/* * Copyright (c) 2012-2015 Etnaviv Project * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Wladimir J. van der Laan */ /* TGSI->Vivante shader ISA conversion */ /* What does the compiler return (see etna_shader_object)? * 1) instruction data * 2) input-to-temporary mapping (fixed for ps) * *) in case of ps, semantic -> varying id mapping * *) for each varying: number of components used (r, rg, rgb, rgba) * 3) temporary-to-output mapping (in case of vs, fixed for ps) * 4) for each input/output: possible semantic (position, color, glpointcoord, ...) * 5) immediates base offset, immediates data * 6) used texture units (and possibly the TGSI_TEXTURE_* type); not needed to * configure the hw, but useful for error checking * 7) enough information to add the z=(z+w)/2.0 necessary for older chips * (output reg id is enough) * * Empty shaders are not allowed, should always at least generate a NOP. Also * if there is a label at the end of the shader, an extra NOP should be * generated as jump target. * * TODO * * Use an instruction scheduler * * Indirect access to uniforms / temporaries using amode */ #include "etnaviv_compiler.h" #include "etnaviv_asm.h" #include "etnaviv_context.h" #include "etnaviv_debug.h" #include "etnaviv_disasm.h" #include "etnaviv_uniforms.h" #include "etnaviv_util.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_iterate.h" #include "tgsi/tgsi_lowering.h" #include "tgsi/tgsi_strings.h" #include "tgsi/tgsi_util.h" #include "util/u_math.h" #include "util/u_memory.h" #include #include #include #include #define ETNA_MAX_INNER_TEMPS 2 static const float sincos_const[2][4] = { { 2., -1., 4., -4., }, { 1. / (2. * M_PI), 0.75, 0.5, 0.0, }, }; /* Native register description structure */ struct etna_native_reg { unsigned valid : 1; unsigned is_tex : 1; /* is texture unit, overrides rgroup */ unsigned rgroup : 3; unsigned id : 9; }; /* Register description */ struct etna_reg_desc { enum tgsi_file_type file; /* IN, OUT, TEMP, ... */ int idx; /* index into file */ bool active; /* used in program */ int first_use; /* instruction id of first use (scope begin) */ int last_use; /* instruction id of last use (scope end, inclusive) */ struct etna_native_reg native; /* native register to map to */ unsigned usage_mask : 4; /* usage, per channel */ bool has_semantic; /* register has associated TGSI semantic */ struct tgsi_declaration_semantic semantic; /* TGSI semantic */ struct tgsi_declaration_interp interp; /* Interpolation type */ }; /* Label information structure */ struct etna_compile_label { int inst_idx; /* Instruction id that label points to */ }; enum etna_compile_frame_type { ETNA_COMPILE_FRAME_IF, /* IF/ELSE/ENDIF */ ETNA_COMPILE_FRAME_LOOP, }; /* nesting scope frame (LOOP, IF, ...) during compilation */ struct etna_compile_frame { enum etna_compile_frame_type type; struct etna_compile_label *lbl_else; struct etna_compile_label *lbl_endif; struct etna_compile_label *lbl_loop_bgn; struct etna_compile_label *lbl_loop_end; }; struct etna_compile_file { /* Number of registers in each TGSI file (max register+1) */ size_t reg_size; /* Register descriptions, per register index */ struct etna_reg_desc *reg; }; #define array_insert(arr, val) \ do { \ if (arr##_count == arr##_sz) { \ arr##_sz = MAX2(2 * arr##_sz, 16); \ arr = realloc(arr, arr##_sz * sizeof(arr[0])); \ } \ arr[arr##_count++] = val; \ } while (0) /* scratch area for compiling shader, freed after compilation finishes */ struct etna_compile { const struct tgsi_token *tokens; bool free_tokens; struct tgsi_shader_info info; /* Register descriptions, per TGSI file, per register index */ struct etna_compile_file file[TGSI_FILE_COUNT]; /* Keep track of TGSI register declarations */ struct etna_reg_desc decl[ETNA_MAX_DECL]; uint total_decls; /* Bitmap of dead instructions which are removed in a separate pass */ bool dead_inst[ETNA_MAX_TOKENS]; /* Immediate data */ enum etna_immediate_contents imm_contents[ETNA_MAX_IMM]; uint32_t imm_data[ETNA_MAX_IMM]; uint32_t imm_base; /* base of immediates (in 32 bit units) */ uint32_t imm_size; /* size of immediates (in 32 bit units) */ /* Next free native register, for register allocation */ uint32_t next_free_native; /* Temporary register for use within translated TGSI instruction, * only allocated when needed. */ int inner_temps; /* number of inner temps used; only up to one available at this point */ struct etna_native_reg inner_temp[ETNA_MAX_INNER_TEMPS]; /* Fields for handling nested conditionals */ struct etna_compile_frame frame_stack[ETNA_MAX_DEPTH]; int frame_sp; struct etna_compile_label *lbl_usage[ETNA_MAX_INSTRUCTIONS]; unsigned labels_count, labels_sz; struct etna_compile_label *labels; unsigned num_loops; /* Code generation */ int inst_ptr; /* current instruction pointer */ uint32_t code[ETNA_MAX_INSTRUCTIONS * ETNA_INST_SIZE]; /* I/O */ /* Number of varyings (PS only) */ int num_varyings; /* GPU hardware specs */ const struct etna_specs *specs; }; static struct etna_reg_desc * etna_get_dst_reg(struct etna_compile *c, struct tgsi_dst_register dst) { return &c->file[dst.File].reg[dst.Index]; } static struct etna_reg_desc * etna_get_src_reg(struct etna_compile *c, struct tgsi_src_register src) { return &c->file[src.File].reg[src.Index]; } static struct etna_native_reg etna_native_temp(unsigned reg) { return (struct etna_native_reg) { .valid = 1, .rgroup = INST_RGROUP_TEMP, .id = reg }; } /** Register allocation **/ enum reg_sort_order { FIRST_USE_ASC, FIRST_USE_DESC, LAST_USE_ASC, LAST_USE_DESC }; /* Augmented register description for sorting */ struct sort_rec { struct etna_reg_desc *ptr; int key; }; static int sort_rec_compar(const struct sort_rec *a, const struct sort_rec *b) { if (a->key < b->key) return -1; if (a->key > b->key) return 1; return 0; } /* create an index on a register set based on certain criteria. */ static int sort_registers(struct sort_rec *sorted, struct etna_compile_file *file, enum reg_sort_order so) { struct etna_reg_desc *regs = file->reg; int ptr = 0; /* pre-populate keys from active registers */ for (int idx = 0; idx < file->reg_size; ++idx) { /* only interested in active registers now; will only assign inactive ones * if no space in active ones */ if (regs[idx].active) { sorted[ptr].ptr = ®s[idx]; switch (so) { case FIRST_USE_ASC: sorted[ptr].key = regs[idx].first_use; break; case LAST_USE_ASC: sorted[ptr].key = regs[idx].last_use; break; case FIRST_USE_DESC: sorted[ptr].key = -regs[idx].first_use; break; case LAST_USE_DESC: sorted[ptr].key = -regs[idx].last_use; break; } ptr++; } } /* sort index by key */ qsort(sorted, ptr, sizeof(struct sort_rec), (int (*)(const void *, const void *))sort_rec_compar); return ptr; } /* Allocate a new, unused, native temp register */ static struct etna_native_reg alloc_new_native_reg(struct etna_compile *c) { assert(c->next_free_native < ETNA_MAX_TEMPS); return etna_native_temp(c->next_free_native++); } /* assign TEMPs to native registers */ static void assign_temporaries_to_native(struct etna_compile *c, struct etna_compile_file *file) { struct etna_reg_desc *temps = file->reg; for (int idx = 0; idx < file->reg_size; ++idx) temps[idx].native = alloc_new_native_reg(c); } /* assign inputs and outputs to temporaries * Gallium assumes that the hardware has separate registers for taking input and * output, however Vivante GPUs use temporaries both for passing in inputs and * passing back outputs. * Try to re-use temporary registers where possible. */ static void assign_inouts_to_temporaries(struct etna_compile *c, uint file) { bool mode_inputs = (file == TGSI_FILE_INPUT); int inout_ptr = 0, num_inouts; int temp_ptr = 0, num_temps; struct sort_rec inout_order[ETNA_MAX_TEMPS]; struct sort_rec temps_order[ETNA_MAX_TEMPS]; num_inouts = sort_registers(inout_order, &c->file[file], mode_inputs ? LAST_USE_ASC : FIRST_USE_ASC); num_temps = sort_registers(temps_order, &c->file[TGSI_FILE_TEMPORARY], mode_inputs ? FIRST_USE_ASC : LAST_USE_ASC); while (inout_ptr < num_inouts && temp_ptr < num_temps) { struct etna_reg_desc *inout = inout_order[inout_ptr].ptr; struct etna_reg_desc *temp = temps_order[temp_ptr].ptr; if (!inout->active || inout->native.valid) { /* Skip if already a native register assigned */ inout_ptr++; continue; } /* last usage of this input is before or in same instruction of first use * of temporary? */ if (mode_inputs ? (inout->last_use <= temp->first_use) : (inout->first_use >= temp->last_use)) { /* assign it and advance to next input */ inout->native = temp->native; inout_ptr++; } temp_ptr++; } /* if we couldn't reuse current ones, allocate new temporaries */ for (inout_ptr = 0; inout_ptr < num_inouts; ++inout_ptr) { struct etna_reg_desc *inout = inout_order[inout_ptr].ptr; if (inout->active && !inout->native.valid) inout->native = alloc_new_native_reg(c); } } /* Allocate an immediate with a certain value and return the index. If * there is already an immediate