/************************************************************************** * * Copyright 2009-2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE, INC AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "pipe/p_screen.h" #include "pipe/p_context.h" #include "pipe/p_state.h" #include "tgsi/tgsi_ureg.h" #include "tgsi/tgsi_build.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_sanity.h" #include "util/u_debug.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_bitmask.h" union tgsi_any_token { struct tgsi_header header; struct tgsi_processor processor; struct tgsi_token token; struct tgsi_property prop; struct tgsi_property_data prop_data; struct tgsi_declaration decl; struct tgsi_declaration_range decl_range; struct tgsi_declaration_dimension decl_dim; struct tgsi_declaration_interp decl_interp; struct tgsi_declaration_image decl_image; struct tgsi_declaration_semantic decl_semantic; struct tgsi_declaration_sampler_view decl_sampler_view; struct tgsi_declaration_array array; struct tgsi_immediate imm; union tgsi_immediate_data imm_data; struct tgsi_instruction insn; struct tgsi_instruction_label insn_label; struct tgsi_instruction_texture insn_texture; struct tgsi_instruction_memory insn_memory; struct tgsi_texture_offset insn_texture_offset; struct tgsi_src_register src; struct tgsi_ind_register ind; struct tgsi_dimension dim; struct tgsi_dst_register dst; unsigned value; }; struct ureg_tokens { union tgsi_any_token *tokens; unsigned size; unsigned order; unsigned count; }; #define UREG_MAX_INPUT (4 * PIPE_MAX_SHADER_INPUTS) #define UREG_MAX_SYSTEM_VALUE PIPE_MAX_ATTRIBS #define UREG_MAX_OUTPUT (4 * PIPE_MAX_SHADER_OUTPUTS) #define UREG_MAX_CONSTANT_RANGE 32 #define UREG_MAX_HW_ATOMIC_RANGE 32 #define UREG_MAX_IMMEDIATE 4096 #define UREG_MAX_ADDR 3 #define UREG_MAX_ARRAY_TEMPS 256 struct const_decl { struct { unsigned first; unsigned last; } constant_range[UREG_MAX_CONSTANT_RANGE]; unsigned nr_constant_ranges; }; struct hw_atomic_decl { struct { unsigned first; unsigned last; unsigned array_id; } hw_atomic_range[UREG_MAX_HW_ATOMIC_RANGE]; unsigned nr_hw_atomic_ranges; }; #define DOMAIN_DECL 0 #define DOMAIN_INSN 1 struct ureg_program { enum pipe_shader_type processor; bool supports_any_inout_decl_range; int next_shader_processor; struct { enum tgsi_semantic semantic_name; unsigned semantic_index; enum tgsi_interpolate_mode interp; unsigned char cylindrical_wrap; unsigned char usage_mask; enum tgsi_interpolate_loc interp_location; unsigned first; unsigned last; unsigned array_id; } input[UREG_MAX_INPUT]; unsigned nr_inputs, nr_input_regs; unsigned vs_inputs[PIPE_MAX_ATTRIBS/32]; struct { enum tgsi_semantic semantic_name; unsigned semantic_index; } system_value[UREG_MAX_SYSTEM_VALUE]; unsigned nr_system_values; struct { enum tgsi_semantic semantic_name; unsigned semantic_index; unsigned streams; unsigned usage_mask; /* = TGSI_WRITEMASK_* */ unsigned first; unsigned last; unsigned array_id; } output[UREG_MAX_OUTPUT]; unsigned nr_outputs, nr_output_regs; struct { union { float f[4]; unsigned u[4]; int i[4]; } value; unsigned nr; unsigned type; } immediate[UREG_MAX_IMMEDIATE]; unsigned nr_immediates; struct ureg_src sampler[PIPE_MAX_SAMPLERS]; unsigned nr_samplers; struct { unsigned index; enum tgsi_texture_type target; enum tgsi_return_type return_type_x; enum tgsi_return_type return_type_y; enum tgsi_return_type return_type_z; enum tgsi_return_type return_type_w; } sampler_view[PIPE_MAX_SHADER_SAMPLER_VIEWS]; unsigned nr_sampler_views; struct { unsigned index; enum tgsi_texture_type target; enum pipe_format format; boolean wr; boolean raw; } image[PIPE_MAX_SHADER_IMAGES]; unsigned nr_images; struct { unsigned index; bool atomic; } buffer[PIPE_MAX_SHADER_BUFFERS]; unsigned nr_buffers; struct util_bitmask *free_temps; struct util_bitmask *local_temps; struct util_bitmask *decl_temps; unsigned nr_temps; unsigned array_temps[UREG_MAX_ARRAY_TEMPS]; unsigned nr_array_temps; struct const_decl const_decls[PIPE_MAX_CONSTANT_BUFFERS]; struct hw_atomic_decl hw_atomic_decls[PIPE_MAX_HW_ATOMIC_BUFFERS]; unsigned