler generated immediate */ unsigned immediate_idx; /* stack of branch instructions that start (potentially nested) * branch instructions, so that we can fix up the branch targets * so that we can fix up the branch target on the corresponding * END instruction */ struct ir3_instruction *branch[16]; unsigned int branch_count; /* used when dst is same as one of the src, to avoid overwriting a * src element before the remaining scalar instructions that make * up the vector operation */ struct tgsi_dst_register tmp_dst; struct tgsi_src_register *tmp_src; }; static void vectorize(struct fd3_compile_context *ctx, struct ir3_instruction *instr, struct tgsi_dst_register *dst, int nsrcs, ...); static void create_mov(struct fd3_compile_context *ctx, struct tgsi_dst_register *dst, struct tgsi_src_register *src); static unsigned compile_init(struct fd3_compile_context *ctx, struct fd3_shader_variant *so, const struct tgsi_token *tokens) { unsigned ret, base = 0; struct tgsi_shader_info *info = &ctx->info; const struct fd_lowering_config lconfig = { .color_two_side = so->key.color_two_side, .lower_DST = true, .lower_XPD = true, .lower_SCS = true, .lower_LRP = true, .lower_FRC = true, .lower_POW = true, .lower_LIT = true, .lower_EXP = true, .lower_LOG = true, .lower_DP4 = true, .lower_DP3 = true, .lower_DPH = true, .lower_DP2 = true, .lower_DP2A = true, }; ctx->tokens = fd_transform_lowering(&lconfig, tokens, &ctx->info); ctx->free_tokens = !!ctx->tokens; if (!ctx->tokens) { /* no lowering */ ctx->tokens = tokens; } ctx->ir = so->ir; ctx->block = ir3_block_create(ctx->ir, 0, 0, 0); ctx->so = so; ctx->last_input = NULL; ctx->last_rel = NULL; ctx->next_inloc = 8; ctx->num_internal_temps = 0; ctx->branch_count = 0; regmask_init(&ctx->needs_ss); regmask_init(&ctx->needs_sy); memset(ctx->base_reg, 0, sizeof(ctx->base_reg)); /* Immediates go after constants: */ ctx->base_reg[TGSI_FILE_CONSTANT] = 0; ctx->base_reg[TGSI_FILE_IMMEDIATE] = info->file_max[TGSI_FILE_CONSTANT] + 1; /* if full precision and fragment shader, don't clobber * r0.x w/ bary fetch: */ if ((so->type == SHADER_FRAGMENT) && !so->key.half_precision) base = 1; /* Temporaries after outputs after inputs: */ ctx->base_reg[TGSI_FILE_INPUT] = base; ctx->base_reg[TGSI_FILE_OUTPUT] = base + info->file_max[TGSI_FILE_INPUT] + 1; ctx->base_reg[TGSI_FILE_TEMPORARY] = base + info->file_max[TGSI_FILE_INPUT] + 1 + info->file_max[TGSI_FILE_OUTPUT] + 1; so->first_immediate = ctx->base_reg[TGSI_FILE_IMMEDIATE]; ctx->immediate_idx = 4 * (ctx->info.file_max[TGSI_FILE_IMMEDIATE] + 1); ret = tgsi_parse_init(&ctx->parser, ctx->tokens); if (ret != TGSI_PARSE_OK) return ret; ctx->type = ctx->parser.FullHeader.Processor.Processor; return ret; } static void compile_error(struct fd3_compile_context *ctx, const char *format, ...) { va_list ap; va_start(ap, format); _debug_vprintf(format, ap); va_end(ap); tgsi_dump(ctx->tokens, 0); debug_assert(0); } #define compile_assert(ctx, cond) do { \ if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \ } while (0) static void compile_free(struct fd3_compile_context *ctx) { if (ctx->free_tokens) free((void *)ctx->tokens); tgsi_parse_free(&ctx->parser); } struct instr_translater { void (*fxn)(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst); unsigned tgsi_opc; opc_t opc; opc_t hopc; /* opc to use for half_precision mode, if different */ unsigned arg; }; static void handle_last_rel(struct fd3_compile_context *ctx) { if (ctx->last_rel) { ctx->last_rel->flags |= IR3_INSTR_UL; ctx->last_rel = NULL; } } static struct ir3_instruction * instr_create(struct fd3_compile_context *ctx, int category, opc_t opc) { return ir3_instr_create(ctx->block, category, opc); } static void add_nop(struct fd3_compile_context *ctx, unsigned count) { while (count-- > 0) instr_create(ctx, 0, OPC_NOP); } static unsigned src_flags(struct fd3_compile_context *ctx, struct ir3_register *reg) { unsigned flags = 0; if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)) return flags; if (regmask_get(&ctx->needs_ss, reg)) { flags |= IR3_INSTR_SS; regmask_init(&ctx->needs_ss); } if (regmask_get(&ctx->needs_sy, reg)) { flags |= IR3_INSTR_SY; regmask_init(&ctx->needs_sy); } return flags; } static struct ir3_register * add_dst_reg(struct