/************************************************************************** * * Copyright 2009 Younes Manton. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "util/u_math.h" #include "util/u_debug.h" #include "vl_csc.h" /* * Color space conversion formulas * * To convert YCbCr to RGB, * vec4 ycbcr, rgb * mat44 csc * rgb = csc * ycbcr * * To calculate the color space conversion matrix csc with ProcAmp adjustments, * mat44 csc, cstd, procamp, bias * csc = cstd * (procamp * bias) * * Where cstd is a matrix corresponding to one of the color standards (BT.601, BT.709, etc) * adjusted for the kind of YCbCr -> RGB mapping wanted (1:1, full), * bias is a matrix corresponding to the kind of YCbCr -> RGB mapping wanted (1:1, full) * * To calculate procamp, * mat44 procamp, hue, saturation, brightness, contrast * procamp = brightness * (saturation * (contrast * hue)) * Alternatively, * procamp = saturation * (brightness * (contrast * hue)) * * contrast * [ c, 0, 0, 0] * [ 0, c, 0, 0] * [ 0, 0, c, 0] * [ 0, 0, 0, 1] * * brightness * [ 1, 0, 0, b] * [ 0, 1, 0, 0] * [ 0, 0, 1, 0] * [ 0, 0, 0, 1] * * saturation * [ 1, 0, 0, 0] * [ 0, s, 0, 0] * [ 0, 0, s, 0] * [ 0, 0, 0, 1] * * hue * [ 1, 0, 0, 0] * [ 0, cos(h), sin(h), 0] * [ 0, -sin(h), cos(h), 0] * [ 0, 0, 0, 1] * * procamp * [ c, 0, 0, b] * [ 0, c*s*cos(h), c*s*sin(h), 0] * [ 0, -c*s*sin(h), c*s*cos(h), 0] * [ 0, 0, 0, 1] * * bias * [ 1, 0, 0, ybias] * [ 0, 1, 0, cbbias] * [ 0, 0, 1, crbias] * [ 0, 0, 0, 1] * * csc * [ c*cstd[ 0], c*cstd[ 1]*s*cos(h) - c*cstd[ 2]*s*sin(h), c*cstd[ 2]*s*cos(h) + c*cstd[ 1]*s*sin(h), cstd[ 3] + cstd[ 0]*(b + c*ybias) + cstd[ 1]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[ 2]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))] * [ c*cstd[ 4], c*cstd[ 5]*s*cos(h) - c*cstd[ 6]*s*sin(h), c*cstd[ 6]*s*cos(h) + c*cstd[ 5]*s*sin(h), cstd[ 7] + cstd[ 4]*(b + c*ybias) + cstd[ 5]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[ 6]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))] * [ c*cstd[ 8], c*cstd[ 9]*s*cos(h) - c*cstd[10]*s*sin(h), c*cstd[10]*s*cos(h) + c*cstd[ 9]*s*sin(h), cstd[11] + cstd[ 8]*(b + c*ybias) + cstd[ 9]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[10]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))] * [ c*cstd[12], c*cstd[13]*s*cos(h) - c*cstd[14]*s*sin(h), c*cstd[14]*s*cos(h) + c*cstd[13]*s*sin(h), cstd[15] + cstd[12]*(b + c*ybias) + cstd[13]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[14]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))] */ /* * Converts ITU-R BT.601 YCbCr pixels to RGB pixels where: * Y is in [16,235], Cb and Cr are in [16,240] * R, G, and B are in [16,235] */ static const float bt_601[16] = { 1.0f, 0.0f, 1.371f, 0.0f, 1.0f, -0.336f, -0.698f, 0.0f, 1.0f, 1.732f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; /* * Converts ITU-R BT.601 YCbCr pixels to RGB pixels where: * Y is in [16,235], Cb and Cr are in [16,240] * R, G, and B are in [0,255] */ static const float bt_601_full[16] = { 1.164f, 0.0f, 1.596f, 0.0f, 1.164f, -0.391f, -0.813f, 0.0f, 1.164f, 2.018f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; /* * Converts ITU-R BT.709 YCbCr pixels to RGB pixels where: * Y is in [16,235], Cb and Cr are in [16,240] * R, G, and B are in [16,235] */ static const float bt_709[16] = { 1.0f, 0.0f, 1.540f, 0.0f, 1.0f, -0.183f, -0.459f, 0.0f, 1.0f, 1.816f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; /* * Converts ITU-R BT.709 YCbCr pixels to RGB pixels where: * Y is in [16,235], Cb and Cr are in [16,240] * R, G, and B are in [0,255] */ static const float bt_709_full[16] = { 1.164f, 0.0f, 1.793f, 0.0f, 1.164f, -0.213f, -0.534f, 0.0f, 1.164f, 2.115f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; static const float identity[16] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; const struct vl_procamp vl_default_procamp = { 0.0f, /* brightness */ 1.0f, /* contrast */ 1.0f, /* saturation */ 0.0f /* hue */ }; void vl_csc_get_matrix(enum VL_CSC_COLOR_STANDARD cs, struct vl_procamp *procamp, bool full_range, float *matrix) { float ybias = full_range ? -16.0f/255.0f : 0.0f; float cbbias = -128.0f/255.0f; float crbias = -128.0f/255.0f; const struct vl_procamp *p = procamp ? procamp : &vl_default_procamp; float c = p->contrast; float s = p->saturation; float b = p->brightness; float h = p->hue; const float *cstd; assert(matrix); switch (cs) { case VL_CSC_COLOR_STANDARD_BT_601: cstd = full_range ? &bt_601_full[0] : &bt_601[0]; break; case VL_CSC_COLOR_STANDARD_BT_709: cstd = full_range ? &bt_709_full[0] : &bt_709[0]; break; case VL_CSC_COLOR_STANDARD_IDENTITY: default: assert(cs == VL_CSC_COLOR_STANDARD_IDENTITY); memcpy(matrix, &identity[0], sizeof(float) * 16); return; } matrix[ 0] = c*cstd[ 0]; matrix[ 1] = c*cstd[ 1]*s*cosf(h) - c*cstd[ 2]*s*sinf(h); matrix[ 2] = c*cstd[ 2]*s*cosf(h) + c*cstd[ 1]*s*sinf(h); matrix[ 3] = cstd[ 3] + cstd[ 0]*(b + c*ybias) + cstd[ 1]*(c*cbbias*s*cosf(h) + c*crbias*s*sinf(h)) + cstd[ 2]*(c*crbias*s*cosf(h) - c*cbbias*s*sinf(h)); matrix[ 4] = c*cstd[ 4]; matrix[ 5] = c*cstd[ 5]*s*cosf(h) - c*cstd[ 6]*s*sinf(h); matrix[ 6] = c*cstd[ 6]*s*cosf(h) + c*cstd[ 5]*s*sinf(h); matrix[ 7] = cstd[ 7] + cstd[ 4]*(b + c*ybias) + cstd[ 5]*(c*cbbias*s*cosf(h) + c*crbias*s*sinf(h)) + cstd[ 6]*(c*crbias*s*cosf(h) - c*cbbias*s*sinf(h)); matrix[ 8] = c*cstd[ 8]; matrix[ 9] = c*cstd[ 9]*s*cosf(h) - c*cstd[10]*s*sinf(h); matrix[10] = c*cstd[10]*s*cosf(h) + c*cstd[ 9]*s*sinf(h); matrix[11] = cstd[11] + cstd[ 8]*(b + c*ybias) + cstd[ 9]*(c*cbbias*s*cosf(h) + c*crbias*s*sinf(h)) + cstd[10]*(c*crbias*s*cosf(h) - c*cbbias*s*sinf(h)); matrix[12] = c*cstd[12]; matrix[13] = c*cstd[13]*s*cos(h) - c*cstd[14]*s*sin(h); matrix[14] = c*cstd[14]*s*cos(h) + c*cstd[13]*s*sin(h); matrix[15] = cstd[15] + cstd[12]*(b + c*ybias) + cstd[13]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[14]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h)); }