properties[TGSI_PROPERTY_COUNT]; unsigned nr_addrs; unsigned nr_instructions; struct ureg_tokens domain[2]; bool use_memory[TGSI_MEMORY_TYPE_COUNT]; }; static union tgsi_any_token error_tokens[32]; static void tokens_error( struct ureg_tokens *tokens ) { if (tokens->tokens && tokens->tokens != error_tokens) FREE(tokens->tokens); tokens->tokens = error_tokens; tokens->size = ARRAY_SIZE(error_tokens); tokens->count = 0; } static void tokens_expand( struct ureg_tokens *tokens, unsigned count ) { unsigned old_size = tokens->size * sizeof(unsigned); if (tokens->tokens == error_tokens) { return; } while (tokens->count + count > tokens->size) { tokens->size = (1 << ++tokens->order); } tokens->tokens = REALLOC(tokens->tokens, old_size, tokens->size * sizeof(unsigned)); if (tokens->tokens == NULL) { tokens_error(tokens); } } static void set_bad( struct ureg_program *ureg ) { tokens_error(&ureg->domain[0]); } static union tgsi_any_token *get_tokens( struct ureg_program *ureg, unsigned domain, unsigned count ) { struct ureg_tokens *tokens = &ureg->domain[domain]; union tgsi_any_token *result; if (tokens->count + count > tokens->size) tokens_expand(tokens, count); result = &tokens->tokens[tokens->count]; tokens->count += count; return result; } static union tgsi_any_token *retrieve_token( struct ureg_program *ureg, unsigned domain, unsigned nr ) { if (ureg->domain[domain].tokens == error_tokens) return &error_tokens[0]; return &ureg->domain[domain].tokens[nr]; } void ureg_property(struct ureg_program *ureg, unsigned name, unsigned value) { assert(name < ARRAY_SIZE(ureg->properties)); ureg->properties[name] = value; } struct ureg_src ureg_DECL_fs_input_cyl_centroid_layout(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, enum tgsi_interpolate_mode interp_mode, unsigned cylindrical_wrap, enum tgsi_interpolate_loc interp_location, unsigned index, unsigned usage_mask, unsigned array_id, unsigned array_size) { unsigned i; assert(usage_mask != 0); assert(usage_mask <= TGSI_WRITEMASK_XYZW); for (i = 0; i < ureg->nr_inputs; i++) { if (ureg->input[i].semantic_name == semantic_name && ureg->input[i].semantic_index == semantic_index) { assert(ureg->input[i].interp == interp_mode); assert(ureg->input[i].cylindrical_wrap == cylindrical_wrap); assert(ureg->input[i].interp_location == interp_location); if (ureg->input[i].array_id == array_id) { ureg->input[i].usage_mask |= usage_mask; goto out; } assert((ureg->input[i].usage_mask & usage_mask) == 0); } } if (ureg->nr_inputs < UREG_MAX_INPUT) { assert(array_size >= 1); ureg->input[i].semantic_name = semantic_name; ureg->input[i].semantic_index = semantic_index; ureg->input[i].interp = interp_mode; ureg->input[i].cylindrical_wrap = cylindrical_wrap; ureg->input[i].interp_location = interp_location; ureg->input[i].first = index; ureg->input[i].last = index + array_size - 1; ureg->input[i].array_id = array_id; ureg->input[i].usage_mask = usage_mask; ureg->nr_input_regs = MAX2(ureg->nr_input_regs, index + array_size); ureg->nr_inputs++; } else { set_bad(ureg); } out: return ureg_src_array_register(TGSI_FILE_INPUT, ureg->input[i].first, array_id); } struct ureg_src ureg_DECL_fs_input_cyl_centroid(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, enum tgsi_interpolate_mode interp_mode, unsigned cylindrical_wrap, enum tgsi_interpolate_loc interp_location, unsigned array_id, unsigned array_size) { return ureg_DECL_fs_input_cyl_centroid_layout(ureg, semantic_name, semantic_index, interp_mode, cylindrical_wrap, interp_location, ureg->nr_input_regs, TGSI_WRITEMASK_XYZW, array_id, array_size); } struct ureg_src ureg_DECL_vs_input( struct ureg_program *ureg, unsigned index ) { assert(ureg->processor == PIPE_SHADER_VERTEX); assert(index / 32 < ARRAY_SIZE(ureg->vs_inputs)); ureg->vs_inputs[index/32] |= 1 << (index % 32); return ureg_src_register( TGSI_FILE_INPUT, index ); } struct ureg_src ureg_DECL_input_layout(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, unsigned index, unsigned usage_mask, unsigned array_id, unsigned array_size) { return