fd3_compile_context *ctx, struct ir3_instruction *instr, const struct tgsi_dst_register *dst, unsigned chan) { unsigned flags = 0, num = 0; struct ir3_register *reg; switch (dst->File) { case TGSI_FILE_OUTPUT: case TGSI_FILE_TEMPORARY: num = dst->Index + ctx->base_reg[dst->File]; break; case TGSI_FILE_ADDRESS: num = REG_A0; break; default: compile_error(ctx, "unsupported dst register file: %s\n", tgsi_file_name(dst->File)); break; } if (dst->Indirect) flags |= IR3_REG_RELATIV; if (ctx->so->key.half_precision) flags |= IR3_REG_HALF; reg = ir3_reg_create(instr, regid(num, chan), flags); if (dst->Indirect) ctx->last_rel = instr; return reg; } static struct ir3_register * add_src_reg(struct fd3_compile_context *ctx, struct ir3_instruction *instr, const struct tgsi_src_register *src, unsigned chan) { unsigned flags = 0, num = 0; struct ir3_register *reg; /* TODO we need to use a mov to temp for const >= 64.. or maybe * we could use relative addressing.. */ compile_assert(ctx, src->Index < 64); switch (src->File) { case TGSI_FILE_IMMEDIATE: /* TODO if possible, use actual immediate instead of const.. but * TGSI has vec4 immediates, we can only embed scalar (of limited * size, depending on instruction..) */ case TGSI_FILE_CONSTANT: flags |= IR3_REG_CONST; num = src->Index + ctx->base_reg[src->File]; break; case TGSI_FILE_OUTPUT: /* NOTE: we should only end up w/ OUTPUT file for things like * clamp()'ing saturated dst instructions */ case TGSI_FILE_INPUT: case TGSI_FILE_TEMPORARY: num = src->Index + ctx->base_reg[src->File]; break; default: compile_error(ctx, "unsupported src register file: %s\n", tgsi_file_name(src->File)); break; } if (src->Absolute) flags |= IR3_REG_ABS; if (src->Negate) flags |= IR3_REG_NEGATE; if (src->Indirect) flags |= IR3_REG_RELATIV; if (ctx->so->key.half_precision) flags |= IR3_REG_HALF; reg = ir3_reg_create(instr, regid(num, chan), flags); if (src->Indirect) ctx->last_rel = instr; instr->flags |= src_flags(ctx, reg); return reg; } static void src_from_dst(struct tgsi_src_register *src, struct tgsi_dst_register *dst) { src->File = dst->File; src->Indirect = dst->Indirect; src->Dimension = dst->Dimension; src->Index = dst->Index; src->Absolute = 0; src->Negate = 0; src->SwizzleX = TGSI_SWIZZLE_X; src->SwizzleY = TGSI_SWIZZLE_Y; src->SwizzleZ = TGSI_SWIZZLE_Z; src->SwizzleW = TGSI_SWIZZLE_W; } /* Get internal-temp src/dst to use for a sequence of instructions * generated by a single TGSI op. */ static struct tgsi_src_register * get_internal_temp(struct fd3_compile_context *ctx, struct tgsi_dst_register *tmp_dst) { struct tgsi_src_register *tmp_src; int n; tmp_dst->File = TGSI_FILE_TEMPORARY; tmp_dst->WriteMask = TGSI_WRITEMASK_XYZW; tmp_dst->Indirect = 0; tmp_dst->Dimension = 0; /* assign next temporary: */ n = ctx->num_internal_temps++; compile_assert(ctx, n < ARRAY_SIZE(ctx->internal_temps)); tmp_src = &ctx->internal_temps[n]; tmp_dst->Index = ctx->info.file_max[TGSI_FILE_TEMPORARY] + n + 1; src_from_dst(tmp_src, tmp_dst); return tmp_src; } /* Get internal half-precision temp src/dst to use for a sequence of * instructions generated by a single TGSI op. */ static struct tgsi_src_register * get_internal_temp_hr(struct fd3_compile_context *ctx, struct tgsi_dst_register *tmp_dst) { struct tgsi_src_register *tmp_src; int n; if (ctx->so->key.half_precision) return get_internal_temp(ctx, tmp_dst); tmp_dst->File = TGSI_FILE_TEMPORARY; tmp_dst->WriteMask = TGSI_WRITEMASK_XYZW; tmp_dst->Indirect = 0; tmp_dst->Dimension = 0; /* assign next temporary: */ n = ctx->num_internal_temps++; compile_assert(ctx, n < ARRAY_SIZE(ctx->internal_temps)); tmp_src = &ctx->internal_temps[n]; /* just use hr0 because no one else should be using half- * precision regs: */ tmp_dst->Index = 0; src_from_dst(tmp_src, tmp_dst); return tmp_src; } static inline bool is_const(struct tgsi_src_register *src) { return (src->File == TGSI_FILE_CONSTANT) || (src->File == TGSI_FILE_IMMEDIATE); } static inline bool is_relative(struct tgsi_src_register *src) { return src->Indirect; } static inline bool is_rel_or_const(struct tgsi_src_register *src) { return is_relative(src) || is_const(src); } static type_t get_ftype(struct fd3_compile_context *ctx) { return ctx->so->key.half_precision ? TYPE_F16 : TYPE_F32; } static type_t get_utype(struct fd3_compile_context *ctx) { return ctx->so->key.half_precision ? TYPE_U16 : TYPE_U32; } static unsigned src_swiz(struct tgsi_src_register *src, int chan) { switch (chan) { case 0: return src->SwizzleX; case 1: return src->SwizzleY; case 2: return src->SwizzleZ; case 3: return src->SwizzleW; } assert(0); return 0; } /* for instructions that cannot take a const register as src, if needed * generate a move to temporary gpr: */ static struct tgsi_src_register * get_unconst(struct fd3_compile_context *ctx, struct tgsi_src_register *src) { struct tgsi_dst_register tmp_dst; struct tgsi_src_register *tmp_src; compile_assert(ctx, is_rel_or_const(src)); tmp_src = get_internal_temp(ctx, &tmp_dst); create_mov(ctx, &tmp_dst, src); return tmp_src; } static void get_immediate(struct fd3_compile_context *ctx, struct tgsi_src_register *reg, uint32_t val) { unsigned neg, swiz, idx, i; /* actually maps 1:1 currently.. not sure if that is safe to rely on: */ static const unsigned swiz2tgsi[] = { TGSI_SWIZZLE_X, TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_W, }; for (i = 0; i < ctx->immediate_idx; i++) { swiz = i % 4; idx = i / 4; if (ctx->so->immediates[idx].val[swiz] == val) { neg = 0; break; } if (ctx->so->immediates[idx].val[swiz] == -val) { neg = 1; break; } } if (i == ctx->immediate_idx) { /* need to generate a new immediate: */ swiz = i % 4; idx = i / 4; neg = 0; ctx->so->immediates[idx].val[swiz] = val; ctx->so->immediates_count = idx + 1; ctx->immediate_idx++; } reg->File = TGSI_FILE_IMMEDIATE; reg->Indirect = 0; reg->Dimension = 0; reg->Index = idx; reg->Absolute = 0; reg->Negate = neg; reg->SwizzleX = swiz2tgsi[swiz]; reg->SwizzleY = swiz2tgsi[swiz]; reg->SwizzleZ = swiz2tgsi[swiz]; reg->SwizzleW = swiz2tgsi[swiz]; } static void create_mov(struct fd3_compile_context *ctx, struct tgsi_dst_register *dst, struct tgsi_src_register *src) { type_t type_mov = get_ftype(ctx); unsigned i; for (i = 0; i < 4; i++) { /* move to destination: */ if (dst->WriteMask & (1 << i)) { struct ir3_instruction *instr; if (src->Absolute || src->Negate) { /* can't have abs or neg on a mov instr, so use * absneg.f instead to handle these cases: */ instr = instr_create(ctx, 2, OPC_ABSNEG_F); } else { instr = instr_create(ctx, 1, 0); instr->cat1.src_type = type_mov; instr->cat1.dst_type = type_mov; } add_dst_reg(ctx, instr, dst, i); add_src_reg(ctx, instr, src, src_swiz(src, i)); } else { add_nop(ctx, 1); } } } static void create_clamp(struct fd3_compile_context *ctx, struct tgsi_dst_register *dst, struct tgsi_src_register *val, struct tgsi_src_register *minval, struct tgsi_src_register *maxval) { struct ir3_instruction *instr; instr = instr_create(ctx, 2, OPC_MAX_F); vectorize(ctx, instr, dst, 2, val, 0, minval, 0); instr = instr_create(ctx, 2, OPC_MIN_F); vectorize(ctx, instr, dst, 2, val, 0, maxval, 0); } static void create_clamp_imm(struct fd3_compile_context *ctx, struct tgsi_dst_register *dst, uint32_t minval, uint32_t maxval) { struct tgsi_src_register minconst, maxconst; struct tgsi_src_register src; src_from_dst(&src, dst); get_immediate(ctx, &minconst, minval); get_immediate(ctx, &maxconst, maxval); create_clamp(ctx, dst, &src, &minconst, &maxconst); } static struct tgsi_dst_register * get_dst(struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = &inst->Dst[0].Register; unsigned i; for (i = 0; i < inst->Instruction.NumSrcRegs; i++) { struct tgsi_src_register *src = &inst->Src[i].Register; if ((src->File == dst->File) && (src->Index == dst->Index)) { if ((dst->WriteMask == TGSI_WRITEMASK_XYZW) && (src->SwizzleX == TGSI_SWIZZLE_X) && (src->SwizzleY == TGSI_SWIZZLE_Y) && (src->SwizzleZ == TGSI_SWIZZLE_Z) && (src->SwizzleW == TGSI_SWIZZLE_W)) continue; ctx->tmp_src = get_internal_temp(ctx, &ctx->tmp_dst); ctx->tmp_dst.WriteMask = dst->WriteMask; dst = &ctx->tmp_dst; break; } } return dst; } static void put_dst(struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst, struct tgsi_dst_register *dst) { /* if necessary, add mov back into original dst: */ if (dst != &inst->Dst[0].Register) { create_mov(ctx, &inst->Dst[0].Register, ctx->tmp_src); } } /* helper to generate the necessary repeat and/or additional instructions * to turn a scalar