/************************************************************************** * * Copyright 2012 Marek Olšák * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "util/u_cpu_detect.h" #include "util/u_helpers.h" #include "util/u_inlines.h" #include "util/u_upload_mgr.h" #include "util/u_thread.h" #include "util/os_time.h" #include /** * This function is used to copy an array of pipe_vertex_buffer structures, * while properly referencing the pipe_vertex_buffer::buffer member. * * enabled_buffers is updated such that the bits corresponding to the indices * of disabled buffers are set to 0 and the enabled ones are set to 1. * * \sa util_copy_framebuffer_state */ void util_set_vertex_buffers_mask(struct pipe_vertex_buffer *dst, uint32_t *enabled_buffers, const struct pipe_vertex_buffer *src, unsigned start_slot, unsigned count) { unsigned i; uint32_t bitmask = 0; dst += start_slot; if (src) { for (i = 0; i < count; i++) { if (src[i].buffer.resource) bitmask |= 1 << i; pipe_vertex_buffer_unreference(&dst[i]); if (!src[i].is_user_buffer) pipe_resource_reference(&dst[i].buffer.resource, src[i].buffer.resource); } /* Copy over the other members of pipe_vertex_buffer. */ memcpy(dst, src, count * sizeof(struct pipe_vertex_buffer)); *enabled_buffers &= ~(((1ull << count) - 1) << start_slot); *enabled_buffers |= bitmask << start_slot; } else { /* Unreference the buffers. */ for (i = 0; i < count; i++) pipe_vertex_buffer_unreference(&dst[i]); *enabled_buffers &= ~(((1ull << count) - 1) << start_slot); } } /** * Same as util_set_vertex_buffers_mask, but it only returns the number * of bound buffers. */ void util_set_vertex_buffers_count(struct pipe_vertex_buffer *dst, unsigned *dst_count, const struct pipe_vertex_buffer *src, unsigned start_slot, unsigned count) { unsigned i; uint32_t enabled_buffers = 0; for (i = 0; i < *dst_count; i++) { if (dst[i].buffer.resource) enabled_buffers |= (1ull << i); } util_set_vertex_buffers_mask(dst, &enabled_buffers, src, start_slot, count); *dst_count = util_last_bit(enabled_buffers); } /** * This function is used to copy an array of pipe_shader_buffer structures, * while properly referencing the pipe_shader_buffer::buffer member. * * \sa util_set_vertex_buffer_mask */ void util_set_shader_buffers_mask(struct pipe_shader_buffer *dst, uint32_t *enabled_buffers, const struct pipe_shader_buffer *src, unsigned start_slot, unsigned count) { unsigned i; dst += start_slot; if (src) { for (i = 0; i < count; i++) { pipe_resource_reference(&dst[i].buffer, src[i].buffer); if (src[i].buffer) *enabled_buffers |= (1ull << (start_slot + i)); else *enabled_buffers &= ~(1ull << (start_slot + i)); } /* Copy over the other members of pipe_shader_buffer. */ memcpy(dst, src, count * sizeof(struct pipe_shader_buffer)); } else { /* Unreference the buffers. */ for (i = 0; i < count; i++) pipe_resource_reference(&dst[i].buffer, NULL); *enabled_buffers &= ~(((1ull << count) - 1) << start_slot); } } /** * Given a user index buffer, save the structure to "saved", and upload it. */ bool util_upload_index_buffer(struct pipe_context *pipe, const struct pipe_draw_info *info, struct pipe_resource **out_buffer, unsigned *out_offset) { unsigned start_offset = info->start * info->index_size; u_upload_data(pipe->stream_uploader, start_offset, info->count * info->index_size, 4, (char*)info->index.user + start_offset, out_offset, out_buffer); u_upload_unmap(pipe->stream_uploader); *out_offset -= start_offset; return *out_buffer != NULL; } /** * Called by MakeCurrent. Used to notify the driver that the application * thread may have been changed. * * The function pins the current thread and driver threads to a group of * CPU cores that share the same L3 cache. This is needed for good multi- * threading performance on AMD Zen CPUs. * * \param upper_thread thread in the state tracker that also needs to be * pinned. */ void util_pin_driver_threads_to_random_L3(struct pipe_context *ctx, thrd_t *upper_thread) { /* If pinning has no effect, don't do anything. */ if (util_cpu_caps.nr_cpus == util_cpu_caps.cores_per_L3) return; unsigned num_L3_caches = util_cpu_caps.nr_cpus / util_cpu_caps.cores_per_L3; /* Get a semi-random number. */ int64_t t = os_time_get_nano(); unsigned cache = (t ^ (t >> 8) ^ (t >> 16)) % num_L3_caches; /* Tell the driver to pin its threads to the selected L3 cache. */ if (ctx->set_context_param) { ctx->set_context_param(ctx, PIPE_CONTEXT_PARAM_PIN_THREADS_TO_L3_CACHE, cache); } /* Do the same for the upper level thread if there is any (e.g. glthread) */ if (upper_thread) util_pin_thread_to_L3(*upper_thread, cache, util_cpu_caps.cores_per_L3); } /* This is a helper for hardware bring-up. Don't remove. */ struct pipe_query * util_begin_pipestat_query(struct