with that value, return that. */ static struct etna_inst_src alloc_imm(struct etna_compile *c, enum etna_immediate_contents contents, uint32_t value) { int idx; /* Could use a hash table to speed this up */ for (idx = 0; idx < c->imm_size; ++idx) { if (c->imm_contents[idx] == contents && c->imm_data[idx] == value) break; } /* look if there is an unused slot */ if (idx == c->imm_size) { for (idx = 0; idx < c->imm_size; ++idx) { if (c->imm_contents[idx] == ETNA_IMMEDIATE_UNUSED) break; } } /* allocate new immediate */ if (idx == c->imm_size) { assert(c->imm_size < ETNA_MAX_IMM); idx = c->imm_size++; c->imm_data[idx] = value; c->imm_contents[idx] = contents; } /* swizzle so that component with value is returned in all components */ idx += c->imm_base; struct etna_inst_src imm_src = { .use = 1, .rgroup = INST_RGROUP_UNIFORM_0, .reg = idx / 4, .swiz = INST_SWIZ_BROADCAST(idx & 3) }; return imm_src; } static struct etna_inst_src alloc_imm_u32(struct etna_compile *c, uint32_t value) { return alloc_imm(c, ETNA_IMMEDIATE_CONSTANT, value); } static struct etna_inst_src alloc_imm_vec4u(struct etna_compile *c, enum etna_immediate_contents contents, const uint32_t *values) { struct etna_inst_src imm_src = { }; int idx, i; for (idx = 0; idx + 3 < c->imm_size; idx += 4) { /* What if we can use a uniform with a different swizzle? */ for (i = 0; i < 4; i++) if (c->imm_contents[idx + i] != contents || c->imm_data[idx + i] != values[i]) break; if (i == 4) break; } if (idx + 3 >= c->imm_size) { idx = align(c->imm_size, 4); assert(idx + 4 <= ETNA_MAX_IMM); for (i = 0; i < 4; i++) { c->imm_data[idx + i] = values[i]; c->imm_contents[idx + i] = contents; } c->imm_size = idx + 4; } assert((c->imm_base & 3) == 0); idx += c->imm_base; imm_src.use = 1; imm_src.rgroup = INST_RGROUP_UNIFORM_0; imm_src.reg = idx / 4; imm_src.swiz = INST_SWIZ_IDENTITY; return imm_src; } static uint32_t get_imm_u32(struct etna_compile *c, const struct etna_inst_src *imm, unsigned swiz_idx) { assert(imm->use == 1 && imm->rgroup == INST_RGROUP_UNIFORM_0); unsigned int idx = imm->reg * 4 + ((imm->swiz >> (swiz_idx * 2)) & 3); return c->imm_data[idx]; } /* Allocate immediate with a certain float value. If there is already an * immediate with that value, return that. */ static struct etna_inst_src alloc_imm_f32(struct etna_compile *c, float value) { return alloc_imm_u32(c, fui(value)); } static struct etna_inst_src etna_imm_vec4f(struct etna_compile *c, const float *vec4) { uint32_t val[4]; for (int i = 0; i < 4; i++) val[i] = fui(vec4[i]); return alloc_imm_vec4u(c, ETNA_IMMEDIATE_CONSTANT, val); } /* Pass -- check register file declarations and immediates */ static void etna_compile_parse_declarations(struct etna_compile *c) { struct tgsi_parse_context ctx = { }; unsigned status = TGSI_PARSE_OK; status = tgsi_parse_init(&ctx, c->tokens); assert(status == TGSI_PARSE_OK); while (!tgsi_parse_end_of_tokens(&ctx)) { tgsi_parse_token(&ctx); switch (ctx.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { /* immediates are handled differently from other files; they are * not declared explicitly, and always add four components */ const struct tgsi_full_immediate *imm = &ctx.FullToken.FullImmediate; assert(c->imm_size <= (ETNA_MAX_IMM - 4)); for (int i = 0; i < 4; ++i) { unsigned idx = c->imm_size++; c->imm_data[idx] = imm->u[i].Uint; c->imm_contents[idx] = ETNA_IMMEDIATE_CONSTANT; } } break; } } tgsi_parse_free(&ctx); } /* Allocate register declarations for the registers in all register files */ static void etna_allocate_decls(struct etna_compile *c) { uint idx = 0; for (int x = 0; x < TGSI_FILE_COUNT; ++x) { c->file[x].reg = &c->decl[idx]; c->file[x].reg_size = c->info.file_max[x] + 1; for (int sub = 0; sub < c->file[x].reg_size; ++sub) { c->decl[idx].file = x; c->decl[idx].idx = sub; idx++; } } c->total_decls = idx; } /* Pass -- check and record usage of temporaries, inputs, outputs */ static void etna_compile_pass_check_usage(struct etna_compile *c) { struct tgsi_parse_context ctx = { }; unsigned status = TGSI_PARSE_OK; status = tgsi_parse_init(&ctx, c->tokens); assert(status == TGSI_PARSE_OK); for (int idx = 0; idx < c->total_decls; ++idx) { c->decl[idx].active = false; c->decl[idx].first_use = c->decl[idx].last_use = -1; } int inst_idx = 0; while (!tgsi_parse_end_of_tokens(&ctx)) { tgsi_parse_token(&ctx); /* find out max register #s used * For every register mark first and last instruction index where it's * used this allows finding ranges where the temporary can be borrowed * as input and/or output register * * XXX in the case of loops this needs special care, or even be completely * disabled, as * the last usage of a register inside a loop means it can still be used * on next loop * iteration (execution is no longer * chronological). The register can * only be * declared "free" after the loop finishes. * * Same for inputs: the first usage of a register inside a loop doesn't * mean that the register * won't have been overwritten in previous iteration. The register can * only be declared free before the loop * starts. * The proper way would be to do full dominator / post-dominator analysis * (especially with more complicated * control flow such as direct branch instructions) but not for now... */ switch (ctx.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: { /* Declaration: fill in file details */ const struct tgsi_full_declaration *decl = &ctx.FullToken.FullDeclaration; struct etna_compile_file *file = &c->file[decl->Declaration.File]; for (int idx = decl->Range.First; idx <= decl->Range.Last; ++idx) { file->reg[idx].usage_mask = 0; // we'll compute this ourselves file->reg[idx].has_semantic = decl->Declaration.Semantic; file->reg[idx].semantic = decl->Semantic; file->reg[idx].interp = decl->Interp; } } break; case TGSI_TOKEN_TYPE_INSTRUCTION: { /* Instruction: iterate over operands of instruction */ const struct tgsi_full_instruction *inst = &ctx.FullToken.FullInstruction; /* iterate over destination registers */ for (int idx = 0; idx < inst->Instruction.NumDstRegs; ++idx) { struct etna_reg_desc *reg_desc = &c->file[inst->Dst[idx].Register.File].reg[inst->Dst[idx].Register.Index]; if (reg_desc->first_use == -1) reg_desc->first_use = inst_idx; reg_desc->last_use = inst_idx; reg_desc->active = true; } /* iterate over source registers */ for (int idx = 0; idx < inst->Instruction.NumSrcRegs; ++idx) { struct etna_reg_desc *reg_desc = &c->file[inst->Src[idx].Register.File].reg[inst->Src[idx].Register.Index]; if (reg_desc->first_use == -1) reg_desc->first_use = inst_idx; reg_desc->last_use = inst_idx; reg_desc->active = true; /* accumulate usage mask for register, this is used to determine how * many slots for varyings * should be allocated */ reg_desc->usage_mask |= tgsi_util_get_inst_usage_mask(inst, idx); } inst_idx += 1; } break; default: break; } } tgsi_parse_free(&ctx); } /* assign inputs that need to be assigned to specific registers */ static void assign_special_inputs(struct etna_compile *c) { if (c->info.processor == PIPE_SHADER_FRAGMENT) { /* never assign t0 as it is the position output, start assigning at t1 */ c->next_free_native = 1; /* hardwire TGSI_SEMANTIC_POSITION (input and output) to t0 */ for (int idx = 0; idx < c->total_decls; ++idx) { struct etna_reg_desc *reg = &c->decl[idx]; if (reg->active && reg->semantic.Name == TGSI_SEMANTIC_POSITION) reg->native = etna_native_temp(0); } } } /* Check that a move instruction does not swizzle any of the components * that it writes. */ static bool etna_mov_check_no_swizzle(const struct tgsi_dst_register dst, const struct tgsi_src_register src) { return (!(dst.WriteMask & TGSI_WRITEMASK_X) || src.SwizzleX == TGSI_SWIZZLE_X) && (!(dst.WriteMask & TGSI_WRITEMASK_Y) || src.SwizzleY == TGSI_SWIZZLE_Y) && (!(dst.WriteMask & TGSI_WRITEMASK_Z) || src.SwizzleZ == TGSI_SWIZZLE_Z) && (!(dst.WriteMask & TGSI_WRITEMASK_W) || src.SwizzleW == TGSI_SWIZZLE_W); } /* Pass -- optimize outputs * Mesa tends to generate code like this at the end if their shaders * MOV OUT[1], TEMP[2] * MOV OUT[0], TEMP[0] * MOV OUT[2], TEMP[1] * Recognize if * a) there is only a single assignment to an output register and * b) the temporary is not used after that * Also recognize direct assignment of IN to OUT (passthrough) **/ static void etna_compile_pass_optimize_outputs(struct etna_compile *c) { struct tgsi_parse_context ctx = { }; int inst_idx = 0; unsigned status = TGSI_PARSE_OK; status = tgsi_parse_init(&ctx, c->tokens); assert(status == TGSI_PARSE_OK); while (!tgsi_parse_end_of_tokens(&ctx)) { tgsi_parse_token(&ctx); switch (ctx.