instruction into a vector operation: */ static void vectorize(struct fd3_compile_context *ctx, struct ir3_instruction *instr, struct tgsi_dst_register *dst, int nsrcs, ...) { va_list ap; int i, j, n = 0; bool indirect = dst->Indirect; add_dst_reg(ctx, instr, dst, TGSI_SWIZZLE_X); va_start(ap, nsrcs); for (j = 0; j < nsrcs; j++) { struct tgsi_src_register *src = va_arg(ap, struct tgsi_src_register *); unsigned flags = va_arg(ap, unsigned); struct ir3_register *reg; if (flags & IR3_REG_IMMED) { reg = ir3_reg_create(instr, 0, IR3_REG_IMMED); /* this is an ugly cast.. should have put flags first! */ reg->iim_val = *(int *)&src; } else { reg = add_src_reg(ctx, instr, src, TGSI_SWIZZLE_X); indirect |= src->Indirect; } reg->flags |= flags & ~IR3_REG_NEGATE; if (flags & IR3_REG_NEGATE) reg->flags ^= IR3_REG_NEGATE; } va_end(ap); for (i = 0; i < 4; i++) { if (dst->WriteMask & (1 << i)) { struct ir3_instruction *cur; if (n++ == 0) { cur = instr; } else { cur = ir3_instr_clone(instr); cur->flags &= ~(IR3_INSTR_SY | IR3_INSTR_SS | IR3_INSTR_JP); } /* fix-up dst register component: */ cur->regs[0]->num = regid(cur->regs[0]->num >> 2, i); /* fix-up src register component: */ va_start(ap, nsrcs); for (j = 0; j < nsrcs; j++) { struct tgsi_src_register *src = va_arg(ap, struct tgsi_src_register *); unsigned flags = va_arg(ap, unsigned); if (!(flags & IR3_REG_IMMED)) { cur->regs[j+1]->num = regid(cur->regs[j+1]->num >> 2, src_swiz(src, i)); cur->flags |= src_flags(ctx, cur->regs[j+1]); } } va_end(ap); if (indirect) ctx->last_rel = cur; } } /* pad w/ nop's.. at least until we are clever enough to * figure out if we really need to.. */ add_nop(ctx, 4 - n); } /* * Handlers for TGSI instructions which do not have a 1:1 mapping to * native instructions: */ static void trans_clamp(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *src0 = &inst->Src[0].Register; struct tgsi_src_register *src1 = &inst->Src[1].Register; struct tgsi_src_register *src2 = &inst->Src[2].Register; create_clamp(ctx, dst, src0, src1, src2); put_dst(ctx, inst, dst); } /* ARL(x) = x, but mova from hrN.x to a0.. */ static void trans_arl(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct ir3_instruction *instr; struct tgsi_dst_register tmp_dst; struct tgsi_src_register *tmp_src; struct tgsi_dst_register *dst = &inst->Dst[0].Register; struct tgsi_src_register *src = &inst->Src[0].Register; unsigned chan = src->SwizzleX; compile_assert(ctx, dst->File == TGSI_FILE_ADDRESS); handle_last_rel(ctx); tmp_src = get_internal_temp_hr(ctx, &tmp_dst); /* cov.{f32,f16}s16 Rtmp, Rsrc */ instr = instr_create(ctx, 1, 0); instr->cat1.src_type = get_ftype(ctx); instr->cat1.dst_type = TYPE_S16; add_dst_reg(ctx, instr, &tmp_dst, chan)->flags |= IR3_REG_HALF; add_src_reg(ctx, instr, src, chan); add_nop(ctx, 3); /* shl.b Rtmp, Rtmp, 2 */ instr = instr_create(ctx, 2, OPC_SHL_B); add_dst_reg(ctx, instr, &tmp_dst, chan)->flags |= IR3_REG_HALF; add_src_reg(ctx, instr, tmp_src, chan)->flags |= IR3_REG_HALF; ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = 2; add_nop(ctx, 3); /* mova a0, Rtmp */ instr = instr_create(ctx, 1, 0); instr->cat1.src_type = TYPE_S16; instr->cat1.dst_type = TYPE_S16; add_dst_reg(ctx, instr, dst, 0)->flags |= IR3_REG_HALF; add_src_reg(ctx, instr, tmp_src, chan)->flags |= IR3_REG_HALF; /* need to ensure 5 instr slots before a0 is used: */ add_nop(ctx, 6); } /* texture fetch/sample instructions: */ static void trans_samp(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct ir3_register *r; struct ir3_instruction *instr; struct tgsi_src_register *coord = &inst->Src[0].Register; struct tgsi_src_register *samp = &inst->Src[1].Register; unsigned tex = inst->Texture.Texture; int8_t *order; unsigned i, flags = 0, src_wrmask; bool needs_mov = false; switch (t->arg) { case TGSI_OPCODE_TEX: if (tex == TGSI_TEXTURE_2D) { order = (int8_t[4]){ 0, 1, -1, -1 }; src_wrmask = TGSI_WRITEMASK_XY; } else { order = (int8_t[4]){ 0, 1, 2, -1 }; src_wrmask = TGSI_WRITEMASK_XYZ; } break; case TGSI_OPCODE_TXP: if (tex == TGSI_TEXTURE_2D) { order = (int8_t[4]){ 0, 1, 3, -1 }; src_wrmask = TGSI_WRITEMASK_XYZ; } else { order = (int8_t[4]){ 0, 1, 2, 3 }; src_wrmask = TGSI_WRITEMASK_XYZW; } flags |= IR3_INSTR_P; break; default: compile_assert(ctx, 