TGSI ==== TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language for describing shaders. Since Gallium is inherently shaderful, shaders are an important part of the API. TGSI is the only intermediate representation used by all drivers. Basics ------ All TGSI instructions, known as *opcodes*, operate on arbitrary-precision floating-point four-component vectors. An opcode may have up to one destination register, known as *dst*, and between zero and three source registers, called *src0* through *src2*, or simply *src* if there is only one. Some instructions, like :opcode:`I2F`, permit re-interpretation of vector components as integers. Other instructions permit using registers as two-component vectors with double precision; see :ref:`Double Opcodes`. When an instruction has a scalar result, the result is usually copied into each of the components of *dst*. When this happens, the result is said to be *replicated* to *dst*. :opcode:`RCP` is one such instruction. Instruction Set --------------- Core ISA ^^^^^^^^^^^^^^^^^^^^^^^^^ These opcodes are guaranteed to be available regardless of the driver being used. .. opcode:: ARL - Address Register Load .. math:: dst.x = \lfloor src.x\rfloor dst.y = \lfloor src.y\rfloor dst.z = \lfloor src.z\rfloor dst.w = \lfloor src.w\rfloor .. opcode:: MOV - Move .. math:: dst.x = src.x dst.y = src.y dst.z = src.z dst.w = src.w .. opcode:: LIT - Light Coefficients .. math:: dst.x = 1 dst.y = max(src.x, 0) dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 dst.w = 1 .. opcode:: RCP - Reciprocal This instruction replicates its result. .. math:: dst = \frac{1}{src.x} .. opcode:: RSQ - Reciprocal Square Root This instruction replicates its result. .. math:: dst = \frac{1}{\sqrt{|src.x|}} .. opcode:: SQRT - Square Root This instruction replicates its result. .. math:: dst = {\sqrt{src.x}} .. opcode:: EXP - Approximate Exponential Base 2 .. math:: dst.x = 2^{\lfloor src.x\rfloor} dst.y = src.x - \lfloor src.x\rfloor dst.z = 2^{src.x} dst.w = 1 .. opcode:: LOG - Approximate Logarithm Base 2 .. math:: dst.x = \lfloor\log_2{|src.x|}\rfloor dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} dst.z = \log_2{|src.x|} dst.w = 1 .. opcode:: MUL - Multiply .. math:: dst.x = src0.x \times src1.x dst.y = src0.y \times src1.y dst.z = src0.z \times src1.z dst.w = src0.w \times src1.w .. opcode:: ADD - Add .. math:: dst.x = src0.x + src1.x dst.y = src0.y + src1.y dst.z = src0.z + src1.z dst.w = src0.w + src1.w .. opcode:: DP3 - 3-component Dot Product This instruction replicates its result. .. math:: dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z .. opcode:: DP4 - 4-component Dot Product This instruction replicates its result. .. math:: dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w .. opcode:: DST - Distance Vector .. math:: dst.x = 1 dst.y = src0.y \times src1.y dst.z = src0.z dst.w = src1.w .. opcode:: MIN - Minimum .. math:: dst.x = min(src0.x, src1.x) dst.y = min(src0.y, src1.y) dst.z = min(src0.z, src1.z) dst.w = min(src0.w, src1.w) .. opcode:: MAX - Maximum .. math:: dst.x = max(src0.x, src1.x) dst.y = max(src0.y, src1.y) dst.z = max(src0.z, src1.z) dst.w = max(src0.w, src1.w) .. opcode:: SLT - Set On Less Than .. math:: dst.x = (src0.x < src1.x) ? 1 : 0 dst.y = (src0.y < src1.y) ? 1 : 0 dst.z = (src0.z < src1.z) ? 1 : 0 dst.w = (src0.w < src1.w) ? 1 : 0 .. opcode:: SGE - Set On Greater Equal Than .. math:: dst.x = (src0.x >= src1.x) ? 1 : 0 dst.y = (src0.y >= src1.y) ? 1 : 0 dst.z = (src0.z >= src1.z) ? 1 : 0 dst.w = (src0.w >= src1.w) ? 1 : 0 .. opcode:: MAD - Multiply And Add .. math:: dst.x = src0.x \times src1.x + src2.x dst.y = src0.y \times src1.y + src2.y dst.z = src0.z \times src1.z + src2.z dst.w = src0.w \times src1.w + src2.w .. opcode:: SUB - Subtract .. math:: dst.x = src0.x - src1.x dst.y = src0.y - src1.y dst.z = src0.z - src1.z dst.w = src0.w - src1.w .. opcode:: LRP - Linear Interpolate .. math:: dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w .. opcode:: CND - Condition .. math:: dst.x = (src2.x > 0.5) ? src0.x : src1.x dst.y = (src2.y > 0.5) ? src0.y : src1.y dst.z = (src2.z > 0.5) ? src0.z : src1.z dst.w = (src2.w > 0.5) ? src0.w : src1.w .. opcode:: DP2A - 2-component Dot Product And Add .. math:: dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x .. opcode:: FRC - Fraction .. math:: dst.x = src.x - \lfloor src.x\rfloor dst.y = src.y - \lfloor src.y\rfloor dst.z = src.z - \lfloor src.z\rfloor dst.w = src.w - \lfloor src.w\rfloor .. opcode:: CLAMP - Clamp .. math:: dst.x = clamp(src0.x, src1.x, src2.x) dst.y = clamp(src0.y, src1.y, src2.y) dst.z = clamp(src0.z, src1.z, src2.z) dst.w = clamp(src0.w, src1.w, src2.w) .. opcode:: FLR - Floor This is identical to :opcode:`ARL`. .. math:: dst.x = \lfloor src.x\rfloor dst.y = \lfloor src.y\rfloor dst.z = \lfloor src.z\rfloor dst.w = \lfloor src.w\rfloor .. opcode:: ROUND - Round .. math:: dst.x = round(src.x) dst.y = round(src.y) dst.z = round(src.z) dst.w = round(src.w) .. opcode:: EX2 - Exponential Base 2 This instruction replicates its