ureg_DECL_fs_input_cyl_centroid_layout(ureg, semantic_name, semantic_index, TGSI_INTERPOLATE_CONSTANT, 0, TGSI_INTERPOLATE_LOC_CENTER, index, usage_mask, array_id, array_size); } struct ureg_src ureg_DECL_input(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, unsigned array_id, unsigned array_size) { return ureg_DECL_fs_input_cyl_centroid(ureg, semantic_name, semantic_index, TGSI_INTERPOLATE_CONSTANT, 0, TGSI_INTERPOLATE_LOC_CENTER, array_id, array_size); } struct ureg_src ureg_DECL_system_value(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index) { unsigned i; for (i = 0; i < ureg->nr_system_values; i++) { if (ureg->system_value[i].semantic_name == semantic_name && ureg->system_value[i].semantic_index == semantic_index) { goto out; } } if (ureg->nr_system_values < UREG_MAX_SYSTEM_VALUE) { ureg->system_value[ureg->nr_system_values].semantic_name = semantic_name; ureg->system_value[ureg->nr_system_values].semantic_index = semantic_index; i = ureg->nr_system_values; ureg->nr_system_values++; } else { set_bad(ureg); } out: return ureg_src_register(TGSI_FILE_SYSTEM_VALUE, i); } struct ureg_dst ureg_DECL_output_layout(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, unsigned streams, unsigned index, unsigned usage_mask, unsigned array_id, unsigned array_size) { unsigned i; assert(usage_mask != 0); assert(!(streams & 0x03) || (usage_mask & 1)); assert(!(streams & 0x0c) || (usage_mask & 2)); assert(!(streams & 0x30) || (usage_mask & 4)); assert(!(streams & 0xc0) || (usage_mask & 8)); for (i = 0; i < ureg->nr_outputs; i++) { if (ureg->output[i].semantic_name == semantic_name && ureg->output[i].semantic_index == semantic_index) { if (ureg->output[i].array_id == array_id) { ureg->output[i].usage_mask |= usage_mask; goto out; } assert((ureg->output[i].usage_mask & usage_mask) == 0); } } if (ureg->nr_outputs < UREG_MAX_OUTPUT) { ureg->output[i].semantic_name = semantic_name; ureg->output[i].semantic_index = semantic_index; ureg->output[i].usage_mask = usage_mask; ureg->output[i].first = index; ureg->output[i].last = index + array_size - 1; ureg->output[i].array_id = array_id; ureg->nr_output_regs = MAX2(ureg->nr_output_regs, index + array_size); ureg->nr_outputs++; } else { set_bad( ureg ); i = 0; } out: ureg->output[i].streams |= streams; return ureg_dst_array_register(TGSI_FILE_OUTPUT, ureg->output[i].first, array_id); } struct ureg_dst ureg_DECL_output_masked(struct ureg_program *ureg, unsigned name, unsigned index, unsigned usage_mask, unsigned array_id, unsigned array_size) { return ureg_DECL_output_layout(ureg, name, index, 0, ureg->nr_output_regs, usage_mask, array_id, array_size); } struct ureg_dst ureg_DECL_output(struct ureg_program *ureg, enum tgsi_semantic name, unsigned index) { return ureg_DECL_output_masked(ureg, name, index, TGSI_WRITEMASK_XYZW, 0, 1); } struct ureg_dst ureg_DECL_output_array(struct ureg_program *ureg, enum tgsi_semantic semantic_name, unsigned semantic_index, unsigned array_id, unsigned array_size) { return ureg_DECL_output_masked(ureg, semantic_name, semantic_index, TGSI_WRITEMASK_XYZW, array_id, array_size); } /* Returns a new constant register. Keep track of which have been * referred to so that we can emit decls later. * * Constant operands declared with this function must be addressed * with a two-dimensional index. * * There is nothing in this code to bind this constant to any tracked * value or manage any constant_buffer contents -- that's the * resposibility of the calling code. */ void ureg_DECL_constant2D(struct ureg_program *ureg, unsigned first, unsigned last, unsigned index2D) { struct const_decl *decl = &ureg->const_decls[index2D]; assert(index2D < PIPE_MAX_CONSTANT_BUFFERS); if (decl->nr_constant_ranges < UREG_MAX_CONSTANT_RANGE) { uint i = decl->nr_constant_ranges++; decl->constant_range[i].first = first; decl->constant_range[i].last = last; } } /* A one-dimensional, deprecated version of ureg_DECL_constant2D(). * * Constant operands declared with this function must be addressed * with a one-dimensional index. */ struct ureg_src ureg_DECL_constant(struct