0); break; } if ((tex == TGSI_TEXTURE_3D) || (tex == TGSI_TEXTURE_CUBE)) { add_nop(ctx, 3); flags |= IR3_INSTR_3D; } /* cat5 instruction cannot seem to handle const or relative: */ if (is_rel_or_const(coord)) needs_mov = true; /* The texture sample instructions need to coord in successive * registers/components (ie. src.xy but not src.yx). And TXP * needs the .w component in .z for 2D.. so in some cases we * might need to emit some mov instructions to shuffle things * around: */ for (i = 1; (i < 4) && (order[i] >= 0) && !needs_mov; i++) if (src_swiz(coord, i) != (src_swiz(coord, 0) + order[i])) needs_mov = true; if (needs_mov) { struct tgsi_dst_register tmp_dst; struct tgsi_src_register *tmp_src; unsigned j; type_t type_mov = get_ftype(ctx); /* need to move things around: */ tmp_src = get_internal_temp(ctx, &tmp_dst); for (j = 0; (j < 4) && (order[j] >= 0); j++) { instr = instr_create(ctx, 1, 0); instr->cat1.src_type = type_mov; instr->cat1.dst_type = type_mov; add_dst_reg(ctx, instr, &tmp_dst, j); add_src_reg(ctx, instr, coord, src_swiz(coord, order[j])); } coord = tmp_src; add_nop(ctx, 4 - j); } instr = instr_create(ctx, 5, t->opc); instr->cat5.type = get_ftype(ctx); instr->cat5.samp = samp->Index; instr->cat5.tex = samp->Index; instr->flags |= flags; r = add_dst_reg(ctx, instr, &inst->Dst[0].Register, 0); r->wrmask = inst->Dst[0].Register.WriteMask; add_src_reg(ctx, instr, coord, coord->SwizzleX)->wrmask = src_wrmask; /* after add_src_reg() so we don't set (sy) on sam instr itself! */ regmask_set(&ctx->needs_sy, r); } /* * SEQ(a,b) = (a == b) ? 1.0 : 0.0 * cmps.f.eq tmp0, b, a * cov.u16f16 dst, tmp0 * * SNE(a,b) = (a != b) ? 1.0 : 0.0 * cmps.f.eq tmp0, b, a * add.s tmp0, tmp0, -1 * sel.f16 dst, {0.0}, tmp0, {1.0} * * SGE(a,b) = (a >= b) ? 1.0 : 0.0 * cmps.f.ge tmp0, a, b * cov.u16f16 dst, tmp0 * * SLE(a,b) = (a <= b) ? 1.0 : 0.0 * cmps.f.ge tmp0, b, a * cov.u16f16 dst, tmp0 * * SGT(a,b) = (a > b) ? 1.0 : 0.0 * cmps.f.ge tmp0, b, a * add.s tmp0, tmp0, -1 * sel.f16 dst, {0.0}, tmp0, {1.0} * * SLT(a,b) = (a < b) ? 1.0 : 0.0 * cmps.f.ge tmp0, a, b * add.s tmp0, tmp0, -1 * sel.f16 dst, {0.0}, tmp0, {1.0} * * CMP(a,b,c) = (a < 0.0) ? b : c * cmps.f.ge tmp0, a, {0.0} * add.s tmp0, tmp0, -1 * sel.f16 dst, c, tmp0, b */ static void trans_cmp(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct ir3_instruction *instr; struct tgsi_dst_register tmp_dst; struct tgsi_src_register *tmp_src; struct tgsi_src_register constval0, constval1; /* final instruction for CMP() uses orig src1 and src2: */ struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *a0, *a1; unsigned condition; tmp_src = get_internal_temp(ctx, &tmp_dst); switch (t->tgsi_opc) { case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SNE: a0 = &inst->Src[1].Register; /* b */ a1 = &inst->Src[0].Register; /* a */ condition = IR3_COND_EQ; break; case TGSI_OPCODE_SGE: case TGSI_OPCODE_SLT: a0 = &inst->Src[0].Register; /* a */ a1 = &inst->Src[1].Register; /* b */ condition = IR3_COND_GE; break; case TGSI_OPCODE_SLE: case TGSI_OPCODE_SGT: a0 = &inst->Src[1].Register; /* b */ a1 = &inst->Src[0].Register; /* a */ condition = IR3_COND_GE; break; case TGSI_OPCODE_CMP: get_immediate(ctx, &constval0, fui(0.0)); a0 = &inst->Src[0].Register; /* a */ a1 = &constval0; /* {0.0} */ condition = IR3_COND_GE; break; default: compile_assert(ctx, 0); return; } if (is_const(a0) && is_const(a1)) a0 = get_unconst(ctx, a0); /* cmps.f.ge tmp, a0, a1 */ instr = instr_create(ctx, 2, OPC_CMPS_F); instr->cat2.condition = condition; vectorize(ctx, instr, &tmp_dst, 2, a0, 0, a1, 0); switch (t->tgsi_opc) { case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SGE: case TGSI_OPCODE_SLE: /* cov.u16f16 dst, tmp0 */ instr = instr_create(ctx, 1, 0); instr->cat1.src_type = get_utype(ctx); instr->cat1.dst_type = get_ftype(ctx); vectorize(ctx, instr, dst, 1, tmp_src, 0); break; case TGSI_OPCODE_SNE: case TGSI_OPCODE_SGT: case TGSI_OPCODE_SLT: case TGSI_OPCODE_CMP: /* add.s tmp, tmp, -1 */ instr = instr_create(ctx, 2, OPC_ADD_S); vectorize(ctx, instr, &tmp_dst, 2, tmp_src, 0, -1, IR3_REG_IMMED); if (t->tgsi_opc == TGSI_OPCODE_CMP) { /* sel.