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *inst = &ctx.FullToken.FullInstruction; /* iterate over operands */ switch (inst->Instruction.Opcode) { case TGSI_OPCODE_MOV: { /* We are only interested in eliminating MOVs which write to * the shader outputs. Test for this early. */ if (inst->Dst[0].Register.File != TGSI_FILE_OUTPUT) break; /* Elimination of a MOV must have no visible effect on the * resulting shader: this means the MOV must not swizzle or * saturate, and its source must not have the negate or * absolute modifiers. */ if (!etna_mov_check_no_swizzle(inst->Dst[0].Register, inst->Src[0].Register) || inst->Instruction.Saturate || inst->Src[0].Register.Negate || inst->Src[0].Register.Absolute) break; uint out_idx = inst->Dst[0].Register.Index; uint in_idx = inst->Src[0].Register.Index; /* assignment of temporary to output -- * and the output doesn't yet have a native register assigned * and the last use of the temporary is this instruction * and the MOV does not do a swizzle */ if (inst->Src[0].Register.File == TGSI_FILE_TEMPORARY && !c->file[TGSI_FILE_OUTPUT].reg[out_idx].native.valid && c->file[TGSI_FILE_TEMPORARY].reg[in_idx].last_use == inst_idx) { c->file[TGSI_FILE_OUTPUT].reg[out_idx].native = c->file[TGSI_FILE_TEMPORARY].reg[in_idx].native; /* prevent temp from being re-used for the rest of the shader */ c->file[TGSI_FILE_TEMPORARY].reg[in_idx].last_use = ETNA_MAX_TOKENS; /* mark this MOV instruction as a no-op */ c->dead_inst[inst_idx] = true; } /* direct assignment of input to output -- * and the input or output doesn't yet have a native register * assigned * and the output is only used in this instruction, * allocate a new register, and associate both input and output to * it * and the MOV does not do a swizzle */ if (inst->Src[0].Register.File == TGSI_FILE_INPUT && !c->file[TGSI_FILE_INPUT].reg[in_idx].native.valid && !c->file[TGSI_FILE_OUTPUT].reg[out_idx].native.valid && c->file[TGSI_FILE_OUTPUT].reg[out_idx].last_use == inst_idx && c->file[TGSI_FILE_OUTPUT].reg[out_idx].first_use == inst_idx) { c->file[TGSI_FILE_OUTPUT].reg[out_idx].native = c->file[TGSI_FILE_INPUT].reg[in_idx].native = alloc_new_native_reg(c); /* mark this MOV instruction as a no-op */ c->dead_inst[inst_idx] = true; } } break; default:; } inst_idx += 1; } break; } } tgsi_parse_free(&ctx); } /* Get a temporary to be used within one TGSI instruction. * The first time that this function is called the temporary will be allocated. * Each call to this function will return the same temporary. */ static struct etna_native_reg etna_compile_get_inner_temp(struct etna_compile *c) { int inner_temp = c->inner_temps; if (inner_temp < ETNA_MAX_INNER_TEMPS) { if (!c->inner_temp[inner_temp].valid) c->inner_temp[inner_temp] = alloc_new_native_reg(c); /* alloc_new_native_reg() handles lack of registers */ c->inner_temps += 1; } else { BUG("Too many inner temporaries (%i) requested in one instruction", inner_temp + 1); } return c->inner_temp[inner_temp]; } static struct etna_inst_dst etna_native_to_dst(struct etna_native_reg native, unsigned comps) { /* Can only assign to temporaries */ assert(native.valid && !native.is_tex && native.rgroup == INST_RGROUP_TEMP); struct etna_inst_dst rv = { .comps = comps, .use = 1, .reg = native.id, }; return rv; } static struct etna_inst_src etna_native_to_src(struct etna_native_reg native, uint32_t swizzle) { assert(native.valid && !native.is_tex); struct etna_inst_src rv = { .use = 1, .swiz = swizzle, .rgroup = native.rgroup, .reg = native.id, .amode = INST_AMODE_DIRECT, }; return rv; } static inline struct etna_inst_src negate(struct etna_inst_src src) { src.neg = !src.neg; return src; } static inline struct etna_inst_src absolute(struct etna_inst_src src) { src.abs = 1; return src; } static inline struct etna_inst_src swizzle(struct etna_inst_src src, unsigned swizzle) { src.swiz = inst_swiz_compose(src.swiz, swizzle); return src; } /* Emit instruction and append it to program */ static void emit_inst(struct etna_compile *c, struct etna_inst *inst) { assert(c->inst_ptr <= ETNA_MAX_INSTRUCTIONS); /* Check for uniform conflicts (each instruction can only access one * uniform), * if detected, use an intermediate temporary */ unsigned uni_rgroup = -1; unsigned uni_reg = -1; for (int src = 0; src < ETNA_NUM_SRC; ++src) { if (etna_rgroup_is_uniform(inst->src[src].rgroup)) { if (uni_reg == -1) { /* first unique uniform used */ uni_rgroup = inst->src[src].rgroup; uni_reg = inst->src[src].reg; } else { /* second or later; check that it is a re-use */ if (uni_rgroup != inst->src[src].rgroup || uni_reg != inst->src[src].reg) { DBG_F(ETNA_DBG_COMPILER_MSGS, "perf warning: instruction that " "accesses different uniforms, " "need to generate extra MOV"); struct etna_native_reg inner_temp = etna_compile_get_inner_temp(c); /* Generate move instruction to temporary */ etna_assemble(&c->code[c->inst_ptr * 4], &(struct etna_inst) { .opcode = INST_OPCODE_MOV, .dst = etna_native_to_dst(inner_temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W), .src[2] = inst->src[src] }); c->inst_ptr++; /* Modify instruction to use temp register instead of uniform */ inst->src[src].use = 1; inst->src[src].rgroup = INST_RGROUP_TEMP; inst->src[src].reg = inner_temp.id; inst->src[src].swiz = INST_SWIZ_IDENTITY; /* swizzling happens on MOV */ inst->src[src].neg = 0; /* negation happens on MOV */ inst->src[src].abs = 0; /* abs happens on MOV */ inst->src[src].amode = 0; /* amode effects happen on MOV */ } } } } /* Finally assemble the actual instruction */ etna_assemble(&c->code[c->inst_ptr * 4], inst); c->inst_ptr++; } static unsigned int etna_amode(struct tgsi_ind_register indirect) { assert(indirect.File == TGSI_FILE_ADDRESS); assert(indirect.Index == 0); switch (indirect.Swizzle) { case TGSI_SWIZZLE_X: return INST_AMODE_ADD_A_X; case TGSI_SWIZZLE_Y: return INST_AMODE_ADD_A_Y; case TGSI_SWIZZLE_Z: return INST_AMODE_ADD_A_Z; case TGSI_SWIZZLE_W: return INST_AMODE_ADD_A_W; default: assert(!"Invalid swizzle"); } } /* convert destination operand */ static struct etna_inst_dst convert_dst(struct etna_compile *c, const struct tgsi_full_dst_register *in) { struct etna_inst_dst rv = { /// XXX .amode .comps = in->Register.WriteMask, }; if (in->Register.File == TGSI_FILE_ADDRESS) { assert(in->Register.Index == 0); rv.reg = in->Register.Index; rv.use = 0; } else { rv = etna_native_to_dst(etna_get_dst_reg(c, in->Register)->native, in->Register.WriteMask); } if (in->Register.Indirect) rv.amode = etna_amode(in->Indirect); return rv; } /* convert texture operand */ static struct etna_inst_tex convert_tex(struct etna_compile *c, const struct tgsi_full_src_register *in, const struct tgsi_instruction_texture *tex) { struct etna_native_reg native_reg = etna_get_src_reg(c, in->Register)->native; struct etna_inst_tex rv = { // XXX .amode (to allow for an array of samplers?) .swiz = INST_SWIZ_IDENTITY }; assert(native_reg.is_tex && native_reg.valid); rv.id = native_reg.id; return rv; } /* convert source operand */ static struct etna_inst_src etna_create_src(const struct tgsi_full_src_register *tgsi, const struct etna_native_reg *native) { const struct tgsi_src_register *reg = &tgsi->Register; struct etna_inst_src rv = { .use = 1, .swiz = INST_SWIZ(reg->SwizzleX, reg->SwizzleY, reg->SwizzleZ, reg->SwizzleW), .neg = reg->Negate, .abs = reg->Absolute, .rgroup = native->rgroup, .reg = native->id, .amode = INST_AMODE_DIRECT, }; assert(native->valid && !native->is_tex); if (reg->Indirect) rv.amode = etna_amode(tgsi->Indirect); return rv; } static struct etna_inst_src etna_mov_src_to_temp(struct etna_compile *c, struct etna_inst_src src, struct etna_native_reg temp) { struct etna_inst mov = { }; mov.opcode = INST_OPCODE_MOV; mov.sat = 0; mov.dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W); mov.src[2] = src; emit_inst(c, &mov); src.swiz = INST_SWIZ_IDENTITY; src.neg = src.abs = 0; src.rgroup = temp.rgroup; src.reg = temp.id; return src; } static struct etna_inst_src etna_mov_src(struct etna_compile *c, struct etna_inst_src src) { struct etna_native_reg temp = etna_compile_get_inner_temp(c); return etna_mov_src_to_temp(c, src, temp); } static bool etna_src_uniforms_conflict(struct etna_inst_src a, struct etna_inst_src b) { return etna_rgroup_is_uniform(a.rgroup) && etna_rgroup_is_uniform(b.rgroup) && (a.rgroup != b.rgroup || a.reg != b.reg); } /* create a new label */ static struct etna_compile_label * alloc_new_label(struct etna_compile *c) { struct etna_compile_label label = { .inst_idx = -1, /* start by point to no specific instruction */ }; array_insert(c->labels, label); return &c->labels[c->labels_count - 1]; } /* place label at current instruction pointer */ static void label_place(struct etna_compile *c, struct etna_compile_label *label) { label->inst_idx = c->inst_ptr; } /* mark label use at current instruction. * target of the label will be filled in in the marked instruction's src2.imm * slot as soon * as the value becomes known. */ static void label_mark_use(struct etna_compile *c, struct etna_compile_label *label) { assert(c->inst_ptr < ETNA_MAX_INSTRUCTIONS); c->lbl_usage[c->inst_ptr] = label; } /* walk the frame stack and return first frame with matching type */ static struct etna_compile_frame * find_frame(struct etna_compile *c, enum etna_compile_frame_type type) { for (int sp = c->frame_sp; sp >= 0; sp--) if (c->frame_stack[sp].type == type) return &c->frame_stack[sp]; assert(0); return NULL; } struct instr_translater { void (*fxn)(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src); unsigned tgsi_opc; uint8_t opc; /* tgsi src -> etna src swizzle */ int src[3]; unsigned cond; }; static void trans_instr(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { const struct tgsi_opcode_info *info = tgsi_get_opcode_info(inst->Instruction.Opcode); struct etna_inst instr = { }; instr.opcode = t->opc; instr.cond = t->cond; instr.sat = inst->Instruction.Saturate; assert(info->num_dst <= 1); if (info->num_dst) instr.dst = convert_dst(c, &inst->Dst[0]); assert(info->num_src <= ETNA_NUM_SRC); for (unsigned i = 0; i < info->num_src; i++) { int swizzle = t->src[i]; assert(swizzle != -1); instr.src[swizzle] = src[i]; } emit_inst(c, &instr); } static void trans_min_max(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_SELECT, .cond = t->cond, .sat = inst->Instruction.Saturate, .dst = convert_dst(c, &inst->Dst[0]), .src[0] = src[0], .src[1] = src[1], .src[2] = src[0], }); } static void trans_if(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { struct etna_compile_frame *f = &c->frame_stack[c->frame_sp++]; struct etna_inst_src imm_0 = alloc_imm_f32(c, 0.0f); /* push IF to stack */ f->type = ETNA_COMPILE_FRAME_IF; /* create "else" label */ f->lbl_else = alloc_new_label(c); f->lbl_endif = NULL; /* We need to avoid the emit_inst() below becoming two instructions */ if (etna_src_uniforms_conflict(src[0], imm_0)) src[0] = etna_mov_src(c, src[0]); /* mark position in instruction stream of label reference so that it can be * filled in in next pass */ label_mark_use(c, f->lbl_else); /* create conditional branch to label if src0 EQ 0 */ emit_inst(c, &(struct etna_inst){ .opcode = INST_OPCODE_BRANCH, .cond = INST_CONDITION_EQ, .src[0] = src[0], .src[1] = imm_0, /* imm is filled in later */ }); } static void trans_else(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { assert(c->frame_sp > 0); struct etna_compile_frame *f = &c->frame_stack[c->frame_sp - 1]; assert(f->type == ETNA_COMPILE_FRAME_IF); /* create "endif" label, and branch to endif label */ f->lbl_endif = alloc_new_label(c); label_mark_use(c, f->lbl_endif); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_BRANCH, .cond = INST_CONDITION_TRUE, /* imm is filled in later */ }); /* mark "else" label at this position in instruction stream */ label_place(c, f->lbl_else); } static void trans_endif(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { assert(c->frame_sp > 0); struct etna_compile_frame *f = &c->frame_stack[--c->frame_sp]; assert(f->type == ETNA_COMPILE_FRAME_IF); /* assign "endif" or "else" (if no ELSE) label to current position in * instruction stream, pop IF */ if (f->lbl_endif != NULL) label_place(c, f->lbl_endif); else label_place(c, f->lbl_else); } static void trans_loop_bgn(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { struct etna_compile_frame *f = &c->frame_stack[c->frame_sp++]; /* push LOOP to stack */ f->type = ETNA_COMPILE_FRAME_LOOP; f->lbl_loop_bgn = alloc_new_label(c); f->lbl_loop_end = alloc_new_label(c); label_place(c, f->lbl_loop_bgn); c->num_loops++; } static void trans_loop_end(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { assert(c->frame_sp > 0); struct etna_compile_frame *f = &c->frame_stack[--c->frame_sp]; assert(f->type == ETNA_COMPILE_FRAME_LOOP); /* mark position in instruction stream of label reference so that it can be * filled in in next pass */ label_mark_use(c, f->lbl_loop_bgn); /* create branch to loop_bgn label */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_BRANCH, .cond = INST_CONDITION_TRUE, .src[0] = src[0], /* imm is filled in later */ }); label_place(c, f->lbl_loop_end); } static void trans_brk(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { assert(c->frame_sp > 0); struct etna_compile_frame *f = find_frame(c, ETNA_COMPILE_FRAME_LOOP); /* mark position in instruction stream of label reference so that it can be * filled in in next pass */ label_mark_use(c, f->lbl_loop_end); /* create branch to loop_end label */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_BRANCH, .cond = INST_CONDITION_TRUE, .src[0] = src[0], /* imm is filled in later */ }); } static void trans_cont(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { assert(c->frame_sp > 0); struct etna_compile_frame *f = find_frame(c, ETNA_COMPILE_FRAME_LOOP); /* mark position in instruction stream of label reference so that it can be * filled in in next pass */ label_mark_use(c, f->lbl_loop_bgn); /* create branch to loop_end label */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_BRANCH, .cond = INST_CONDITION_TRUE, .src[0] = src[0], /* imm is filled in later */ }); } static void trans_deriv(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { emit_inst(c, &(struct etna_inst) { .opcode = t->opc, .sat = inst->Instruction.Saturate, .dst = convert_dst(c, &inst->Dst[0]), .src[0] = src[0], .src[2] = src[0], }); } static void trans_arl(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { struct etna_native_reg temp = etna_compile_get_inner_temp(c); struct etna_inst arl = { }; struct etna_inst_dst dst; dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W); if (c->specs->has_sign_floor_ceil) { struct etna_inst floor = { }; floor.opcode = INST_OPCODE_FLOOR; floor.src[2] = src[0]; floor.dst = dst; emit_inst(c, &floor); } else { struct etna_inst floor[2] = { }; floor[0].opcode = INST_OPCODE_FRC; floor[0].sat = inst->Instruction.Saturate; floor[0].dst = dst; floor[0].src[2] = src[0]; floor[1].opcode = INST_OPCODE_ADD; floor[1].sat = inst->Instruction.Saturate; floor[1].dst = dst; floor[1].src[0] = src[0]; floor[1].src[2].use = 1; floor[1].src[2].swiz = INST_SWIZ_IDENTITY; floor[1].src[2].neg = 1; floor[1].src[2].rgroup = temp.rgroup; floor[1].src[2].reg = temp.id; emit_inst(c, &floor[0]); emit_inst(c, &floor[1]); } arl.opcode = INST_OPCODE_MOVAR; arl.sat = inst->Instruction.Saturate; arl.dst = convert_dst(c, &inst->Dst[0]); arl.src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY); emit_inst(c, &arl); } static void trans_lrp(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { /* dst = src0 * src1 + (1 - src0) * src2 * => src0 * src1 - (src0 - 1) * src2 * => src0 * src1 - (src0 * src2 - src2) * MAD tTEMP.xyzw, tSRC0.xyzw, tSRC2.xyzw, -tSRC2.xyzw * MAD tDST.xyzw, tSRC0.xyzw, tSRC1.xyzw, -tTEMP.xyzw */ struct etna_native_reg temp = etna_compile_get_inner_temp(c); if (etna_src_uniforms_conflict(src[0], src[1]) || etna_src_uniforms_conflict(src[0], src[2])) { src[0] = etna_mov_src(c, src[0]); } struct etna_inst mad[2] = { }; mad[0].opcode = INST_OPCODE_MAD; mad[0].sat = 0; mad[0].dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W); mad[0].src[0] = src[0]; mad[0].src[1] = src[2]; mad[0].src[2] = negate(src[2]); mad[1].opcode = INST_OPCODE_MAD; mad[1].sat = inst->Instruction.Saturate; mad[1].dst = convert_dst(c, &inst->Dst[0]), mad[1].src[0] = src[0]; mad[1].src[1] = src[1]; mad[1].src[2] = negate(etna_native_to_src(temp, INST_SWIZ_IDENTITY)); emit_inst(c, &mad[0]); emit_inst(c, &mad[1]); } static void trans_lit(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { /* SELECT.LT tmp._y__, 0, src.yyyy, 0 * - can be eliminated if src.y is a uniform and >= 0 * SELECT.GT tmp.___w, 128, src.wwww, 128 * SELECT.LT tmp.___w, -128, tmp.wwww, -128 * - can be eliminated if src.w is a uniform and fits clamp * LOG tmp.x, void, void, tmp.yyyy * MUL tmp.x, tmp.xxxx, tmp.wwww, void * LITP dst, undef, src.xxxx, tmp.xxxx */ struct etna_native_reg inner_temp = etna_compile_get_inner_temp(c); struct etna_inst_src src_y = { }; if (!etna_rgroup_is_uniform(src[0].rgroup)) { src_y = etna_native_to_src(inner_temp, SWIZZLE(Y, Y, Y, Y)); struct etna_inst ins = { }; ins.opcode = INST_OPCODE_SELECT; ins.cond = INST_CONDITION_LT; ins.dst = etna_native_to_dst(inner_temp, INST_COMPS_Y); ins.src[0] = ins.src[2] = alloc_imm_f32(c, 0.0); ins.src[1] = swizzle(src[0], SWIZZLE(Y, Y, Y, Y)); emit_inst(c, &ins); } else if (uif(get_imm_u32(c, &src[0], 1)) < 0) src_y = alloc_imm_f32(c, 0.0); else src_y = swizzle(src[0], SWIZZLE(Y, Y, Y, Y)); struct etna_inst_src src_w = { }; if (!etna_rgroup_is_uniform(src[0].rgroup)) { src_w = etna_native_to_src(inner_temp, SWIZZLE(W, W, W, W)); struct etna_inst ins = { }; ins.opcode = INST_OPCODE_SELECT; ins.cond = INST_CONDITION_GT; ins.dst = etna_native_to_dst(inner_temp, INST_COMPS_W); ins.src[0] = ins.src[2] = alloc_imm_f32(c, 128.); ins.src[1] = swizzle(src[0], SWIZZLE(W, W, W, W)); emit_inst(c, &ins); ins.cond = INST_CONDITION_LT; ins.src[0].neg = !ins.src[0].neg; ins.src[2].neg = !ins.src[2].neg; ins.src[1] = src_w; emit_inst(c, &ins); } else if (uif(get_imm_u32(c, &src[0], 3)) < -128.) src_w = alloc_imm_f32(c, -128.); else if (uif(get_imm_u32(c, &src[0], 3)) > 128.) src_w = alloc_imm_f32(c, 128.); else src_w = swizzle(src[0], SWIZZLE(W, W, W, W)); struct etna_inst ins[3] = { }; ins[0].opcode = INST_OPCODE_LOG; ins[0].dst = etna_native_to_dst(inner_temp, INST_COMPS_X); ins[0].src[2] = src_y; emit_inst(c, &ins[0]); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .sat = 0, .dst = etna_native_to_dst(inner_temp, INST_COMPS_X), .src[0] = etna_native_to_src(inner_temp, SWIZZLE(X, X, X, X)), .src[1] = src_w, }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_LITP, .sat = 0, .dst = convert_dst(c, &inst->Dst[0]), .src[0] = swizzle(src[0], SWIZZLE(X, X, X, X)), .src[1] = swizzle(src[0], SWIZZLE(X, X, X, X)), .src[2] = etna_native_to_src(inner_temp, SWIZZLE(X, X, X, X)), }); } static void trans_ssg(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { if (c->specs->has_sign_floor_ceil) { emit_inst(c, &(struct etna_inst){ .opcode = INST_OPCODE_SIGN, .sat = inst->Instruction.Saturate, .dst = convert_dst(c, &inst->Dst[0]), .src[2] = src[0], }); } else { struct etna_native_reg temp = etna_compile_get_inner_temp(c); struct etna_inst ins[2] = { }; ins[0].opcode = INST_OPCODE_SET; ins[0].cond = INST_CONDITION_NZ; ins[0].dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W); ins[0].src[0] = src[0]; ins[1].opcode = INST_OPCODE_SELECT; ins[1].cond = INST_CONDITION_LZ; ins[1].sat = inst->Instruction.Saturate; ins[1].dst = convert_dst(c, &inst->Dst[0]); ins[1].src[0] = src[0]; ins[1].src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY); ins[1].src[1] = negate(ins[1].src[2]); emit_inst(c, &ins[0]); emit_inst(c, &ins[1]); } } static void trans_trig(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { if (c->specs->has_new_sin_cos) { /* Alternative SIN/COS */ /* On newer chips alternative SIN/COS instructions are implemented, * which: * - Need their input scaled by 1/pi instead of 2/pi * - Output an x and y component, which need to be multiplied to * get the result */ /* TGSI lowering should deal with SCS */ assert(inst->Instruction.Opcode != TGSI_OPCODE_SCS); struct etna_native_reg temp = etna_compile_get_inner_temp(c); /* only using .xyz */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .sat = 0, .dst = etna_native_to_dst(temp, INST_COMPS_Z), .src[0] = src[0], /* any swizzling happens here */ .src[1] = alloc_imm_f32(c, 1.0f / M_PI), }); emit_inst(c, &(struct etna_inst) { .opcode = inst->Instruction.Opcode == TGSI_OPCODE_COS ? INST_OPCODE_COS : INST_OPCODE_SIN, .sat = 0, .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y), .src[2] = etna_native_to_src(temp, SWIZZLE(Z, Z, Z, Z)), .tex = { .amode=1 }, /* Unknown bit needs to be set */ }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .sat = inst->Instruction.Saturate, .dst = convert_dst(c, &inst->Dst[0]), .src[0] = etna_native_to_src(temp, SWIZZLE(X, X, X, X)), .src[1] = etna_native_to_src(temp, SWIZZLE(Y, Y, Y, Y)), }); } else if (c->specs->has_sin_cos_sqrt) { /* TGSI lowering should deal with SCS */ assert(inst->Instruction.Opcode != TGSI_OPCODE_SCS); struct etna_native_reg temp = etna_compile_get_inner_temp(c); /* add divide by PI/2, using a temp register. GC2000 * fails with src==dst for the trig instruction. */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .sat = 0, .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W), .src[0] = src[0], /* any swizzling happens here */ .src[1] = alloc_imm_f32(c, 2.0f / M_PI), }); emit_inst(c, &(struct etna_inst) { .opcode = inst->Instruction.Opcode == TGSI_OPCODE_COS ? INST_OPCODE_COS : INST_OPCODE_SIN, .sat = inst->Instruction.Saturate, .dst = convert_dst(c, &inst->Dst[0]), .src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY), }); } else { /* Implement Nick's fast sine/cosine. Taken from: * http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648 * A=(1/2*PI 0 1/2*PI 0) B=(0.75 0 0.5 0) C=(-4 4 X X) * MAD t.x_zw, src.xxxx, A, B * FRC t.x_z_, void, void, t.xwzw * MAD t.x_z_, t.xwzw, 2, -1 * MUL t._y__, t.wzww, |t.wzww|, void (for sin/scs) * DP3 t.x_z_, t.zyww, C, void (for sin) * DP3 t.__z_, t.zyww, C, void (for scs) * MUL t._y__, t.wxww, |t.wxww|, void (for cos/scs) * DP3 t.x_z_, t.xyww, C, void (for cos) * DP3 t.x___, t.xyww, C, void (for scs) * MAD t._y_w, t,xxzz, |t.xxzz|, -t.xxzz * MAD dst, t.ywyw, .2225, t.xzxz * * TODO: we don't set dst.zw correctly for SCS. */ struct etna_inst *p, ins[9] = { }; struct etna_native_reg t0 = etna_compile_get_inner_temp(c); struct etna_inst_src t0s = etna_native_to_src(t0, INST_SWIZ_IDENTITY); struct etna_inst_src sincos[3], in = src[0]; sincos[0] = etna_imm_vec4f(c, sincos_const[0]); sincos[1] = etna_imm_vec4f(c, sincos_const[1]); /* A uniform source will cause the inner temp limit to * be exceeded. Explicitly deal with that scenario. */ if (etna_rgroup_is_uniform(src[0].rgroup)) { struct etna_inst ins = { }; ins.opcode = INST_OPCODE_MOV; ins.dst = etna_native_to_dst(t0, INST_COMPS_X); ins.src[2] = in; emit_inst(c, &ins); in = t0s; } ins[0].opcode = INST_OPCODE_MAD; ins[0].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z | INST_COMPS_W); ins[0].src[0] = swizzle(in, SWIZZLE(X, X, X, X)); ins[0].src[1] = swizzle(sincos[1], SWIZZLE(X, W, X, W)); /* 1/2*PI */ ins[0].src[2] = swizzle(sincos[1], SWIZZLE(Y, W, Z, W)); /* 0.75, 0, 0.5, 0 */ ins[1].opcode = INST_OPCODE_FRC; ins[1].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z); ins[1].src[2] = swizzle(t0s, SWIZZLE(X, W, Z, W)); ins[2].opcode = INST_OPCODE_MAD; ins[2].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z); ins[2].src[0] = swizzle(t0s, SWIZZLE(X, W, Z, W)); ins[2].src[1] = swizzle(sincos[0], SWIZZLE(X, X, X, X)); /* 2 */ ins[2].src[2] = swizzle(sincos[0], SWIZZLE(Y, Y, Y, Y)); /* -1 */ unsigned mul_swiz, dp3_swiz; if (inst->Instruction.Opcode == TGSI_OPCODE_SIN) { mul_swiz = SWIZZLE(W, Z, W, W); dp3_swiz = SWIZZLE(Z, Y, W, W); } else { mul_swiz = SWIZZLE(W, X, W, W); dp3_swiz = SWIZZLE(X, Y, W, W); } ins[3].opcode = INST_OPCODE_MUL; ins[3].dst = etna_native_to_dst(t0, INST_COMPS_Y); ins[3].src[0] = swizzle(t0s, mul_swiz); ins[3].src[1] = absolute(ins[3].src[0]); ins[4].opcode = INST_OPCODE_DP3; ins[4].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z); ins[4].src[0] = swizzle(t0s, dp3_swiz); ins[4].src[1] = swizzle(sincos[0], SWIZZLE(Z, W, W, W)); if (inst->Instruction.Opcode == TGSI_OPCODE_SCS) { ins[5] = ins[3]; ins[6] = ins[4]; ins[4].dst.comps = INST_COMPS_X; ins[6].dst.comps = INST_COMPS_Z; ins[5].src[0] = swizzle(t0s, SWIZZLE(W, Z, W, W)); ins[6].src[0] = swizzle(t0s, SWIZZLE(Z, Y, W, W)); ins[5].src[1] = absolute(ins[5].src[0]); p = &ins[7]; } else { p = &ins[5]; } p->opcode = INST_OPCODE_MAD; p->dst = etna_native_to_dst(t0, INST_COMPS_Y | INST_COMPS_W); p->src[0] = swizzle(t0s, SWIZZLE(X, X, Z, Z)); p->src[1] = absolute(p->src[0]); p->src[2] = negate(p->src[0]); p++; p->opcode = INST_OPCODE_MAD; p->sat = inst->Instruction.Saturate; p->dst = convert_dst(c, &inst->Dst[0]), p->src[0] = swizzle(t0s, SWIZZLE(Y, W, Y, W)); p->src[1] = alloc_imm_f32(c, 0.2225); p->src[2] = swizzle(t0s, SWIZZLE(X, Z, X, Z)); for (int i = 0; &ins[i] <= p; i++) emit_inst(c, &ins[i]); } } static void trans_dph(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { /* DP3 tmp.xyzw, src0.xyzw, src1,xyzw, void ADD dst.xyzw, tmp.xyzw, void, src1.wwww */ struct etna_native_reg temp = etna_compile_get_inner_temp(c); struct etna_inst ins[2] = { }; ins[0].opcode = INST_OPCODE_DP3; ins[0].dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W); ins[0].src[0] = src[0]; ins[0].src[1] = src[1]; ins[1].opcode = INST_OPCODE_ADD; ins[1].sat = inst->Instruction.Saturate; ins[1].dst = convert_dst(c, &inst->Dst[0]); ins[1].src[0] = etna_native_to_src(temp, INST_SWIZ_IDENTITY); ins[1].src[2] = swizzle(src[1], SWIZZLE(W, W, W, W)); emit_inst(c, &ins[0]); emit_inst(c, &ins[1]); } static void trans_sampler(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { /* There is no native support for GL texture rectangle coordinates, so * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, 1]). */ if (inst->Texture.Texture == TGSI_TEXTURE_RECT) { uint32_t unit = inst->Src[1].Register.Index; struct etna_inst ins[2] = { }; struct etna_native_reg temp = etna_compile_get_inner_temp(c); ins[0].opcode = INST_OPCODE_MUL; ins[0].dst = etna_native_to_dst(temp, INST_COMPS_X); ins[0].src[0] = src[0]; ins[0].src[1] = alloc_imm(c, ETNA_IMMEDIATE_TEXRECT_SCALE_X, unit); ins[1].opcode = INST_OPCODE_MUL; ins[1].dst = etna_native_to_dst(temp, INST_COMPS_Y); ins[1].src[0] = src[0]; ins[1].src[1] = alloc_imm(c, ETNA_IMMEDIATE_TEXRECT_SCALE_Y, unit); emit_inst(c, &ins[0]); emit_inst(c, &ins[1]); src[0] = etna_native_to_src(temp, INST_SWIZ_IDENTITY); /* temp.xyzw */ } switch (inst->Instruction.Opcode) { case TGSI_OPCODE_TEX: emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXLD, .sat = 0, .dst = convert_dst(c, &inst->Dst[0]), .tex = convert_tex(c, &inst->Src[1], &inst->Texture), .src[0] = src[0], }); break; case TGSI_OPCODE_TXB: emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXLDB, .sat = 0, .dst = convert_dst(c, &inst->Dst[0]), .tex = convert_tex(c, &inst->Src[1], &inst->Texture), .src[0] = src[0], }); break; case TGSI_OPCODE_TXL: emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXLDL, .sat = 0, .dst = convert_dst(c, &inst->Dst[0]), .tex = convert_tex(c, &inst->Src[1], &inst->Texture), .src[0] = src[0], }); break; case TGSI_OPCODE_TXP: { /* divide src.xyz by src.w */ struct etna_native_reg temp = etna_compile_get_inner_temp(c); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_RCP, .sat = 0, .dst = etna_native_to_dst(temp, INST_COMPS_W), /* tmp.w */ .src[2] = swizzle(src[0], SWIZZLE(W, W, W, W)), }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .sat = 0, .