ureg_program *ureg, unsigned index) { struct const_decl *decl = &ureg->const_decls[0]; unsigned minconst = index, maxconst = index; unsigned i; /* Inside existing range? */ for (i = 0; i < decl->nr_constant_ranges; i++) { if (decl->constant_range[i].first <= index && decl->constant_range[i].last >= index) { goto out; } } /* Extend existing range? */ for (i = 0; i < decl->nr_constant_ranges; i++) { if (decl->constant_range[i].last == index - 1) { decl->constant_range[i].last = index; goto out; } if (decl->constant_range[i].first == index + 1) { decl->constant_range[i].first = index; goto out; } minconst = MIN2(minconst, decl->constant_range[i].first); maxconst = MAX2(maxconst, decl->constant_range[i].last); } /* Create new range? */ if (decl->nr_constant_ranges < UREG_MAX_CONSTANT_RANGE) { i = decl->nr_constant_ranges++; decl->constant_range[i].first = index; decl->constant_range[i].last = index; goto out; } /* Collapse all ranges down to one: */ i = 0; decl->constant_range[0].first = minconst; decl->constant_range[0].last = maxconst; decl->nr_constant_ranges = 1; out: assert(i < decl->nr_constant_ranges); assert(decl->constant_range[i].first <= index); assert(decl->constant_range[i].last >= index); struct ureg_src src = ureg_src_register(TGSI_FILE_CONSTANT, index); return ureg_src_dimension(src, 0); } /* Returns a new hw atomic register. Keep track of which have been * referred to so that we can emit decls later. */ void ureg_DECL_hw_atomic(struct ureg_program *ureg, unsigned first, unsigned last, unsigned buffer_id, unsigned array_id) { struct hw_atomic_decl *decl = &ureg->hw_atomic_decls[buffer_id]; if (decl->nr_hw_atomic_ranges < UREG_MAX_HW_ATOMIC_RANGE) { uint i = decl->nr_hw_atomic_ranges++; decl->hw_atomic_range[i].first = first; decl->hw_atomic_range[i].last = last; decl->hw_atomic_range[i].array_id = array_id; } else { set_bad(ureg); } } static struct ureg_dst alloc_temporary( struct ureg_program *ureg, boolean local ) { unsigned i; /* Look for a released temporary. */ for (i = util_bitmask_get_first_index(ureg->free_temps); i != UTIL_BITMASK_INVALID_INDEX; i = util_bitmask_get_next_index(ureg->free_temps, i + 1)) { if (util_bitmask_get(ureg->local_temps, i) == local) break; } /* Or allocate a new one. */ if (i == UTIL_BITMASK_INVALID_INDEX) { i = ureg->nr_temps++; if (local) util_bitmask_set(ureg->local_temps, i); /* Start a new declaration when the local flag changes */ if (!i || util_bitmask_get(ureg->local_temps, i - 1) != local) util_bitmask_set(ureg->decl_temps, i); } util_bitmask_clear(ureg->free_temps, i); return ureg_dst_register( TGSI_FILE_TEMPORARY, i ); } struct ureg_dst ureg_DECL_temporary( struct ureg_program *ureg ) { return alloc_temporary(ureg, FALSE); } struct ureg_dst ureg_DECL_local_temporary( struct ureg_program *ureg ) { return alloc_temporary(ureg, TRUE); } struct ureg_dst ureg_DECL_array_temporary( struct ureg_program *ureg, unsigned size, boolean local ) { unsigned i = ureg->nr_temps; struct ureg_dst dst = ureg_dst_register( TGSI_FILE_TEMPORARY, i ); if (local) util_bitmask_set(ureg->local_temps, i); /* Always start a new declaration at the start */ util_bitmask_set(ureg->decl_temps, i); ureg->nr_temps += size; /* and also at the end of the array */ util_bitmask_set(ureg->decl_temps, ureg->nr_temps); if (ureg->nr_array_temps < UREG_MAX_ARRAY_TEMPS) { ureg->array_temps[ureg->nr_array_temps++] = i; dst.ArrayID = ureg->nr_array_temps; } return dst; } void ureg_release_temporary( struct ureg_program *ureg, struct ureg_dst tmp ) { if(tmp.File == TGSI_FILE_TEMPORARY) util_bitmask_set(ureg->free_temps, tmp.Index); } /* Allocate a new address register. */ struct ureg_dst ureg_DECL_address( struct ureg_program *ureg ) { if (ureg->nr_addrs < UREG_MAX_ADDR) return ureg_dst_register( TGSI_FILE_ADDRESS, ureg->nr_addrs++ ); assert( 0 ); return ureg_dst_register( TGSI_FILE_ADDRESS, 0 ); } /* Allocate a new sampler. */ struct ureg_src ureg_DECL_sampler( struct ureg_program *ureg, unsigned nr ) { unsigned i; for (i = 0; i < ureg->nr_samplers; i++) if (ureg->sampler[i].Index == (int)nr) return ureg->sampler[i]; if (i < PIPE_MAX_SAMPLERS) { ureg->sampler[i] = ureg_src_register( TGSI_FILE_SAMPLER, nr ); ureg->nr_samplers++; return ureg->sampler[i]; } assert( 0 ); return ureg->sampler[0]; } /* * Allocate a new shader sampler view. */ struct ureg_src ureg_DECL_sampler_view(struct ureg_program *ureg, unsigned index, enum tgsi_texture_type target, enum tgsi_return_type return_type_x, enum tgsi_return_type return_type_y, enum tgsi_return_type return_type_z, enum tgsi_return_type return_type_w) { struct ureg_src reg = ureg_src_register(TGSI_FILE_SAMPLER_VIEW, index); uint i; for (i = 0; i < ureg->nr_sampler_views; i++) { if (ureg->sampler_view[i].index == index) { return reg; } } if (i < PIPE_MAX_SHADER_SAMPLER_VIEWS) { ureg->sampler_view[i].index = index; ureg->sampler_view[i].target = target; ureg->sampler_view[i].return_type_x = return_type_x; ureg->sampler_view[i].return_type_y = return_type_y; ureg->sampler_view[i].return_type_z = return_type_z; ureg->sampler_view[i].return_type_w = return_type_w; ureg->nr_sampler_views++; return reg; } assert(0); return reg; } /* Allocate a new image. */ struct ureg_src ureg_DECL_image(struct ureg_program *ureg, unsigned index, enum tgsi_texture_type target, enum pipe_format format, boolean wr, boolean raw) { struct ureg_src reg = ureg_src_register(TGSI_FILE_IMAGE, index); unsigned i; for (i = 0; i < ureg->nr_images; i++) if (ureg->image[i].index == index) return reg; if (i < PIPE_MAX_SHADER_IMAGES) { ureg->image[i].index = index; ureg->image[i].target = target; ureg->image[i].wr = wr; ureg->image[i].raw = raw; ureg->image[i].format = format; ureg->nr_images++; return reg; } assert(0); return reg; } /* Allocate a new buffer. */ struct ureg_src ureg_DECL_buffer(struct ureg_program *ureg, unsigned nr, bool atomic) { struct ureg_src reg = ureg_src_register(TGSI_FILE_BUFFER, nr); unsigned i; for (i = 0; i < ureg->nr_buffers; i++) if (ureg->buffer[i].index == nr) return reg; if (i < PIPE_MAX_SHADER_BUFFERS) { ureg->buffer[i].index = nr; ureg->buffer[i].atomic = atomic; ureg->nr_buffers++; return reg; } assert(0); return reg; } /* Allocate a memory area. */ struct ureg_src ureg_DECL_memory(struct ureg_program *ureg, unsigned memory_type) { struct ureg_src reg = ureg_src_register(TGSI_FILE_MEMORY, memory_type); ureg->use_memory[memory_type] = true; return reg; } static int match_or_expand_immediate64( const unsigned *v, unsigned nr, unsigned *v2, unsigned *pnr2, unsigned *swizzle ) { unsigned nr2 = *pnr2; unsigned i, j; *swizzle = 0; for (i = 0; i < nr; i += 2) { boolean found = FALSE; for (j = 0; j < nr2 && !found; j += 2) { if (v[i] == v2[j] && v[i + 1] == v2[j + 1]) { *swizzle |= (j << (i * 2)) | ((j + 1) << ((i + 1) * 2)); found = TRUE; } } if (!found) { if ((nr2) >= 4) { return FALSE; } v2[nr2] = v[i]; v2[nr2 + 1] = v[i + 1]; *swizzle |= (nr2 << (i * 2)) | ((nr2 + 1) << ((i + 1) * 2)); nr2 += 2; } } /* Actually expand immediate only when fully succeeded. */ *pnr2 = nr2; return TRUE; } static int match_or_expand_immediate( const unsigned *v, int type, unsigned nr, unsigned *v2, unsigned *pnr2, unsigned *swizzle ) { unsigned nr2 = *pnr2; unsigned i, j; if (type == TGSI_IMM_FLOAT64 || type == TGSI_IMM_UINT64 || type == TGSI_IMM_INT64) return match_or_expand_immediate64(v, nr, v2, pnr2, swizzle); *swizzle = 0; for (i = 0; i < nr; i++) { boolean found = FALSE; for (j = 0; j < nr2 && !found; j++) { if (v[i] == v2[j]) { *swizzle |= j << (i * 2); found = TRUE; } } if (!found) { if (nr2 >= 4) { return FALSE; } v2[nr2] = v[i]; *swizzle |= nr2 << (i * 2); nr2++; } } /* Actually expand immediate only when fully succeeded. */ *pnr2 = nr2; return TRUE; } static struct ureg_src decl_immediate( struct ureg_program *ureg, const unsigned *v, unsigned nr, unsigned type ) { unsigned i, j; unsigned swizzle = 0; /* Could do a first pass where we examine all existing immediates * without expanding. */ for (i = 0; i < ureg->nr_immediates; i++) { if (ureg->immediate[i].type != type) { continue; } if (match_or_expand_immediate(v, type, nr, ureg->immediate[i].value.u, &ureg->immediate[i].nr, &swizzle)) { goto out; } } if (ureg->nr_immediates < UREG_MAX_IMMEDIATE) { i = ureg->nr_immediates++; ureg->immediate[i].type = type; if (match_or_expand_immediate(v, type, nr, ureg->immediate[i].value.u, &ureg->immediate[i].nr, &swizzle)) { goto out; } } set_bad(ureg); out: /* Make sure that all referenced elements are from this immediate. * Has the effect of making size-one immediates into scalars. */ if (type == TGSI_IMM_FLOAT64 || type == TGSI_IMM_UINT64 || type == TGSI_IMM_INT64) { for (j = nr; j < 4; j+=2) { swizzle |= (swizzle & 0xf) << (j * 2); } } else { for (j = nr; j < 4; j++) { swizzle |= (swizzle & 0x3) << (j * 2); } } return ureg_swizzle(ureg_src_register(TGSI_FILE_IMMEDIATE, i), (swizzle >> 0) & 0x3, (swizzle >> 2) & 0x3, (swizzle >> 4) & 0x3, (swizzle >> 6) & 0x3); } struct ureg_src ureg_DECL_immediate( struct ureg_program *ureg, const float *v, unsigned nr ) { union { float f[4]; unsigned u[4]; } fu; unsigned int i; for (i = 0; i < nr; i++) { fu.f[i] = v[i]; } return decl_immediate(ureg, fu.u, nr, TGSI_IMM_FLOAT32); } struct ureg_src ureg_DECL_immediate_f64( struct ureg_program *ureg, const double *v, unsigned nr ) { union { unsigned u[4]; double d[2]; } fu; unsigned int i; assert((nr / 2) < 3); for (i = 0; i < nr / 2; i++) { fu.d[i] = v[i]; } return decl_immediate(ureg, fu.u, nr, TGSI_IMM_FLOAT64); } struct ureg_src ureg_DECL_immediate_uint( struct ureg_program *ureg, const unsigned *v, unsigned nr ) { return decl_immediate(ureg, v, nr, TGSI_IMM_UINT32); } struct ureg_src ureg_DECL_immediate_block_uint( struct ureg_program *ureg, const unsigned *v, unsigned nr ) { uint index; uint i; if (ureg->nr_immediates + (nr + 3) / 4 > UREG_MAX_IMMEDIATE) { set_bad(ureg); return ureg_src_register(TGSI_FILE_IMMEDIATE, 0); } index = ureg->nr_immediates; ureg->nr_immediates += (nr + 3) / 4; for (i = index; i < ureg->nr_immediates; i++) { ureg->immediate[i].type = TGSI_IMM_UINT32; ureg->immediate[i].nr = nr > 4 ? 4 : nr; memcpy(ureg->immediate[i].value.u, &v[(i - index) * 4], ureg->immediate[i].nr * sizeof(uint)); nr -= 4; } return ureg_src_register(TGSI_FILE_IMMEDIATE, index); } struct ureg_src ureg_DECL_immediate_int( struct ureg_program *ureg, const int *v, unsigned nr ) { return decl_immediate(ureg, (const unsigned *)v, nr, TGSI_IMM_INT32); } struct ureg_src ureg_DECL_immediate_uint64( struct ureg_program *ureg, const uint64_t *v, unsigned nr ) { union { unsigned u[4]; uint64_t u64[2]; } fu; unsigned int i; assert((nr / 2) < 3); for (i = 0; i < nr / 2; i++) { fu.u64[i] = v[i]; } return decl_immediate(ureg, fu.u, nr, TGSI_IMM_UINT64); } struct ureg_src ureg_DECL_immediate_int64( struct ureg_program *ureg, const int64_t *v, unsigned nr ) { union { unsigned u[4]; int64_t i64[2]; } fu; unsigned int i; assert((nr / 2) < 3); for (i = 0; i < nr / 2; i++) { fu.i64[i] = v[i]; } return decl_immediate(ureg, fu.u, nr, TGSI_IMM_INT64); } void ureg_emit_src( struct ureg_program *ureg, struct ureg_src src ) { unsigned size = 1 + (src.Indirect ? 1 : 0) + (src.Dimension ? (src.DimIndirect ? 2 : 1) : 0); union tgsi_any_token *out = get_tokens( ureg, DOMAIN_INSN, size ); unsigned n = 0; assert(src.File != TGSI_FILE_NULL); assert(src.File < TGSI_FILE_COUNT); out[n].value = 0; out[n].src.File = src.File; out[n].src.SwizzleX = src.SwizzleX; out[n].src.SwizzleY = src.SwizzleY; out[n].src.SwizzleZ = src.SwizzleZ; out[n].src.SwizzleW = src.SwizzleW; out[n].src.Index = src.Index; out[n].src.Negate = src.Negate; out[0].src.Absolute = src.Absolute; n++; if (src.Indirect) { out[0].src.Indirect = 1; out[n].value = 0; out[n].ind.File = src.IndirectFile; out[n].ind.Swizzle = src.IndirectSwizzle; out[n].ind.Index = src.IndirectIndex; if (!ureg->supports_any_inout_decl_range && (src.File == TGSI_FILE_INPUT || src.File == TGSI_FILE_OUTPUT)) out[n].ind.ArrayID = 0; else out[n].ind.ArrayID = src.ArrayID; n++; } if (src.Dimension) { out[0].src.Dimension = 1; out[n].dim.Dimension = 0; out[n].dim.Padding = 0; if (src.DimIndirect) { out[n].dim.Indirect = 1; out[n].dim.Index = src.DimensionIndex; n++; out[n].value = 0; out[n].ind.File = src.DimIndFile; out[n].ind.Swizzle = src.DimIndSwizzle; out[n].ind.Index = src.DimIndIndex; if (!ureg->supports_any_inout_decl_range && (src.File == TGSI_FILE_INPUT || src.File == TGSI_FILE_OUTPUT)) out[n].ind.ArrayID = 0; else out[n].ind.ArrayID = src.ArrayID; } else { out[n].dim.Indirect = 0; out[n].dim.Index = src.DimensionIndex; } n++; } assert(n == size); } void ureg_emit_dst( struct ureg_program *ureg, struct ureg_dst dst ) { unsigned size = 1 + (dst.Indirect ? 