result. .. math:: dst = 2^{src.x} .. opcode:: LG2 - Logarithm Base 2 This instruction replicates its result. .. math:: dst = \log_2{src.x} .. opcode:: POW - Power This instruction replicates its result. .. math:: dst = src0.x^{src1.x} .. opcode:: XPD - Cross Product .. math:: dst.x = src0.y \times src1.z - src1.y \times src0.z dst.y = src0.z \times src1.x - src1.z \times src0.x dst.z = src0.x \times src1.y - src1.x \times src0.y dst.w = 1 .. opcode:: ABS - Absolute .. math:: dst.x = |src.x| dst.y = |src.y| dst.z = |src.z| dst.w = |src.w| .. opcode:: RCC - Reciprocal Clamped This instruction replicates its result. XXX cleanup on aisle three .. math:: dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020) .. opcode:: DPH - Homogeneous Dot Product This instruction replicates its result. .. math:: dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w .. opcode:: COS - Cosine This instruction replicates its result. .. math:: dst = \cos{src.x} .. opcode:: DDX - Derivative Relative To X .. math:: dst.x = partialx(src.x) dst.y = partialx(src.y) dst.z = partialx(src.z) dst.w = partialx(src.w) .. opcode:: DDY - Derivative Relative To Y .. math:: dst.x = partialy(src.x) dst.y = partialy(src.y) dst.z = partialy(src.z) dst.w = partialy(src.w) .. opcode:: KILP - Predicated Discard discard .. opcode:: PK2H - Pack Two 16-bit Floats TBD .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars TBD .. opcode:: PK4B - Pack Four Signed 8-bit Scalars TBD .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars TBD .. opcode:: RFL - Reflection Vector .. math:: dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z dst.w = 1 .. note:: Considered for removal. .. opcode:: SEQ - Set On Equal .. math:: dst.x = (src0.x == src1.x) ? 1 : 0 dst.y = (src0.y == src1.y) ? 1 : 0 dst.z = (src0.z == src1.z) ? 1 : 0 dst.w = (src0.w == src1.w) ? 1 : 0 .. opcode:: SFL - Set On False This instruction replicates its result. .. math:: dst = 0 .. note:: Considered for removal. .. opcode:: SGT - Set On Greater Than .. math:: dst.x = (src0.x > src1.x) ? 1 : 0 dst.y = (src0.y > src1.y) ? 1 : 0 dst.z = (src0.z > src1.z) ? 1 : 0 dst.w = (src0.w > src1.w) ? 1 : 0 .. opcode:: SIN - Sine This instruction replicates its result. .. math:: dst = \sin{src.x} .. opcode:: SLE - Set On Less Equal Than .. math:: dst.x = (src0.x <= src1.x) ? 1 : 0 dst.y = (src0.y <= src1.y) ? 1 : 0 dst.z = (src0.z <= src1.z) ? 1 : 0 dst.w = (src0.w <= src1.w) ? 1 : 0 .. opcode:: SNE - Set On Not Equal .. math:: dst.x = (src0.x != src1.x) ? 1 : 0 dst.y = (src0.y != src1.y) ? 1 : 0 dst.z = (src0.z != src1.z) ? 1 : 0 dst.w = (src0.w != src1.w) ? 1 : 0 .. opcode:: STR - Set On True This instruction replicates its result. .. math:: dst = 1 .. opcode:: TEX - Texture Lookup .. math:: coord = src0 bias = 0.0 dst = texture_sample(unit, coord, bias) for array textures src0.y contains the slice for 1D, and src0.z contain the slice for 2D. for shadow textures with no arrays, src0.z contains the reference value. for shadow textures with arrays, src0.z contains the reference value for 1D arrays, and src0.w contains the reference value for 2D arrays. There is no way to pass a bias in the .w value for shadow arrays, and GLSL doesn't allow this. GLSL does allow cube shadows maps to take a bias value, and we have to determine how this will look in TGSI. .. opcode:: TXD - Texture Lookup with Derivatives .. math:: coord = src0 ddx = src1 ddy = src2 bias = 0.0 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy) .. opcode:: TXP - Projective Texture Lookup .. math:: coord.x = src0.x / src.w coord.y = src0.y / src.w coord.z = src0.z / src.w coord.w = src0.w bias = 0.0 dst = texture_sample(unit, coord, bias) .. opcode:: UP2H - Unpack Two 16-Bit Floats TBD .. note:: Considered for removal. .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars TBD .. note:: Considered for removal. .. opcode:: UP4B - Unpack Four Signed 8-Bit Values TBD .. note:: Considered for removal. .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars TBD .. note:: Considered for removal. .. opcode:: X2D - 2D Coordinate Transformation .. math:: dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w .. note:: Considered for removal. .. opcode:: ARA - Address Register Add TBD .. note:: Considered for removal. .. opcode:: ARR - Address Register Load With Round .. math:: dst.x = round(src.x) dst.y = round(src.y) dst.z = round(src.z) dst.w = round(src.w) .. opcode:: BRA - Branch pc = target .. note:: Considered for removal. .. opcode:: CAL - Subroutine Call push(pc) pc = target .. opcode:: RET - Subroutine Call Return pc = pop() .. opcode:: SSG - Set Sign .. math:: dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0 .. opcode:: CMP - Compare .. math:: dst.x = (src0.x < 0) ? src1.x : src2.x dst.y = (src0.y < 0) ? src1.y : src2.y dst.z = (src0.z < 0) ? src1.z : src2.z dst.w = (src0.w < 0) ? src1.w : src2.w .. opcode:: KIL - Conditional Discard .. math:: if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0) discard endif .. opcode:: SCS - Sine Cosine .. math:: dst.x = \cos{src.x} dst.y = \sin{src.x} dst.z = 0 dst.w = 1 .. opcode:: TXB - Texture Lookup With Bias .. math:: coord.x = src.x coord.y = src.y coord.z = src.z coord.w = 1.0 bias = src.z dst = texture_sample(unit, coord, bias) .. opcode:: NRM - 3-component Vector Normalise .. math:: dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z) dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z) dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z) dst.w = 1 .. opcode:: DIV - Divide .. math:: dst.x = \frac{src0.x}{src1.x} dst.y = \frac{src0.y}{src1.y} dst.z = \frac{src0.z}{src1.z} dst.w = \frac{src0.w}{src1.w} .. opcode:: DP2 - 2-component Dot Product This instruction replicates its result. .. math:: dst = src0.x \times src1.x + src0.y \times src1.y .. opcode:: TXL - Texture Lookup With explicit LOD .. math:: coord.x = src0.x coord.y = src0.y coord.z = src0.z coord.w = 1.0 lod = src0.w dst = texture_sample(unit, coord, lod) .. opcode:: BRK - Break TBD .. opcode:: IF - If TBD .. opcode:: ELSE - Else TBD .. opcode:: ENDIF - End If TBD .. opcode:: PUSHA - Push Address Register On Stack push(src.x) push(src.y) push(src.z) push(src.w) .. note:: Considered for cleanup. .. note:: Considered for removal. .. opcode:: POPA - Pop Address Register From Stack dst.w = pop() dst.z = pop() dst.y = pop() dst.x = pop() .. note:: Considered for cleanup. .. note:: Considered for removal. Compute ISA ^^^^^^^^^^^^^^^^^^^^^^^^ These opcodes are primarily provided for special-use computational shaders. Support for these opcodes indicated by a special pipe capability bit (TBD). XXX so let's discuss it, yeah? .. opcode:: CEIL - Ceiling .. math:: dst.x = \lceil src.x\rceil dst.y = \lceil src.y\rceil dst.z = \lceil src.z\rceil dst.w = \lceil src.w\rceil .. opcode:: I2F - Integer To Float .. math:: dst.x = (float) src.x dst.y = (float) src.y dst.z = (float) src.z dst.w = (float) src.w .. opcode:: NOT - Bitwise Not .. math:: dst.x = ~src.x dst.y = ~src.y dst.z = ~src.z dst.w = ~src.w .. opcode:: TRUNC - Truncate .. math:: dst.x = trunc(src.x) dst.y = trunc(src.y) dst.z = trunc(src.z) dst.w = trunc(src.w) .. opcode:: SHL - Shift Left .. math:: dst.x = src0.x << src1.x dst.y = src0.y << src1.x dst.z = src0.z << src1.x dst.w = src0.w << src1.x .. opcode:: SHR - Shift Right .. math:: dst.x = src0.x >> src1.x dst.y = src0.y >> src1.x dst.z = src0.z >> src1.x dst.w = src0.w >> src1.x .. opcode:: AND - Bitwise And .. math:: dst.x = src0.x & src1.x dst.y = src0.y & src1.y dst.z = src0.z & src1.z dst.w = src0.w & src1.w .. opcode:: OR - Bitwise Or .. math:: dst.x = src0.x | src1.x dst.y = src0.y | src1.y dst.z = src0.z | src1.z dst.w = src0.w | src1.w .. opcode:: MOD - Modulus .. math:: dst.x = src0.x \bmod src1.x dst.y = src0.y \bmod src1.y dst.z = src0.z \bmod src1.z dst.w = src0.w \bmod src1.w .. opcode:: XOR - Bitwise Xor .. math:: dst.x = src0.x \oplus src1.x dst.y = src0.y \oplus src1.y dst.z = src0.z \oplus src1.z dst.w = src0.w \oplus src1.w .. opcode:: UCMP - Integer Conditional Move .. math:: dst.x = src0.x ? src1.x : src2.x dst.y = src0.y ? src1.y : src2.y dst.z = src0.z ? src1.z : src2.z dst.w = src0.w ? src1.w : src2.w .. opcode:: UARL - Integer Address Register Load Moves the contents of the source register, assumed to be an integer, into the destination register, which is assumed to be an address (ADDR) register. .. opcode:: IABS - Integer Absolute Value .. math:: dst.x = |src.x| dst.y = |src.y| dst.z = |src.z| dst.w = |src.w| .. opcode:: SAD - Sum Of Absolute Differences .. math:: dst.x = |src0.x - src1.x| + src2.x dst.y = |src0.y - src1.y| + src2.y dst.z = |src0.z - src1.z| + src2.z dst.w = |src0.w - src1.w| + src2.w .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel from a specified texture image. The source sampler may not be a CUBE or SHADOW. src 0 is a four-component signed integer vector used to identify the single texel accessed. 3 components + level. src 1 is a 3 component constant signed integer vector, with each component only have a range of -8..+8 (hw only seems to deal with this range, interface allows for up to unsigned int). TXF(uint_vec coord, int_vec offset). .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4) retrieve the dimensions of the texture depending on the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height, depth), 1D array (width, layers), 2D array (width, height, layers) .. math:: lod = src0 dst.x = texture_width(unit, lod) dst.y = texture_height(unit, lod) dst.z = texture_depth(unit, lod) .. opcode:: CONT - Continue TBD .. note:: Support for CONT is determined by a special capability bit, ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information. Geometry ISA ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These opcodes are only supported in geometry shaders; they have no meaning in any other type of shader. .. opcode:: EMIT - Emit TBD .. opcode:: ENDPRIM - End Primitive TBD GLSL ISA ^^^^^^^^^^ These opcodes are part of :term:`GLSL`'s opcode set. Support for these opcodes is determined by a special capability bit, ``GLSL``. .. opcode:: BGNLOOP - Begin a