pipe_context *ctx) { struct pipe_query *q = ctx->create_query(ctx, PIPE_QUERY_PIPELINE_STATISTICS, 0); if (!q) return NULL; ctx->begin_query(ctx, q); return q; } /* This is a helper for hardware bring-up. Don't remove. */ void util_end_pipestat_query(struct pipe_context *ctx, struct pipe_query *q, FILE *f) { static unsigned counter; struct pipe_query_data_pipeline_statistics stats; ctx->end_query(ctx, q); ctx->get_query_result(ctx, q, true, (void*)&stats); ctx->destroy_query(ctx, q); fprintf(f, "Draw call %u:\n" " ia_vertices = %"PRIu64"\n" " ia_primitives = %"PRIu64"\n" " vs_invocations = %"PRIu64"\n" " gs_invocations = %"PRIu64"\n" " gs_primitives = %"PRIu64"\n" " c_invocations = %"PRIu64"\n" " c_primitives = %"PRIu64"\n" " ps_invocations = %"PRIu64"\n" " hs_invocations = %"PRIu64"\n" " ds_invocations = %"PRIu64"\n" " cs_invocations = %"PRIu64"\n", (unsigned)p_atomic_inc_return(&counter), stats.ia_vertices, stats.ia_primitives, stats.vs_invocations, stats.gs_invocations, stats.gs_primitives, stats.c_invocations, stats.c_primitives, stats.ps_invocations, stats.hs_invocations, stats.ds_invocations, stats.cs_invocations); } /* This is a helper for hardware bring-up. Don't remove. */ void util_wait_for_idle(struct pipe_context *ctx) { struct pipe_fence_handle *fence = NULL; ctx->flush(ctx, &fence, 0); ctx->screen->fence_finish(ctx->screen, NULL, fence, PIPE_TIMEOUT_INFINITE); } void util_throttle_init(struct util_throttle *t, uint64_t max_mem_usage) { t->max_mem_usage = max_mem_usage; } void util_throttle_deinit(struct pipe_screen *screen, struct util_throttle *t) { for (unsigned i = 0; i < ARRAY_SIZE(t->ring); i++) screen->fence_reference(screen, &t->ring[i].fence, NULL); } static uint64_t util_get_throttle_total_memory_usage(struct util_throttle *t) { uint64_t total_usage = 0; for (unsigned i = 0; i < ARRAY_SIZE(t->ring); i++) total_usage += t->ring[i].mem_usage; return total_usage; } static void util_dump_throttle_ring(struct util_throttle *t) { printf("Throttle:\n"); for (unsigned i = 0; i < ARRAY_SIZE(t->ring); i++) { printf(" ring[%u]: fence = %s, mem_usage = %"PRIu64"%s%s\n", i, t->ring[i].fence ? "yes" : " no", t->ring[i].mem_usage, t->flush_index == i ? " [flush]" : "", t->wait_index == i ? " [wait]" : ""); } } /** * Notify util_throttle that the next operation allocates memory. * util_throttle tracks memory usage and waits for fences until its tracked * memory usage decreases. * * Example: * util_throttle_memory_usage(..., w*h*d*Bpp); * TexSubImage(..., w, h, d, ...); * * This means that TexSubImage can't allocate more memory its maximum limit * set during initialization. */ void util_throttle_memory_usage(struct pipe_context *pipe, struct util_throttle *t, uint64_t memory_size) { (void)util_dump_throttle_ring; /* silence warning */ if (!t->max_mem_usage) return; struct pipe_screen *screen = pipe->screen; struct pipe_fence_handle **fence = NULL; unsigned ring_size = ARRAY_SIZE(t->ring); uint64_t total = util_get_throttle_total_memory_usage(t); /* If there is not enough memory, walk the list of fences and find * the latest one that we need to wait for. */ while (t->wait_index != t->flush_index && total && total + memory_size > t->max_mem_usage) { assert(t->ring[t->wait_index].fence); /* Release an older fence if we need to wait for a newer one. */ if (fence) screen->fence_reference(screen, fence, NULL); fence = &t->ring[t->wait_index].fence; t->ring[t->wait_index].mem_usage = 0; t->wait_index = (t->wait_index + 1) % ring_size; total = util_get_throttle_total_memory_usage(t); } /* Wait for the fence to decrease memory usage. */ if (fence) { screen->fence_finish(screen, pipe, *fence, PIPE_TIMEOUT_INFINITE); screen->fence_reference(screen, fence, NULL); } /* Flush and get a fence if we've exhausted memory usage for the current * slot. */ if (t->ring[t->flush_index].mem_usage && t->ring[t->flush_index].mem_usage + memory_size > t->max_mem_usage / (ring_size / 2)) { struct pipe_fence_handle **fence = &t->ring[t->flush_index].fence; /* Expect that the current flush slot doesn't have a fence yet. */ assert(!*fence); pipe->flush(pipe, fence, PIPE_FLUSH_ASYNC); t->flush_index = (t->flush_index + 1) % ring_size; /* Vacate the next slot if it's occupied. This should be rare. */ if (t->flush_index == t->wait_index) { struct pipe_fence_handle **fence = &t->ring[t->wait_index].fence; t->ring[t->wait_index].mem_usage = 0; t->wait_index = (t->wait_index + 1) % ring_size; assert(*fence); screen->fence_finish(screen, pipe, *fence, PIPE_TIMEOUT_INFINITE); screen->fence_reference(screen, fence, NULL); } assert(!t->ring[t->flush_index].mem_usage); assert(!t->ring[t->flush_index].fence); } t->ring[t->flush_index].mem_usage += memory_size; }