{f32,f16} dst, src2, tmp, src1 */ instr = instr_create(ctx, 3, ctx->so->key.half_precision ? OPC_SEL_F16 : OPC_SEL_F32); vectorize(ctx, instr, dst, 3, &inst->Src[2].Register, 0, tmp_src, 0, &inst->Src[1].Register, 0); } else { get_immediate(ctx, &constval0, fui(0.0)); get_immediate(ctx, &constval1, fui(1.0)); /* sel.{f32,f16} dst, {0.0}, tmp0, {1.0} */ instr = instr_create(ctx, 3, ctx->so->key.half_precision ? OPC_SEL_F16 : OPC_SEL_F32); vectorize(ctx, instr, dst, 3, &constval0, 0, tmp_src, 0, &constval1, 0); } break; } put_dst(ctx, inst, dst); } /* * Conditional / Flow control */ static unsigned find_instruction(struct fd3_compile_context *ctx, struct ir3_instruction *instr) { unsigned i; for (i = 0; i < ctx->ir->instrs_count; i++) if (ctx->ir->instrs[i] == instr) return i; return ~0; } static void push_branch(struct fd3_compile_context *ctx, struct ir3_instruction *instr) { ctx->branch[ctx->branch_count++] = instr; } static void pop_branch(struct fd3_compile_context *ctx) { struct ir3_instruction *instr; /* if we were clever enough, we'd patch this up after the fact, * and set (jp) flag on whatever the next instruction was, rather * than inserting an extra nop.. */ instr = instr_create(ctx, 0, OPC_NOP); instr->flags |= IR3_INSTR_JP; /* pop the branch instruction from the stack and fix up branch target: */ instr = ctx->branch[--ctx->branch_count]; instr->cat0.immed = ctx->ir->instrs_count - find_instruction(ctx, instr) - 1; } /* We probably don't really want to translate if/else/endif into branches.. * the blob driver evaluates both legs of the if and then uses the sel * instruction to pick which sides of the branch to "keep".. but figuring * that out will take somewhat more compiler smarts. So hopefully branches * don't kill performance too badly. */ static void trans_if(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct ir3_instruction *instr; struct tgsi_src_register *src = &inst->Src[0].Register; struct tgsi_src_register constval; get_immediate(ctx, &constval, fui(0.0)); if (is_const(src)) src = get_unconst(ctx, src); instr = instr_create(ctx, 2, OPC_CMPS_F); ir3_reg_create(instr, regid(REG_P0, 0), 0); add_src_reg(ctx, instr, src, src->SwizzleX); add_src_reg(ctx, instr, &constval, constval.SwizzleX); instr->cat2.condition = IR3_COND_EQ; instr = instr_create(ctx, 0, OPC_BR); push_branch(ctx, instr); } static void trans_else(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct ir3_instruction *instr; /* for first half of if/else/endif, generate a jump past the else: */ instr = instr_create(ctx, 0, OPC_JUMP); pop_branch(ctx); push_branch(ctx, instr); } static void trans_endif(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { pop_branch(ctx); } /* * Handlers for TGSI instructions which do have 1:1 mapping to native * instructions: */ static void instr_cat0(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { instr_create(ctx, 0, t->opc); } static void instr_cat1(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *src = &inst->Src[0].Register; /* mov instructions can't handle a negate on src: */ if (src->Negate) { struct tgsi_src_register constval; struct ir3_instruction *instr; /* since right now, we are using uniformly either TYPE_F16 or * TYPE_F32, and we don't utilize the conversion possibilities * of mov instructions, we can get away with substituting an * add.f which can handle negate. Might need to revisit this * in the future if we start supporting widening/narrowing or * conversion to/from integer.. */ instr = instr_create(ctx, 2, OPC_ADD_F); get_immediate(ctx, &constval, fui(0.0)); vectorize(ctx, instr, dst, 2, src, 0, &constval, 0); } else { create_mov(ctx, dst, src); /* create_mov() generates vector sequence, so no vectorize() */ } put_dst(ctx, inst, dst); } static void instr_cat2(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *src0 = &inst->Src[0].Register; struct tgsi_src_register *src1 = &inst->Src[1].Register; struct ir3_instruction *instr; unsigned src0_flags = 0, src1_flags = 0; switch (t->tgsi_opc) { case TGSI_OPCODE_ABS: src0_flags = IR3_REG_ABS; break; case TGSI_OPCODE_SUB: src1_flags = IR3_REG_NEGATE; break; } switch (t->opc) { case OPC_ABSNEG_F: case OPC_ABSNEG_S: case OPC_CLZ_B: case OPC_CLZ_S: case OPC_SIGN_F: case OPC_FLOOR_F: case OPC_CEIL_F: case OPC_RNDNE_F: case OPC_RNDAZ_F: case OPC_TRUNC_F: case OPC_NOT_B: case OPC_BFREV_B: case OPC_SETRM: case OPC_CBITS_B: /* these only have one src reg */ instr = instr_create(ctx, 2, t->opc); vectorize(ctx, instr, dst, 1, src0, src0_flags); break; default: if (is_const(src0) && is_const(src1)) src0 = get_unconst(ctx, src0); instr = instr_create(ctx, 2, t->opc); vectorize(ctx, instr, dst, 2, src0, src0_flags, src1, src1_flags); break; } put_dst(ctx, inst, dst); } static void instr_cat3(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *src0 = &inst->Src[0].Register; struct tgsi_src_register *src1 = &inst->Src[1].Register; struct ir3_instruction *instr; /* in particular, can't handle const for src1 for cat3.. * for mad, we can swap first two src's if needed: */ if (is_rel_or_const(src1)) { if (is_mad(t->opc) && !is_rel_or_const(src0)) { struct tgsi_src_register *tmp; tmp = src0; src0 = src1; src1 = tmp; } else { src1 = get_unconst(ctx, src1); } } instr = instr_create(ctx, 3, ctx->so->key.half_precision ? t->hopc : t->opc); vectorize(ctx, instr, dst, 3, src0, 0, src1, 0, &inst->Src[2].Register, 0); put_dst(ctx, inst, dst); } static void instr_cat4(const struct instr_translater *t, struct fd3_compile_context *ctx, struct tgsi_full_instruction *inst) { struct tgsi_dst_register *dst = get_dst(ctx, inst); struct tgsi_src_register *src = &inst->Src[0].Register; struct ir3_instruction *instr; unsigned i, n; /* seems like blob compiler avoids const as src.. */ if (is_const(src)) src = get_unconst(ctx, src); /* worst case: */ add_nop(ctx, 6); /* we need to replicate into each component: */ for (i = 0, n = 0; i < 4; i++) { if (dst->WriteMask & (1 << i)) { if (n++) add_nop(ctx, 1); instr = instr_create(ctx, 4, t->opc); add_dst_reg(ctx, instr, dst, i); add_src_reg(ctx, instr, src, src->SwizzleX); } } regmask_set(&ctx->needs_ss, instr->regs[0]); put_dst(ctx, inst, dst); } static const struct instr_translater translaters[TGSI_OPCODE_LAST] = { #define INSTR(n, f, ...) \ [TGSI_OPCODE_ ## n] = { .fxn = (f), .tgsi_opc = TGSI_OPCODE_ ## n, ##__VA_ARGS__ } INSTR(MOV, instr_cat1), INSTR(RCP, instr_cat4, .opc = OPC_RCP), INSTR(RSQ, instr_cat4, .opc = OPC_RSQ), INSTR(SQRT, instr_cat4, .opc = OPC_SQRT), INSTR(MUL, instr_cat2, .opc = OPC_MUL_F), INSTR(ADD, instr_cat2, .opc = OPC_ADD_F), INSTR(SUB, instr_cat2, .opc = OPC_ADD_F), INSTR(MIN, instr_cat2, .opc = OPC_MIN_F), INSTR(MAX, instr_cat2, .opc = OPC_MAX_F), INSTR(MAD, instr_cat3, .opc = OPC_MAD_F32, .hopc = OPC_MAD_F16), INSTR(TRUNC, instr_cat2, .opc = OPC_TRUNC_F), INSTR(CLAMP, trans_clamp), INSTR(FLR, instr_cat2, .opc = OPC_FLOOR_F), INSTR(ROUND, instr_cat2, .opc = OPC_RNDNE_F), INSTR(SSG, instr_cat2, .opc = OPC_SIGN_F), INSTR(ARL, trans_arl), INSTR(EX2, instr_cat4, .opc = OPC_EXP2), INSTR(LG2, instr_cat4, .opc = OPC_LOG2), INSTR(ABS, instr_cat2, .opc = OPC_ABSNEG_F), INSTR(COS, instr_cat4, .opc = OPC_COS), INSTR(SIN, instr_cat4, .opc = OPC_SIN), INSTR(TEX, trans_samp, .opc = OPC_SAM, .arg = TGSI_OPCODE_TEX), INSTR(TXP, trans_samp, .opc = OPC_SAM, .arg = TGSI_OPCODE_TXP), INSTR(SGT, trans_cmp), INSTR(SLT, trans_cmp), INSTR(SGE, trans_cmp), INSTR(SLE, trans_cmp), INSTR(SNE, trans_cmp), INSTR(SEQ, trans_cmp), INSTR(CMP, trans_cmp), INSTR(IF, trans_if), INSTR(ELSE, trans_else), INSTR(ENDIF, trans_endif), INSTR(END, instr_cat0, .opc = OPC_END), INSTR(KILL, instr_cat0, .opc = OPC_KILL), }; static fd3_semantic decl_semantic(const struct tgsi_declaration_semantic *sem) { return fd3_semantic_name(sem->Name, sem->Index); } static int decl_in(struct fd3_compile_context *ctx, struct tgsi_full_declaration *decl) { struct fd3_shader_variant *so = ctx->so; unsigned base = ctx->base_reg[TGSI_FILE_INPUT]; unsigned i, flags = 0; int nop = 0; /* I don't think we should get frag shader input without * semantic info? Otherwise how do inputs get linked to * vert outputs? */ compile_assert(ctx, (ctx->type == TGSI_PROCESSOR_VERTEX) || decl->Declaration.Semantic); if (ctx->so->key.half_precision) flags |= IR3_REG_HALF; for (i = decl->Range.First; i <= decl->Range.Last; i++) { unsigned n = so->inputs_count++; unsigned r = regid(i + base, 0); unsigned ncomp; /* TODO use ctx->info.input_usage_mask[decl->Range.n] to figure out ncomp: */ ncomp = 4; DBG("decl in -> r%d", i + base); // XXX so->inputs[n].semantic = decl_semantic(&decl->Semantic); so->inputs[n].compmask = (1 << ncomp) - 1; so->inputs[n].regid = r; so->inputs[n].inloc = ctx->next_inloc; so->inputs[n].bary = true; /* all that is supported */ ctx->next_inloc += ncomp; so->total_in += ncomp; /* for frag shaders, we need to generate the corresponding bary instr: */ if (ctx->type == TGSI_PROCESSOR_FRAGMENT) { unsigned j; for (j = 0; j < ncomp; j++) { struct ir3_instruction *instr; struct ir3_register *dst; instr = instr_create(ctx, 2, OPC_BARY_F); /* dst register: */ dst = ir3_reg_create(instr, r + j, flags); ctx->last_input = dst; /* input position: */ ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = so->inputs[n].inloc + j - 8; /* input base (always r0.xy): */ ir3_reg_create(instr, regid(0,0), 0)->wrmask = 0x3; } nop = 6; } } return nop; } static void decl_out(struct fd3_compile_context *ctx, struct tgsi_full_declaration *decl) { struct fd3_shader_variant *so = ctx->so; unsigned base = ctx->base_reg[TGSI_FILE_OUTPUT]; unsigned comp = 0; unsigned name = decl->Semantic.Name; unsigned i; compile_assert(ctx, decl->Declaration.Semantic); // TODO is this ever not true? DBG("decl out[%d] -> r%d", name, decl->Range.First + base); // XXX if (ctx->type == TGSI_PROCESSOR_VERTEX) { switch (name) { case TGSI_SEMANTIC_POSITION: so->writes_pos = true; break; case TGSI_SEMANTIC_PSIZE: so->writes_psize = true; break; case TGSI_SEMANTIC_COLOR: case TGSI_SEMANTIC_BCOLOR: case TGSI_SEMANTIC_GENERIC: case TGSI_SEMANTIC_FOG: case TGSI_SEMANTIC_TEXCOORD: break; default: compile_error(ctx, "unknown VS semantic name: %s\n", tgsi_semantic_names[name]); } } else { switch (name) { case TGSI_SEMANTIC_POSITION: comp = 2; /* tgsi will write to .z component */ so->writes_pos = true; break; case TGSI_SEMANTIC_COLOR: break; default: compile_error(ctx, "unknown FS semantic name: %s\n", tgsi_semantic_names[name]); } } for (i = decl->Range.First; i <= decl->Range.Last; i++) { unsigned n = so->outputs_count++; so->outputs[n].semantic = decl_semantic(&decl->Semantic); so->outputs[n].regid = regid(i + base, comp); } } static void decl_samp(struct fd3_compile_context *ctx, struct tgsi_full_declaration *decl) { ctx->so->has_samp = true; } static void compile_instructions(struct fd3_compile_context *ctx) { struct ir3_shader *ir = ctx->ir; int nop = 0; while (!tgsi_parse_end_of_tokens(&ctx->parser)) { tgsi_parse_token(&ctx->parser); switch (ctx->parser.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: { struct tgsi_full_declaration *decl = &ctx->parser.FullToken.FullDeclaration; if (decl->Declaration.File == TGSI_FILE_OUTPUT) { decl_out(ctx, decl); } else if (decl->Declaration.File == TGSI_FILE_INPUT) { nop = decl_in(ctx, decl); } else if (decl->Declaration.File == TGSI_FILE_SAMPLER) { decl_samp(ctx, decl); } break; } case TGSI_TOKEN_TYPE_IMMEDIATE: { /* TODO: if we know the immediate is small enough, and only * used with instructions that can embed an immediate, we * can skip this: */ struct tgsi_full_immediate *imm = &ctx->parser.FullToken.FullImmediate; unsigned n = ctx->so->immediates_count++; memcpy(ctx->so->immediates[n].val, imm->u, 16); break; } case TGSI_TOKEN_TYPE_INSTRUCTION: { struct tgsi_full_instruction *inst = &ctx->parser.FullToken.FullInstruction; unsigned opc = inst->Instruction.Opcode; const struct instr_translater *t = &translaters[opc]; add_nop(ctx, nop); nop = 0; if (t->fxn) { t->fxn(t, ctx, inst); ctx->num_internal_temps = 0; } else { compile_error(ctx, "unknown TGSI opc: %s\n", tgsi_get_opcode_name(opc)); } switch (inst->Instruction.Saturate) { case TGSI_SAT_ZERO_ONE: create_clamp_imm(ctx, &inst->Dst[0].Register, fui(0.0), fui(1.0)); break; case TGSI_SAT_MINUS_PLUS_ONE: create_clamp_imm(ctx, &inst->Dst[0].Register, fui(-1.0), fui(1.0)); break; } break; } default: break; } } if (ir->instrs_count > 0) ir->instrs[0]->flags |= IR3_INSTR_SS | IR3_INSTR_SY; if (ctx->last_input) ctx->last_input->flags |= IR3_REG_EI; handle_last_rel(ctx); } int fd3_compile_shader_old(struct fd3_shader_variant *so, const struct tgsi_token *tokens, struct fd3_shader_key key) { struct fd3_compile_context ctx; assert(!so->ir); so->ir = ir3_shader_create(); assert(so->ir); if (compile_init(&ctx, so, tokens) != TGSI_PARSE_OK) return -1; compile_instructions(&ctx); compile_free(&ctx); return 0; }