/************************************************************************** * * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * Math utilities and approximations for common math functions. * Reduced precision is usually acceptable in shaders... * * "fast" is used in the names of functions which are low-precision, * or at least lower-precision than the normal C lib functions. */ #ifndef U_MATH_H #define U_MATH_H #include "pipe/p_compiler.h" #include "pipe/p_util.h" #include "util/u_math.h" #define POW2_TABLE_SIZE 256 #define POW2_TABLE_SCALE ((float) (POW2_TABLE_SIZE-1)) extern float pow2_table[POW2_TABLE_SIZE]; extern void util_init_math(void); /** * Fast approximation to exp(x). * Compute with base 2 exponents: exp(x) = exp2(log2(e) * x) * Note: log2(e) is a constant, k = 1.44269 * So, exp(x) = exp2(k * x); * Identity: exp2(a + b) = exp2(a) * exp2(b) * Let ipart = int(k*x) * Let fpart = k*x - ipart; * So, exp2(k*x) = exp2(ipart) * exp2(fpart) * Compute exp2(ipart) with i << ipart * Compute exp2(fpart) with lookup table. */ static INLINE float util_fast_exp(float x) { if (x >= 0.0f) { float k = 1.44269f; /* = log2(e) */ float kx = k * x; int ipart = (int) kx; float fpart = kx - (float) ipart; float y = (float) (1 << ipart) * pow2_table[(int) (fpart * POW2_TABLE_SCALE)]; return y; } else { /* exp(-x) = 1.0 / exp(x) */ float k = -1.44269f; float kx = k * x; int ipart = (int) kx; float fpart = kx - (float) ipart; float y = (float) (1 << ipart) * pow2_table[(int) (fpart * POW2_TABLE_SCALE)]; return 1.0f / y; } } /** * Fast version of 2^x * XXX the above function could be implemented in terms of this one. */ static INLINE float util_fast_exp2(float x) { if (x >= 0.0f) { int ipart = (int) x; float fpart = x - (float) ipart; float y = (float) (1 << ipart) * pow2_table[(int) (fpart * POW2_TABLE_SCALE)]; return y; } else { /* exp(-x) = 1.0 / exp(x) */ int ipart = (int) -x; float fpart = -x - (float) ipart; float y = (float) (1 << ipart) * pow2_table[(int) (fpart * POW2_TABLE_SCALE)]; return 1.0f / y; } } /** * Based on code from http://www.flipcode.com/totd/ */ static INLINE float util_fast_log2(float val) { union fi num; int log_2; num.f = val; log_2 = ((num.i >> 23) & 255) - 128; num.i &= ~(255 << 23); num.i += 127 << 23; num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; return num.f + log_2; } static INLINE float util_fast_pow(float x, float y) { /* XXX this test may need adjustment */ if (y >= 3.0 && -0.02f <= x && x <= 0.02f) return 0.0f; return util_fast_exp2(util_fast_log2(x) * y); } /** * Floor(x), returned as int. */ static INLINE int util_ifloor(float f) { int ai, bi; double af, bf; union fi u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi) >> 1; } /** * Round float to nearest int. */ static INLINE int util_iround(float f) { #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) int r; __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); return r; #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86) int r; _asm { fld f fistp r } return r; #else if (f >= 0.0f) return (int) (f + 0.5f); else return (int) (f - 0.5f); #endif } #endif /* U_MATH_H */