1 : 0) + (dst.Dimension ? (dst.DimIndirect ? 2 : 1) : 0); union tgsi_any_token *out = get_tokens( ureg, DOMAIN_INSN, size ); unsigned n = 0; assert(dst.File != TGSI_FILE_NULL); assert(dst.File != TGSI_FILE_SAMPLER); assert(dst.File != TGSI_FILE_SAMPLER_VIEW); assert(dst.File != TGSI_FILE_IMMEDIATE); assert(dst.File < TGSI_FILE_COUNT); out[n].value = 0; out[n].dst.File = dst.File; out[n].dst.WriteMask = dst.WriteMask; out[n].dst.Indirect = dst.Indirect; out[n].dst.Index = dst.Index; n++; if (dst.Indirect) { out[n].value = 0; out[n].ind.File = dst.IndirectFile; out[n].ind.Swizzle = dst.IndirectSwizzle; out[n].ind.Index = dst.IndirectIndex; if (!ureg->supports_any_inout_decl_range && (dst.File == TGSI_FILE_INPUT || dst.File == TGSI_FILE_OUTPUT)) out[n].ind.ArrayID = 0; else out[n].ind.ArrayID = dst.ArrayID; n++; } if (dst.Dimension) { out[0].dst.Dimension = 1; out[n].dim.Dimension = 0; out[n].dim.Padding = 0; if (dst.DimIndirect) { out[n].dim.Indirect = 1; out[n].dim.Index = dst.DimensionIndex; n++; out[n].value = 0; out[n].ind.File = dst.DimIndFile; out[n].ind.Swizzle = dst.DimIndSwizzle; out[n].ind.Index = dst.DimIndIndex; if (!ureg->supports_any_inout_decl_range && (dst.File == TGSI_FILE_INPUT || dst.File == TGSI_FILE_OUTPUT)) out[n].ind.ArrayID = 0; else out[n].ind.ArrayID = dst.ArrayID; } else { out[n].dim.Indirect = 0; out[n].dim.Index = dst.DimensionIndex; } n++; } assert(n == size); } static void validate( enum tgsi_opcode opcode, unsigned nr_dst, unsigned nr_src ) { #ifdef DEBUG const struct tgsi_opcode_info *info = tgsi_get_opcode_info( opcode ); assert(info); if (info) { assert(nr_dst == info->num_dst); assert(nr_src == info->num_src); } #endif } struct ureg_emit_insn_result ureg_emit_insn(struct ureg_program *ureg, enum tgsi_opcode opcode, boolean saturate, unsigned precise, unsigned num_dst, unsigned num_src) { union tgsi_any_token *out; uint count = 1; struct ureg_emit_insn_result result; validate( opcode, num_dst, num_src ); out = get_tokens( ureg, DOMAIN_INSN, count ); out[0].insn = tgsi_default_instruction(); out[0].insn.Opcode = opcode; out[0].insn.Saturate = saturate; out[0].insn.Precise = precise; out[0].insn.NumDstRegs = num_dst; out[0].insn.NumSrcRegs = num_src; result.insn_token = ureg->domain[DOMAIN_INSN].count - count; result.extended_token = result.insn_token; ureg->nr_instructions++; return result; } /** * Emit a label token. * \param label_token returns a token number indicating where the label * needs to be patched later. Later, this value should be passed to the * ureg_fixup_label() function. */ void ureg_emit_label(struct ureg_program *ureg, unsigned extended_token, unsigned *label_token ) { union tgsi_any_token *out, *insn; if (!label_token) return; out = get_tokens( ureg, DOMAIN_INSN, 1 ); out[0].value = 0; insn = retrieve_token( ureg, DOMAIN_INSN, extended_token ); insn->insn.Label = 1; *label_token = ureg->domain[DOMAIN_INSN].count - 1; } /* Will return a number which can be used in a label to point to the * next instruction to be emitted. */ unsigned ureg_get_instruction_number( struct ureg_program *ureg ) { return ureg->nr_instructions; } /* Patch a given label (expressed as a token number) to point to a * given instruction (expressed as an instruction number). */ void ureg_fixup_label(struct ureg_program *ureg, unsigned label_token, unsigned instruction_number ) { union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_INSN, label_token ); out->insn_label.Label = instruction_number; } void ureg_emit_texture(struct ureg_program *ureg, unsigned