Loop TBD .. opcode:: BGNSUB - Begin Subroutine TBD .. opcode:: ENDLOOP - End a Loop TBD .. opcode:: ENDSUB - End Subroutine TBD .. opcode:: NOP - No Operation Do nothing. .. opcode:: NRM4 - 4-component Vector Normalise This instruction replicates its result. .. math:: dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w} ps_2_x ^^^^^^^^^^^^ XXX wait what .. opcode:: CALLNZ - Subroutine Call If Not Zero TBD .. opcode:: IFC - If TBD .. opcode:: BREAKC - Break Conditional TBD .. _doubleopcodes: Double ISA ^^^^^^^^^^^^^^^ The double-precision opcodes reinterpret four-component vectors into two-component vectors with doubled precision in each component. Support for these opcodes is XXX undecided. :T .. opcode:: DADD - Add .. math:: dst.xy = src0.xy + src1.xy dst.zw = src0.zw + src1.zw .. opcode:: DDIV - Divide .. math:: dst.xy = src0.xy / src1.xy dst.zw = src0.zw / src1.zw .. opcode:: DSEQ - Set on Equal .. math:: dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F .. opcode:: DSLT - Set on Less than .. math:: dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F .. opcode:: DFRAC - Fraction .. math:: dst.xy = src.xy - \lfloor src.xy\rfloor dst.zw = src.zw - \lfloor src.zw\rfloor .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components Like the ``frexp()`` routine in many math libraries, this opcode stores the exponent of its source to ``dst0``, and the significand to ``dst1``, such that :math:`dst1 \times 2^{dst0} = src` . .. math:: dst0.xy = exp(src.xy) dst1.xy = frac(src.xy) dst0.zw = exp(src.zw) dst1.zw = frac(src.zw) .. opcode:: DLDEXP - Multiply Number by Integral Power of 2 This opcode is the inverse of :opcode:`DFRACEXP`. .. math:: dst.xy = src0.xy \times 2^{src1.xy} dst.zw = src0.zw \times 2^{src1.zw} .. opcode:: DMIN - Minimum .. math:: dst.xy = min(src0.xy, src1.xy) dst.zw = min(src0.zw, src1.zw) .. opcode:: DMAX - Maximum .. math:: dst.xy = max(src0.xy, src1.xy) dst.zw = max(src0.zw, src1.zw) .. opcode:: DMUL - Multiply .. math:: dst.xy = src0.xy \times src1.xy dst.zw = src0.zw \times src1.zw .. opcode:: DMAD - Multiply And Add .. math:: dst.xy = src0.xy \times src1.xy + src2.xy dst.zw = src0.zw \times src1.zw + src2.zw .. opcode:: DRCP - Reciprocal .. math:: dst.xy = \frac{1}{src.xy} dst.zw = \frac{1}{src.zw} .. opcode:: DSQRT - Square Root .. math:: dst.xy = \sqrt{src.xy} dst.zw = \sqrt{src.zw} .. _samplingopcodes: Resource Sampling Opcodes ^^^^^^^^^^^^^^^^^^^^^^^^^ Those opcodes follow very closely semantics of the respective Direct3D instructions. If in doubt double check Direct3D documentation. .. opcode:: SAMPLE - Using provided address, sample data from the specified texture using the filtering mode identified by the gven sampler. The source data may come from any resource type other than buffers. SAMPLE dst, address, sampler_view, sampler e.g. SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0] .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction. Using the provided integer address, SAMPLE_I fetches data from the specified sampler view without any filtering. The source data may come from any resource type other than CUBE. SAMPLE_I dst, address, sampler_view e.g. SAMPLE_I TEMP[0], TEMP[1], SVIEW[0] The 'address' is specified as unsigned integers. If the 'address' is out of range [0...(# texels - 1)] the result of the fetch is always 0 in all components. As such the instruction doesn't honor address wrap modes, in cases where that behavior is desirable 'SAMPLE' instruction should be used. address.w always provides an unsigned integer mipmap level. If the value is out of the range then the instruction always returns 0 in all components. address.yz are ignored for buffers and 1d textures. address.z is ignored for 1d texture arrays and 2d textures. For 1D texture arrays address.y provides the array index (also as unsigned integer). If the value is out of the range of available array indices [0... (array size - 1)] then the opcode always returns 0 in all components. For 2D texture arrays address.z provides the array index, otherwise it exhibits the same behavior as in the case for 1D texture arrays. The exact semantics of the source address are presented in the table below: resource type X Y Z W ------------- ------------------------ PIPE_BUFFER x ignored PIPE_TEXTURE_1D x mpl PIPE_TEXTURE_2D x y mpl PIPE_TEXTURE_3D x y z mpl PIPE_TEXTURE_RECT x y mpl PIPE_TEXTURE_CUBE not allowed as source PIPE_TEXTURE_1D_ARRAY x idx mpl PIPE_TEXTURE_2D_ARRAY x y idx mpl Where 'mpl' is a mipmap level and 'idx' is the array index. .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from multi-sampled surfaces. .