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z), /* tmp.xyz */ .src[0] = etna_native_to_src(temp, SWIZZLE(W, W, W, W)), .src[1] = src[0], /* src.xyzw */ }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXLD, .sat = 0, .dst = convert_dst(c, &inst->Dst[0]), .tex = convert_tex(c, &inst->Src[1], &inst->Texture), .src[0] = etna_native_to_src(temp, INST_SWIZ_IDENTITY), /* tmp.xyzw */ }); } break; default: BUG("Unhandled instruction %s", tgsi_get_opcode_name(inst->Instruction.Opcode)); assert(0); break; } } static void trans_dummy(const struct instr_translater *t, struct etna_compile *c, const struct tgsi_full_instruction *inst, struct etna_inst_src *src) { /* nothing to do */ } static const struct instr_translater translaters[TGSI_OPCODE_LAST] = { #define INSTR(n, f, ...) \ [TGSI_OPCODE_##n] = {.fxn = (f), .tgsi_opc = TGSI_OPCODE_##n, ##__VA_ARGS__} INSTR(MOV, trans_instr, .opc = INST_OPCODE_MOV, .src = {2, -1, -1}), INSTR(RCP, trans_instr, .opc = INST_OPCODE_RCP, .src = {2, -1, -1}), INSTR(RSQ, trans_instr, .opc = INST_OPCODE_RSQ, .src = {2, -1, -1}), INSTR(MUL, trans_instr, .opc = INST_OPCODE_MUL, .src = {0, 1, -1}), INSTR(ADD, trans_instr, .opc = INST_OPCODE_ADD, .src = {0, 2, -1}), INSTR(DP3, trans_instr, .opc = INST_OPCODE_DP3, .src = {0, 1, -1}), INSTR(DP4, trans_instr, .opc = INST_OPCODE_DP4, .src = {0, 1, -1}), INSTR(DST, trans_instr, .opc = INST_OPCODE_DST, .src = {0, 1, -1}), INSTR(MAD, trans_instr, .opc = INST_OPCODE_MAD, .src = {0, 1, 2}), INSTR(EX2, trans_instr, .opc = INST_OPCODE_EXP, .src = {2, -1, -1}), INSTR(LG2, trans_instr, .opc = INST_OPCODE_LOG, .src = {2, -1, -1}), INSTR(SQRT, trans_instr, .opc = INST_OPCODE_SQRT, .src = {2, -1, -1}), INSTR(FRC, trans_instr, .opc = INST_OPCODE_FRC, .src = {2, -1, -1}), INSTR(CEIL, trans_instr, .opc = INST_OPCODE_CEIL, .src = {2, -1, -1}), INSTR(FLR, trans_instr, .opc = INST_OPCODE_FLOOR, .src = {2, -1, -1}), INSTR(CMP, trans_instr, .opc = INST_OPCODE_SELECT, .src = {0, 1, 2}, .cond = INST_CONDITION_LZ), INSTR(KILL, trans_instr, .opc = INST_OPCODE_TEXKILL), INSTR(KILL_IF, trans_instr, .opc = INST_OPCODE_TEXKILL, .src = {0, -1, -1}, .cond = INST_CONDITION_LZ), INSTR(DDX, trans_deriv, .opc = INST_OPCODE_DSX), INSTR(DDY, trans_deriv, .opc = INST_OPCODE_DSY), INSTR(IF, trans_if), INSTR(ELSE, trans_else), INSTR(ENDIF, trans_endif), INSTR(BGNLOOP, trans_loop_bgn), INSTR(ENDLOOP, trans_loop_end), INSTR(BRK, trans_brk), INSTR(CONT, trans_cont), INSTR(MIN, trans_min_max, .opc = INST_OPCODE_SELECT, .cond = INST_CONDITION_GT), INSTR(MAX, trans_min_max, .opc = INST_OPCODE_SELECT, .cond = INST_CONDITION_LT), INSTR(ARL, trans_arl), INSTR(LRP, trans_lrp), INSTR(LIT, trans_lit), INSTR(SSG, trans_ssg), INSTR(DPH, trans_dph), INSTR(SIN, trans_trig), INSTR(COS, trans_trig), INSTR(SCS, trans_trig), INSTR(SLT, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_LT), INSTR(SGE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_GE), INSTR(SEQ, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_EQ), INSTR(SGT, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_GT), INSTR(SLE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_LE), INSTR(SNE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_NE), INSTR(TEX, trans_sampler), INSTR(TXB, trans_sampler), INSTR(TXL, trans_sampler), INSTR(TXP, trans_sampler), INSTR(NOP, trans_dummy), INSTR(END, trans_dummy), }; /* Pass -- compile instructions */ static void etna_compile_pass_generate_code(struct etna_compile *c) { struct tgsi_parse_context ctx = { }; unsigned status = tgsi_parse_init(&ctx, c->tokens); assert(status == TGSI_PARSE_OK); int inst_idx = 0; while (!tgsi_parse_end_of_tokens(&ctx)) { const struct tgsi_full_instruction *inst = 0; /* No inner temps used yet for this instruction, clear counter */ c->inner_temps = 0; tgsi_parse_token(&ctx); switch (ctx.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: /* iterate over operands */ inst = &ctx.FullToken.FullInstruction; if (c->dead_inst[inst_idx]) { /* skip dead instructions */ inst_idx++; continue; } /* Lookup the TGSI information and generate the source arguments */ struct etna_inst_src src[ETNA_NUM_SRC]; memset(src, 0, sizeof(src)); const struct tgsi_opcode_info *tgsi = tgsi_get_opcode_info(inst->Instruction.Opcode); for (int i = 0; i < tgsi->num_src && i < ETNA_NUM_SRC; i++) { const struct tgsi_full_src_register *reg = &inst->Src[i]; const struct etna_native_reg *n = &etna_get_src_reg(c, reg->Register)->native; if (!n->valid || n->is_tex) continue; src[i] = etna_create_src(reg, n); } const unsigned opc = inst->Instruction.Opcode; const struct instr_translater *t = &translaters[opc]; if (t->fxn) { t->fxn(t, c, inst, src); inst_idx += 1; } else { BUG("Unhandled instruction %s", tgsi_get_opcode_name(opc)); assert(0); } break; } } tgsi_parse_free(&ctx); } /* Look up register by semantic */ static struct etna_reg_desc * find_decl_by_semantic(struct etna_compile *c, uint file, uint name, uint index) { for (int idx = 0; idx < c->file[file].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[file].reg[idx]; if (reg->semantic.Name == name && reg->semantic.Index == index) return reg; } return NULL; /* not found */ } /** Add ADD and MUL instruction to bring Z/W to 0..1 if -1..1 if needed: * - this is a vertex shader * - and this is an older GPU */ static void etna_compile_add_z_div_if_needed(struct etna_compile *c) { if (c->info.processor == PIPE_SHADER_VERTEX && c->specs->vs_need_z_div) { /* find position out */ struct etna_reg_desc *pos_reg = find_decl_by_semantic(c, TGSI_FILE_OUTPUT, TGSI_SEMANTIC_POSITION, 0); if (pos_reg != NULL) { /* * ADD tX.__z_, tX.zzzz, void, tX.wwww * MUL tX.__z_, tX.zzzz, 0.5, void */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_ADD, .dst = etna_native_to_dst(pos_reg->native, INST_COMPS_Z), .src[0] = etna_native_to_src(pos_reg->native, SWIZZLE(Z, Z, Z, Z)), .src[2] = etna_native_to_src(pos_reg->native, SWIZZLE(W, W, W, W)), }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MUL, .dst = etna_native_to_dst(pos_reg->native, INST_COMPS_Z), .src[0] = etna_native_to_src(pos_reg->native, SWIZZLE(Z, Z, Z, Z)), .src[1] = alloc_imm_f32(c, 0.5f), }); } } } /** add a NOP to the shader if * a) the shader is empty * or * b) there is a label at the end of the shader */ static void etna_compile_add_nop_if_needed(struct etna_compile *c) { bool label_at_last_inst = false; for (int idx = 0; idx < c->labels_count; ++idx) { if (c->labels[idx].inst_idx == c->inst_ptr) label_at_last_inst = true; } if (c->inst_ptr == 0 || label_at_last_inst) emit_inst(c, &(struct etna_inst){.opcode = INST_OPCODE_NOP}); } static void assign_uniforms(struct etna_compile_file *file, unsigned base) { for (int idx = 0; idx < file->reg_size; ++idx) { file->reg[idx].native.valid = 1; file->reg[idx].native.rgroup = INST_RGROUP_UNIFORM_0; file->reg[idx].native.id = base + idx; } } /* Allocate CONST and IMM to native ETNA_RGROUP_UNIFORM(x). * CONST must be consecutive as const buffers are supposed to be consecutive, * and before IMM, as this is * more convenient because is possible for the compilation process itself to * generate extra * immediates for constants such as pi, one, zero. */ static void assign_constants_and_immediates(struct etna_compile *c) { assign_uniforms(&c->file[TGSI_FILE_CONSTANT], 0); /* immediates start after the constants */ c->imm_base = c->file[TGSI_FILE_CONSTANT].reg_size * 4; assign_uniforms(&c->file[TGSI_FILE_IMMEDIATE], c->imm_base / 4); DBG_F(ETNA_DBG_COMPILER_MSGS, "imm base: %i size: %i", c->imm_base, c->imm_size); } /* Assign declared samplers to native texture units */ static void assign_texture_units(struct etna_compile *c) { uint tex_base = 0; if (c->info.processor == PIPE_SHADER_VERTEX) tex_base = c->specs->vertex_sampler_offset; for (int idx = 0; idx < c->file[TGSI_FILE_SAMPLER].reg_size; ++idx) { c->file[TGSI_FILE_SAMPLER].reg[idx].native.valid = 1; c->file[TGSI_FILE_SAMPLER].reg[idx].native.is_tex = 1; // overrides rgroup c->file[TGSI_FILE_SAMPLER].reg[idx].native.id = tex_base + idx; } } /* Additional pass to fill in branch targets. This pass should be last * as no instruction reordering or removing/addition can be done anymore * once the branch targets are computed. */ static void etna_compile_fill_in_labels(struct etna_compile *c) { for (int idx = 0; idx < c->inst_ptr; ++idx) { if (c->lbl_usage[idx]) etna_assemble_set_imm(&c->code[idx * 4], c->lbl_usage[idx]->inst_idx); } } /* compare two etna_native_reg structures, return true if equal */ static bool cmp_etna_native_reg(const struct etna_native_reg to, const struct etna_native_reg from) { return to.valid == from.valid && to.is_tex == from.is_tex && to.rgroup == from.rgroup && to.id == from.id; } /* go through all declarations and swap native registers *to* and *from* */ static void swap_native_registers(struct etna_compile *c, const struct etna_native_reg to, const struct etna_native_reg from) { if (cmp_etna_native_reg(from, to)) return; /* Nothing to do */ for (int idx = 0; idx < c->total_decls; ++idx) { if (cmp_etna_native_reg(c->decl[idx].native, from)) { c->decl[idx].native = to; } else if (cmp_etna_native_reg(c->decl[idx].native, to)) { c->decl[idx].native = from; } } } /* For PS we need to permute so that inputs are always in temporary 0..N-1. * Semantic POS is always t0. If that semantic is not used, avoid t0. */ static void permute_ps_inputs(struct etna_compile *c) { /* Special inputs: * gl_FragCoord VARYING_SLOT_POS TGSI_SEMANTIC_POSITION * gl_PointCoord VARYING_SLOT_PNTC TGSI_SEMANTIC_PCOORD */ uint native_idx = 1; for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx]; uint input_id; assert(reg->has_semantic); if (!reg->active || reg->semantic.Name == TGSI_SEMANTIC_POSITION) continue; input_id = native_idx++; swap_native_registers(c, etna_native_temp(input_id), c->file[TGSI_FILE_INPUT].reg[idx].native); } c->num_varyings = native_idx - 1; if (native_idx > c->next_free_native) c->next_free_native = native_idx; } /* fill in ps inputs into shader object */ static void fill_in_ps_inputs(struct etna_shader *sobj, struct etna_compile *c) { struct etna_shader_io_file *sf = &sobj->infile; sf->num_reg = 0; for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx]; if (reg->native.id > 0) { assert(sf->num_reg < ETNA_NUM_INPUTS); sf->reg[sf->num_reg].reg = reg->native.id; sf->reg[sf->num_reg].semantic = reg->semantic; /* convert usage mask to number of components (*=wildcard) * .r (0..1) -> 1 component * .*g (2..3) -> 2 component * .**b (4..7) -> 3 components * .***a (8..15) -> 4 components */ sf->reg[sf->num_reg].num_components = util_last_bit(reg->usage_mask); sf->num_reg++; } } assert(sf->num_reg == c->num_varyings); sobj->input_count_unk8 = 31; /* XXX what is this */ } /* fill in output mapping for ps into shader object */ static void fill_in_ps_outputs(struct etna_shader *sobj, struct etna_compile *c) { sobj->outfile.num_reg = 0; for (int idx = 0; idx < c->file[TGSI_FILE_OUTPUT].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[TGSI_FILE_OUTPUT].reg[idx]; switch (reg->semantic.Name) { case TGSI_SEMANTIC_COLOR: /* FRAG_RESULT_COLOR */ sobj->ps_color_out_reg = reg->native.id; break; case TGSI_SEMANTIC_POSITION: /* FRAG_RESULT_DEPTH */ sobj->ps_depth_out_reg = reg->native.id; /* =always native reg 0, only z component should be assigned */ break; default: assert(0); /* only outputs supported are COLOR and POSITION at the moment */ } } } /* fill in inputs for vs into shader object */ static void fill_in_vs_inputs(struct etna_shader *sobj, struct etna_compile *c) { struct etna_shader_io_file *sf = &sobj->infile; sf->num_reg = 0; for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx]; assert(sf->num_reg < ETNA_NUM_INPUTS); /* XXX exclude inputs with special semantics such as gl_frontFacing */ sf->reg[sf->num_reg].reg = reg->native.id; sf->reg[sf->num_reg].semantic = reg->semantic; sf->reg[sf->num_reg].num_components = util_last_bit(reg->usage_mask); sf->num_reg++; } sobj->input_count_unk8 = (sf->num_reg + 19) / 16; /* XXX what is this */ } /* build two-level output index [Semantic][Index] for fast linking */ static void build_output_index(struct etna_shader *sobj) { int total = 0; int offset = 0; for (int name = 0; name < TGSI_SEMANTIC_COUNT; ++name) total += sobj->output_count_per_semantic[name]; sobj->output_per_semantic_list = CALLOC(total, sizeof(struct etna_shader_inout *)); for (int name = 0; name < TGSI_SEMANTIC_COUNT; ++name) { sobj->output_per_semantic[name] = &sobj->output_per_semantic_list[offset]; offset += sobj->output_count_per_semantic[name]; } for (int idx = 0; idx < sobj->outfile.num_reg; ++idx) { sobj->output_per_semantic[sobj->outfile.reg[idx].semantic.Name] [sobj->outfile.reg[idx].semantic.Index] = &sobj->outfile.reg[idx]; } } /* fill in outputs for vs into shader object */ static void fill_in_vs_outputs(struct etna_shader *sobj, struct etna_compile *c) { struct etna_shader_io_file *sf = &sobj->outfile; sf->num_reg = 0; for (int idx = 0; idx < c->file[TGSI_FILE_OUTPUT].reg_size; ++idx) { struct etna_reg_desc *reg = &c->file[TGSI_FILE_OUTPUT].reg[idx]; assert(sf->num_reg < ETNA_NUM_INPUTS); switch (reg->semantic.Name) { case TGSI_SEMANTIC_POSITION: sobj->vs_pos_out_reg = reg->native.id; break; case TGSI_SEMANTIC_PSIZE: sobj->vs_pointsize_out_reg = reg->native.id; break; default: sf->reg[sf->num_reg].reg = reg->native.id; sf->reg[sf->num_reg].semantic = reg->semantic; sf->reg[sf->num_reg].num_components = 4; // XXX reg->num_components; sf->num_reg++; sobj->output_count_per_semantic[reg->semantic.Name] = MAX2(reg->semantic.Index + 1, sobj->output_count_per_semantic[reg->semantic.Name]); } } /* build two-level index for linking */ build_output_index(sobj); /* fill in "mystery meat" load balancing value. This value determines how * work is scheduled between VS and PS * in the unified shader architecture. More precisely, it is determined from * the number of VS outputs, as well as chip-specific * vertex output buffer size, vertex cache size, and the number of shader * cores. * * XXX this is a conservative estimate, the "optimal" value is only known for * sure at link time because some * outputs may be unused and thus unmapped. Then again, in the general use * case with GLSL the vertex and fragment * shaders are linked already before submitting to Gallium, thus all outputs * are used. */ int half_out = (c->file[TGSI_FILE_OUTPUT].reg_size + 1) / 2; assert(half_out); uint32_t b = ((20480 / (c->specs->vertex_output_buffer_size - 2 * half_out * c->specs->vertex_cache_size)) + 9) / 10; uint32_t a = (b + 256 / (c->specs->shader_core_count * half_out)) / 2; sobj->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) | VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) | VIVS_VS_LOAD_BALANCING_C(0x3f) | VIVS_VS_LOAD_BALANCING_D(0x0f); } static bool etna_compile_check_limits(struct etna_compile *c) { int max_uniforms = (c->info.processor == PIPE_SHADER_VERTEX) ? c->specs->max_vs_uniforms : c->specs->max_ps_uniforms; /* round up number of uniforms, including immediates, in units of four */ int num_uniforms = c->imm_base / 4 + (c->imm_size + 3) / 4; if (c->inst_ptr > c->specs->max_instructions) { DBG("Number of instructions (%d) exceeds maximum %d", c->inst_ptr, c->specs->max_instructions); return false; } if (c->next_free_native > c->specs->max_registers) { DBG("Number of registers (%d) exceeds maximum %d", c->next_free_native, c->specs->max_registers); return false; } if (num_uniforms > max_uniforms) { DBG("Number of uniforms (%d) exceeds maximum %d", num_uniforms, max_uniforms); return false; } if (c->num_varyings > c->specs->max_varyings) { DBG("Number of varyings (%d) exceeds maximum %d", c->num_varyings, c->specs->max_varyings); return false; } if (c->imm_base > c->specs->num_constants) { DBG("Number of constants (%d) exceeds maximum %d", c->imm_base, c->specs->num_constants); } return true; } static void copy_uniform_state_to_shader(struct etna_compile *c, struct etna_shader *sobj) { uint32_t count = c->imm_size; struct etna_shader_uniform_info *uinfo = &sobj->uniforms; uinfo->const_count = c->imm_base; uinfo->imm_count = count; uinfo->imm_data = mem_dup(c->imm_data, count * sizeof(*c->imm_data)); uinfo->imm_contents = mem_dup(c->imm_contents, count * sizeof(*c->imm_contents)); etna_set_shader_uniforms_dirty_flags(sobj); } struct etna_shader * etna_compile_shader(const struct etna_specs *specs, const struct tgsi_token *tokens) { /* Create scratch space that may be too large to fit on stack */ bool ret; struct etna_compile *c; struct etna_shader *shader; struct tgsi_lowering_config lconfig = { .lower_SCS = specs->has_sin_cos_sqrt, .lower_FLR = !specs->has_sign_floor_ceil, .lower_CEIL = !specs->has_sign_floor_ceil, .lower_POW = true, .lower_EXP = true, .lower_LOG = true, .lower_DP2 = true, .lower_DP2A = true, .lower_TRUNC = true, .lower_XPD = true }; c = CALLOC_STRUCT(etna_compile); if (!c) return NULL; shader = CALLOC_STRUCT(etna_shader); if (!shader) goto out; c->specs = specs; c->tokens = tgsi_transform_lowering(&lconfig, tokens, &c->info); c->free_tokens = !!c->tokens; if (!c->tokens) { /* no lowering */ c->tokens = tokens; } /* Build a map from gallium register to native registers for files * CONST, SAMP, IMM, OUT, IN, TEMP. * SAMP will map as-is for fragment shaders, there will be a +8 offset for * vertex shaders. */ /* Pass one -- check register file declarations and immediates */ etna_compile_parse_declarations(c); etna_allocate_decls(c); /* Pass two -- check usage of temporaries, inputs, outputs */ etna_compile_pass_check_usage(c); assign_special_inputs(c); /* Assign native temp register to TEMPs */ assign_temporaries_to_native(c, &c->file[TGSI_FILE_TEMPORARY]); /* optimize outputs */ etna_compile_pass_optimize_outputs(c); /* XXX assign special inputs: gl_FrontFacing (VARYING_SLOT_FACE) * this is part of RGROUP_INTERNAL */ /* assign inputs: last usage of input should be <= first usage of temp */ /* potential optimization case: * if single MOV TEMP[y], IN[x] before which temp y is not used, and * after which IN[x] * is not read, temp[y] can be used as input register as-is */ /* sort temporaries by first use * sort inputs by last usage * iterate over inputs, temporaries * if last usage of input <= first usage of temp: * assign input to temp * advance input, temporary pointer * else * advance temporary pointer * * potential problem: instruction with multiple inputs of which one is the * temp and the other is the input; * however, as the temp is not used before this, how would this make * sense? uninitialized temporaries have an undefined * value, so this would be ok */ assign_inouts_to_temporaries(c, TGSI_FILE_INPUT); /* assign outputs: first usage of output should be >= last usage of temp */ /* potential optimization case: * if single MOV OUT[x], TEMP[y] (with full write mask, or at least * writing all components that are used in * the shader) after which temp y is no longer used temp[y] can be * used as output register as-is * * potential problem: instruction with multiple outputs of which one is the * temp and the other is the output; * however, as the temp is not used after this, how would this make * sense? could just discard the output value */ /* sort temporaries by last use * sort outputs by first usage * iterate over outputs, temporaries * if first usage of output >= last usage of temp: * assign output to temp * advance output, temporary pointer * else * advance temporary pointer */ assign_inouts_to_temporaries(c, TGSI_FILE_OUTPUT); assign_constants_and_immediates(c); assign_texture_units(c); /* list declarations */ for (int x = 0; x < c->total_decls; ++x) { DBG_F(ETNA_DBG_COMPILER_MSGS, "%i: %s,%d active=%i first_use=%i " "last_use=%i native=%i usage_mask=%x " "has_semantic=%i", x, tgsi_file_name(c->decl[x].file), c->decl[x].idx, c->decl[x].active, c->decl[x].first_use, c->decl[x].last_use, c->decl[x].native.valid ? c->decl[x].native.id : -1, c->decl[x].usage_mask, c->decl[x].has_semantic); if (c->decl[x].has_semantic) DBG_F(ETNA_DBG_COMPILER_MSGS, " semantic_name=%s semantic_idx=%i", tgsi_semantic_names[c->decl[x].semantic.Name], c->decl[x].semantic.Index); } /* XXX for PS we need to permute so that inputs are always in temporary * 0..N-1. * There is no "switchboard" for varyings (AFAIK!). The output color, * however, can be routed * from an arbitrary temporary. */ if (c->info.processor == PIPE_SHADER_FRAGMENT) permute_ps_inputs(c); /* list declarations */ for (int x = 0; x < c->total_decls; ++x) { DBG_F(ETNA_DBG_COMPILER_MSGS, "%i: %s,%d active=%i first_use=%i " "last_use=%i native=%i usage_mask=%x " "has_semantic=%i", x, tgsi_file_name(c->decl[x].file), c->decl[x].idx, c->decl[x].active, c->decl[x].first_use, c->decl[x].last_use, c->decl[x].native.valid ? c->decl[x].native.id : -1, c->decl[x].usage_mask, c->decl[x].has_semantic); if (c->decl[x].has_semantic) DBG_F(ETNA_DBG_COMPILER_MSGS, " semantic_name=%s semantic_idx=%i", tgsi_semantic_names[c->decl[x].semantic.Name], c->decl[x].semantic.Index); } /* pass 3: generate instructions */ etna_compile_pass_generate_code(c); etna_compile_add_z_div_if_needed(c); etna_compile_add_nop_if_needed(c); etna_compile_fill_in_labels(c); ret = etna_compile_check_limits(c); if (!ret) { FREE(shader); shader = NULL; goto out; } /* fill in output structure */ shader->processor = c->info.processor; shader->code_size = c->inst_ptr * 4; shader->code = mem_dup(c->code, c->inst_ptr * 16); shader->num_loops = c->num_loops; shader->num_temps = c->next_free_native; shader->vs_pos_out_reg = -1; shader->vs_pointsize_out_reg = -1; shader->ps_color_out_reg = -1; shader->ps_depth_out_reg = -1; copy_uniform_state_to_shader(c, shader); if (c->info.processor == PIPE_SHADER_VERTEX) { fill_in_vs_inputs(shader, c); fill_in_vs_outputs(shader, c); } else if (c->info.processor == PIPE_SHADER_FRAGMENT) { fill_in_ps_inputs(shader, c); fill_in_ps_outputs(shader, c); } out: if (c->free_tokens) FREE((void *)c->tokens); FREE(c->labels); FREE(c); return shader; } extern const char *tgsi_swizzle_names[]; void etna_dump_shader(const struct etna_shader *shader) { if (shader->processor == PIPE_SHADER_VERTEX) printf("VERT\n"); else printf("FRAG\n"); etna_disasm(shader->code, shader->code_size, PRINT_RAW); printf("num loops: %i\n", shader->num_loops); printf("num temps: %i\n", shader->num_temps); printf("num const: %i\n", shader->uniforms.const_count); printf("immediates:\n"); for (int idx = 0; idx < shader->uniforms.imm_count; ++idx) { printf(" [%i].%s = %f (0x%08x)\n", (idx + shader->uniforms.const_count) / 4, tgsi_swizzle_names[idx % 4], *((float *)&shader->uniforms.imm_data[idx]), shader->uniforms.imm_data[idx]); } printf("inputs:\n"); for (int idx = 0; idx < shader->infile.num_reg; ++idx) { printf(" [%i] name=%s index=%i comps=%i\n", shader->infile.reg[idx].reg, tgsi_semantic_names[shader->infile.reg[idx].semantic.Name], shader->infile.reg[idx].semantic.Index, shader->infile.reg[idx].num_components); } printf("outputs:\n"); for (int idx = 0; idx < shader->outfile.num_reg; ++idx) { printf(" [%i] name=%s index=%i comps=%i\n", shader->outfile.reg[idx].reg, tgsi_semantic_names[shader->outfile.reg[idx].semantic.Name], shader->outfile.reg[idx].semantic.Index, shader->outfile.reg[idx].num_components); } printf("special:\n"); if (shader->processor == PIPE_SHADER_VERTEX) { printf(" vs_pos_out_reg=%i\n", shader->vs_pos_out_reg); printf(" vs_pointsize_out_reg=%i\n", shader->vs_pointsize_out_reg); printf(" vs_load_balancing=0x%08x\n", shader->vs_load_balancing); } else { printf(" ps_color_out_reg=%i\n", shader->ps_color_out_reg); printf(" ps_depth_out_reg=%i\n", shader->ps_depth_out_reg); } printf(" input_count_unk8=0x%08x\n", shader->input_count_unk8); } void etna_destroy_shader(struct etna_shader *shader) { assert(shader); FREE(shader->code); FREE(shader->uniforms.imm_data); FREE(shader->uniforms.imm_contents); FREE(shader->output_per_semantic_list); FREE(shader); } static const struct etna_shader_inout * etna_shader_vs_lookup(const struct etna_shader *sobj, const struct etna_shader_inout *in) { if (in->semantic.Index < sobj->output_count_per_semantic[in->semantic.Name]) return sobj->output_per_semantic[in->semantic.Name][in->semantic.Index]; return NULL; } bool etna_link_shader(struct etna_shader_link_info *info, const struct etna_shader *vs, const struct etna_shader *fs) { /* For each fragment input we need to find the associated vertex shader * output, which can be found by matching on semantic name and index. A * binary search could be used because the vs outputs are sorted by their * semantic index and grouped by semantic type by fill_in_vs_outputs. */ assert(fs->infile.num_reg < ETNA_NUM_INPUTS); for (int idx = 0; idx < fs->infile.num_reg; ++idx) { const struct etna_shader_inout *fsio = &fs->infile.reg[idx]; const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio); struct etna_varying *varying; assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings)); if (fsio->reg > info->num_varyings) info->num_varyings = fsio->reg; varying = &info->varyings[fsio->reg - 1]; varying->num_components = fsio->num_components; if (fsio->semantic.Name == TGSI_SEMANTIC_COLOR) /* colors affected by flat shading */ varying->pa_attributes = 0x200; else /* texture coord or other bypasses flat shading */ varying->pa_attributes = 0x2f1; if (fsio->semantic.Name == TGSI_SEMANTIC_PCOORD) { varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X; varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y; varying->use[2] = VARYING_COMPONENT_USE_USED; varying->use[3] = VARYING_COMPONENT_USE_USED; varying->reg = 0; /* replaced by point coord -- doesn't matter */ continue; } if (vsio == NULL) return true; /* not found -- link error */ varying->use[0] = VARYING_COMPONENT_USE_USED; varying->use[1] = VARYING_COMPONENT_USE_USED; varying->use[2] = VARYING_COMPONENT_USE_USED; varying->use[3] = VARYING_COMPONENT_USE_USED; varying->reg = vsio->reg; } assert(info->num_varyings == fs->infile.num_reg); return false; }