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the exception that an additiona bias is applied to the level of detail computed as part of the instruction execution. SAMPLE_B dst, address, sampler_view, sampler, lod_bias e.g. SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it performs a comparison filter. The operands to SAMPLE_C are identical to SAMPLE, except that tere is an additional float32 operand, reference value, which must be a register with single-component, or a scalar literal. SAMPLE_C makes the hardware use the current samplers compare_func (in pipe_sampler_state) to compare reference value against the red component value for the surce resource at each texel that the currently configured texture filter covers based on the provided coordinates. SAMPLE_C dst, address, sampler_view.r, sampler, ref_value e.g. SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands for level-zero. SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value e.g. SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for the source address in the x direction and the y direction are provided by extra parameters. SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y e.g. SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3] .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided directly as a scalar value, representing no anisotropy. Source addresses A channel is used as the LOD. SAMPLE_L dst, address, sampler_view, sampler e.g. SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0] .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear filtering operation and packs them into a single register. Only works with 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the addressing modes of the sampler and the top level of any mip pyramid are used. Set W to zero. It behaves like the SAMPLE instruction, but a filtered sample is not generated. The four samples that contribute to filtering are placed into xyzw in counter-clockwise order, starting with the (u,v) texture coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -), where the magnitude of the deltas are half a texel. .. opcode:: SVIEWINFO - query the dimensions of a given sampler view. dst receives width, height, depth or array size and number of mipmap levels as int4. The dst can have a writemask which will specify what info is the caller interested in. SVIEWINFO dst, src_mip_level, sampler_view e.g. SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0] src_mip_level is an unsigned integer scalar. If it's out of range then returns 0 for width, height and depth/array size but the total number of mipmap is still returned correctly for the given sampler view. The returned width, height and depth values are for the mipmap level selected by the src_mip_level and are in the number of texels. For 1d texture array width is in dst.x, array size is in dst.y and dst.zw are always 0. .. opcode:: SAMPLE_POS - query the position of a given sample. dst receives float4 (x, y, 0, 0) indicated where the sample is located. If the resource is not a multi-sample resource and not a render target, the result is 0. .. opcode:: SAMPLE_INFO - dst receives number of samples in x. If the resource is not a multi-sample resource and not a render target, the result is 0. .. _resourceopcodes: Resource Access Opcodes ^^^^^^^^^^^^^^^^^^^^^^^ .. opcode:: LOAD - Fetch data from a shader resource Syntax: ``LOAD dst, resource, address`` Example: ``LOAD TEMP[0], RES[0], TEMP[1]`` Using the provided integer address, LOAD fetches data from the specified buffer or texture without any filtering. The 'address' is specified as a vector of unsigned integers. If the 'address' is out of range the result is unspecified. Only the first mipmap level of a resource can be read from using this instruction. For 1D or 2D texture arrays, the array index is provided as an unsigned integer in address.y or address.z, respectively. address.yz are ignored for buffers and 1D textures. address.z is ignored for 1D texture arrays and 2D textures. address.w is always ignored. .. opcode:: STORE - Write data to a shader resource Syntax: ``STORE resource, address, src`` Example: ``STORE RES[0], TEMP[0], TEMP[1]`` Using the provided integer address, STORE writes data to the specified buffer or texture. The 'address' is specified as a vector of unsigned integers. If the 'address' is out of range the result is unspecified. Only the first mipmap level of a resource can be written to using this instruction. For 1D or 2D texture arrays, the array index is provided as an unsigned integer in address.y or address.z, respectively. address.yz are ignored for buffers and 1D textures. address.z is ignored for 1D texture arrays and 2D textures. address.w is always ignored. .. _threadsyncopcodes: Inter-thread synchronization opcodes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These opcodes are intended for communication between threads running within the same compute grid. For now they're only valid in compute programs. .. opcode:: MFENCE - Memory fence Syntax: ``MFENCE resource`` Example: ``MFENCE RES[0]`` This opcode forces strong ordering between any memory access operations that affect the specified resource. This means that previous loads and stores (and only those) will be performed and visible to other threads before the program execution continues. .. opcode:: LFENCE - Load memory fence Syntax: ``LFENCE resource`` Example: ``LFENCE RES[0]`` Similar to MFENCE, but it only affects the ordering of memory loads. .. opcode:: SFENCE - Store memory fence Syntax: ``SFENCE resource`` Example: ``SFENCE RES[0]`` Similar to MFENCE, but it only affects the ordering of memory stores. .. opcode:: BARRIER - Thread group barrier ``BARRIER`` This opcode suspends the execution of the current thread until all the remaining threads in the working group reach the same point of the program. Results are unspecified if any of the remaining threads terminates or never reaches an executed BARRIER instruction. .. _atomopcodes: Atomic opcodes ^^^^^^^^^^^^^^ These opcodes provide atomic variants of some common arithmetic and logical operations. In this context atomicity means that another concurrent memory access operation that affects the same memory location is guaranteed to be performed strictly before or after the entire execution of the atomic operation. For the moment they're only valid in compute programs. .. opcode:: ATOMUADD - Atomic integer addition Syntax: ``ATOMUADD dst, resource, offset, src`` Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = dst_i + src_i .. opcode:: ATOMXCHG - Atomic exchange Syntax: ``ATOMXCHG dst, resource, offset, src`` Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = src_i .. opcode:: ATOMCAS - Atomic compare-and-exchange Syntax: ``ATOMCAS dst, resource, offset, cmp, src`` Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i) .. opcode:: ATOMAND - Atomic bitwise And Syntax: ``ATOMAND dst, resource, offset, src`` Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = dst_i \& src_i .. opcode:: ATOMOR - Atomic bitwise Or Syntax: ``ATOMOR dst, resource, offset, src`` Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = dst_i | src_i .. opcode:: ATOMXOR - Atomic bitwise Xor Syntax: ``ATOMXOR dst, resource, offset, src`` Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = dst_i \oplus src_i .. opcode:: ATOMUMIN - Atomic unsigned minimum Syntax: ``ATOMUMIN dst, resource, offset, src`` Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = (dst_i < src_i ? dst_i : src_i) .. opcode:: ATOMUMAX - Atomic unsigned maximum Syntax: ``ATOMUMAX dst, resource, offset, src`` Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = (dst_i > src_i ? dst_i : src_i) .. opcode:: ATOMIMIN - Atomic signed minimum Syntax: ``ATOMIMIN dst, resource, offset, src`` Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = (dst_i < src_i ? dst_i : src_i) .. opcode:: ATOMIMAX - Atomic signed maximum Syntax: ``ATOMIMAX dst, resource, offset, src`` Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]`` The following operation is performed atomically on each component: .. math:: dst_i = resource[offset]_i resource[offset]_i = (dst_i > src_i ? dst_i : src_i) Explanation of symbols used ------------------------------ Functions ^^^^^^^^^^^^^^ :math:`|x|` Absolute value of `x`. :math:`\lceil x \rceil` Ceiling of `x`. clamp(x,y,z) Clamp x between y and z. (x < y) ? y : (x > z) ? z : x :math:`\lfloor x\rfloor` Floor of `x`. :math:`\log_2{x}` Logarithm of `x`, base 2. max(x,y) Maximum of x and y. (x > y) ? x : y min(x,y) Minimum of x and y. (x < y) ? x : y partialx(x) Derivative of x relative to fragment's X. partialy(x) Derivative of x relative to fragment's Y. pop() Pop from stack. :math:`x^y` `x` to the power `y`. push(x) Push x on stack. round(x) Round x. trunc(x) Truncate x, i.e. drop the fraction bits. Keywords ^^^^^^^^^^^^^ discard Discard fragment. pc Program counter. target Label of target instruction. Other tokens --------------- Declaration ^^^^^^^^^^^ Declares a register that is will be referenced as an operand in Instruction tokens. File field contains register file that is being declared and is one of TGSI_FILE. UsageMask field specifies which of the register components can be accessed and is one of TGSI_WRITEMASK. The Local flag specifies that a given value isn't intended for subroutine parameter passing and, as a result, the implementation isn't required to give any guarantees of it being preserved across subroutine boundaries. As it's merely a compiler hint, the implementation is free to ignore it. If Dimension flag is set to 1, a Declaration Dimension token follows. If Semantic flag is set to 1, a Declaration Semantic token follows. If Interpolate flag is set to 1, a Declaration Interpolate token follows. If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows. Declaration Semantic ^^^^^^^^^^^^^^^^^^^^^^^^ Vertex and fragment shader input and output registers may be labeled with semantic information consisting of a name and index. Follows Declaration token if Semantic bit is set. Since its purpose is to link a shader with other stages of the pipeline, it is valid to follow only those Declaration tokens that declare a register either in INPUT or OUTPUT file. SemanticName field contains the semantic name of the register being declared. There is no default value. SemanticIndex is an optional subscript that can be used to distinguish different register declarations with the same semantic name. The default value is 0. The meanings of the individual semantic names are explained in the following sections. TGSI_SEMANTIC_POSITION """""""""""""""""""""" For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader output register which contains the homogeneous vertex position in the clip space coordinate system. After clipping, the X, Y and Z components of the vertex will be divided by the W value to get normalized device coordinates. For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that fragment shader input contains the fragment's window position. The X component starts at zero and always increases from left to right. The Y component starts at zero and always increases but Y=0 may either indicate the top of the window or the bottom depending on the fragment coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN). The Z coordinate ranges from 0 to 1 to represent depth from the front to the back of the Z buffer. The W component contains the reciprocol of the interpolated vertex position W component. Fragment shaders may also declare an output register with TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows the fragment shader to change the fragment's Z position. TGSI_SEMANTIC_COLOR """"""""""""""""""" For vertex shader outputs or fragment shader inputs/outputs, this label indicates that the resister contains an R,G,B,A color. Several shader inputs/outputs may contain colors so the semantic index is used to distinguish them. For example, color[0] may be the diffuse color while color[1] may be the specular color. This label is needed so that the flat/smooth shading can be applied to the right interpolants during rasterization. TGSI_SEMANTIC_BCOLOR """""""""""""""""""" Back-facing colors are only used for back-facing polygons, and are only valid in vertex shader outputs. After rasterization, all polygons are front-facing and COLOR and BCOLOR end up occupying the same slots in the fragment shader, so all BCOLORs effectively become regular COLORs in the fragment shader. TGSI_SEMANTIC_FOG """"""""""""""""" Vertex shader inputs and outputs and fragment shader inputs may be labeled with TGSI_SEMANTIC_FOG to indicate that the register contains a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment shader will use the fog coordinate to compute a fog blend factor which is used to blend the normal fragment color with a constant fog color. Only the first component matters when writing from the vertex shader; the driver will ensure that the coordinate is in this format when used as a fragment shader input. TGSI_SEMANTIC_PSIZE """"""""""""""""""" Vertex shader input and output registers may be labeled with TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size in the form (S, 0, 0, 1). The point size controls the width or diameter of points for rasterization. This label cannot be used in fragment shaders. When using this semantic, be sure to set the appropriate state in the :ref:`rasterizer` first. TGSI_SEMANTIC_GENERIC """"""""""""""""""""" All vertex/fragment shader inputs/outputs not labeled with any other semantic label can be considered to be generic attributes. Typical uses of generic inputs/outputs are texcoords and user-defined values. TGSI_SEMANTIC_NORMAL """""""""""""""""""" Indicates that a vertex shader input is a normal vector. This is typically only used for legacy graphics APIs. TGSI_SEMANTIC_FACE """""""""""""""""" This label applies to fragment shader inputs only and indicates that the register contains front/back-face information of the form (F, 0, 0, 1). The first component will be positive when the fragment belongs to a front-facing polygon, and negative when the fragment belongs to a back-facing polygon. TGSI_SEMANTIC_EDGEFLAG """""""""""""""""""""" For vertex shaders, this sematic label indicates that an input or output is a boolean edge flag. The register layout is [F, x, x, x] where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader simply copies the edge flag input to the edgeflag output. Edge flags are used to control which lines or points are actually drawn when the polygon mode converts triangles/quads/polygons into points or lines. TGSI_SEMANTIC_STENCIL """""""""""""""""""""" For fragment shaders, this semantic label indicates than an output is a writable stencil reference value. Only the Y component is writable. This allows the fragment shader to change the fragments stencilref value. Declaration Interpolate ^^^^^^^^^^^^^^^^^^^^^^^ This token is only valid for fragment shader INPUT declarations. The Interpolate field specifes the way input is being interpolated by the rasteriser and is one of TGSI_INTERPOLATE_*. The CylindricalWrap bitfield specifies which register components should be subject to cylindrical wrapping when interpolating by the rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component should be interpolated according to cylindrical wrapping rules. Declaration Sampler View ^^^^^^^^^^^^^^^^^^^^^^^^ Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW. DCL SVIEW[#], resource, type(s) Declares a shader input sampler view and assigns it to a SVIEW[#] register. resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray. type must be 1 or 4 entries (if specifying on a per-component level) out of UNORM, SNORM, SINT, UINT and FLOAT. Declaration Resource ^^^^^^^^^^^^^^^^^^^^ Follows Declaration token if file is TGSI_FILE_RESOURCE. DCL RES[#], resource [, WR] [, RAW] Declares a shader input resource and assigns it to a RES[#] register. resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and 2DArray. If the RAW keyword is not specified, the texture data will be subject to conversion, swizzling and scaling as required to yield the specified data type from the physical data format of the bound resource. If the RAW keyword is specified, no channel conversion will be performed: the values read for each of the channels (X,Y,Z,W) will correspond to consecutive words in the same order and format they're found in memory. No element-to-address conversion will be performed either: the value of the provided X coordinate will be interpreted in byte units instead of texel units. The result of accessing a misaligned address is undefined. Usage of the STORE opcode is only allowed if the WR (writable) flag is set. Properties ^^^^^^^^^^^^^^^^^^^^^^^^ Properties are general directives that apply to the whole TGSI program. FS_COORD_ORIGIN """"""""""""""" Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin. The default value is UPPER_LEFT. If UPPER_LEFT, the position will be (0,0) at the upper left corner and increase downward and rightward. If LOWER_LEFT, the position will be (0,0) at the lower left corner and increase upward and rightward. OpenGL defaults to LOWER_LEFT, and is configurable with the GL_ARB_fragment_coord_conventions extension. DirectX 9/10 use UPPER_LEFT. FS_COORD_PIXEL_CENTER """"""""""""""""""""" Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention. The default value is HALF_INTEGER. If HALF_INTEGER, the fractionary part of the position will be 0.5 If INTEGER, the fractionary part of the position will be 0.0 Note that this does not affect the set of fragments generated by rasterization, which is instead controlled by gl_rasterization_rules in the rasterizer. OpenGL defaults to HALF_INTEGER, and is configurable with the GL_ARB_fragment_coord_conventions extension. DirectX 9 uses INTEGER. DirectX 10 uses HALF_INTEGER. FS_COLOR0_WRITES_ALL_CBUFS """""""""""""""""""""""""" Specifies that writes to the fragment shader color 0 are replicated to all bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where fragData is directed to a single color buffer, but fragColor is broadcast. VS_PROHIBIT_UCPS """""""""""""""""""""""""" If this property is set on the program bound to the shader stage before the fragment shader, user clip planes should have no effect (be disabled) even if that shader does not write to any clip distance outputs and the rasterizer's clip_plane_enable is non-zero. This property is only supported by drivers that also support shader clip distance outputs. This is useful for APIs that don't have UCPs and where clip distances written by a shader cannot be disabled. Texture Sampling and Texture Formats ------------------------------------ This table shows how texture image components are returned as (x,y,z,w) tuples by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as well. +--------------------+--------------+--------------------+--------------+ | Texture Components | Gallium | OpenGL | Direct3D 9 | +====================+==============+====================+==============+ | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) | +--------------------+--------------+--------------------+--------------+ | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) | +--------------------+--------------+--------------------+--------------+ | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) | +--------------------+--------------+--------------------+--------------+ | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) | +--------------------+--------------+--------------------+--------------+ | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) | +--------------------+--------------+--------------------+--------------+ | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) | +--------------------+--------------+--------------------+--------------+ | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) | +--------------------+--------------+--------------------+--------------+ | I | (i, i, i, i) | (i, i, i, i) | N/A | +--------------------+--------------+--------------------+--------------+ | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) | | | | [#envmap-bumpmap]_ | | +--------------------+--------------+--------------------+--------------+ | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) | | | | [#depth-tex-mode]_ | | +--------------------+--------------+--------------------+--------------+ | S | (s, s, s, s) | unknown | unknown | +--------------------+--------------+--------------------+--------------+ .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z) or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.