extended_token, enum tgsi_texture_type target, enum tgsi_return_type return_type, unsigned num_offsets) { union tgsi_any_token *out, *insn; out = get_tokens( ureg, DOMAIN_INSN, 1 ); insn = retrieve_token( ureg, DOMAIN_INSN, extended_token ); insn->insn.Texture = 1; out[0].value = 0; out[0].insn_texture.Texture = target; out[0].insn_texture.NumOffsets = num_offsets; out[0].insn_texture.ReturnType = return_type; } void ureg_emit_texture_offset(struct ureg_program *ureg, const struct tgsi_texture_offset *offset) { union tgsi_any_token *out; out = get_tokens( ureg, DOMAIN_INSN, 1); out[0].value = 0; out[0].insn_texture_offset = *offset; } void ureg_emit_memory(struct ureg_program *ureg, unsigned extended_token, unsigned qualifier, enum tgsi_texture_type texture, enum pipe_format format) { union tgsi_any_token *out, *insn; out = get_tokens( ureg, DOMAIN_INSN, 1 ); insn = retrieve_token( ureg, DOMAIN_INSN, extended_token ); insn->insn.Memory = 1; out[0].value = 0; out[0].insn_memory.Qualifier = qualifier; out[0].insn_memory.Texture = texture; out[0].insn_memory.Format = format; } void ureg_fixup_insn_size(struct ureg_program *ureg, unsigned insn ) { union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_INSN, insn ); assert(out->insn.Type == TGSI_TOKEN_TYPE_INSTRUCTION); out->insn.NrTokens = ureg->domain[DOMAIN_INSN].count - insn - 1; } void ureg_insn(struct ureg_program *ureg, enum tgsi_opcode opcode, const struct ureg_dst *dst, unsigned nr_dst, const struct ureg_src *src, unsigned nr_src, unsigned precise ) { struct ureg_emit_insn_result insn; unsigned i; boolean saturate; if (nr_dst && ureg_dst_is_empty(dst[0])) { return; } saturate = nr_dst ? dst[0].Saturate : FALSE; insn = ureg_emit_insn(ureg, opcode, saturate, precise, nr_dst, nr_src); for (i = 0; i < nr_dst; i++) ureg_emit_dst( ureg, dst[i] ); for (i = 0; i < nr_src; i++) ureg_emit_src( ureg, src[i] ); ureg_fixup_insn_size( ureg, insn.insn_token ); } void ureg_tex_insn(struct ureg_program *ureg, enum tgsi_opcode opcode, const struct ureg_dst *dst, unsigned nr_dst, enum tgsi_texture_type target, enum tgsi_return_type return_type, const struct tgsi_texture_offset *texoffsets, unsigned nr_offset, const struct ureg_src *src, unsigned nr_src ) { struct ureg_emit_insn_result insn; unsigned i; boolean saturate; if (nr_dst && ureg_dst_is_empty(dst[0])) { return; } saturate = nr_dst ? dst[0].Saturate : FALSE; insn = ureg_emit_insn(ureg, opcode, saturate, 0, nr_dst, nr_src); ureg_emit_texture( ureg, insn.extended_token, target, return_type, nr_offset ); for (i = 0; i < nr_offset; i++) ureg_emit_texture_offset( ureg, &texoffsets[i]); for (i = 0; i < nr_dst; i++) ureg_emit_dst( ureg, dst[i] ); for (i = 0; i < nr_src; i++) ureg_emit_src( ureg, src[i] ); ureg_fixup_insn_size( ureg, insn.insn_token ); } void ureg_memory_insn(struct ureg_program *ureg, enum tgsi_opcode opcode, const struct ureg_dst *dst, unsigned nr_dst, const struct ureg_src *src, unsigned nr_src, unsigned qualifier, enum tgsi_texture_type texture, enum pipe_format format) { struct ureg_emit_insn_result insn; unsigned i; insn = ureg_emit_insn(ureg, opcode, FALSE, 0, nr_dst, nr_src); ureg_emit_memory(ureg, insn.extended_token, qualifier, texture, format); for (i = 0; i < nr_dst; i++) ureg_emit_dst(ureg, dst[i]); for (i = 0; i < nr_src; i++) ureg_emit_src(ureg, src[i]); ureg_fixup_insn_size(ureg, insn.insn_token); } static void emit_decl_semantic(struct ureg_program *ureg, unsigned file, unsigned first, unsigned last, enum tgsi_semantic semantic_name, unsigned semantic_index, unsigned streams, unsigned usage_mask, unsigned array_id) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, array_id ? 4 : 3); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 3; out[0].decl.File = file; out[0].decl.UsageMask = usage_mask; out[0].decl.Semantic = 1; out[0].decl.Array = array_id != 0; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = last; out[2].value = 0; out[2].decl_semantic.Name = semantic_name; out[2].decl_semantic.Index = semantic_index; out[2].decl_semantic.StreamX = streams & 3; out[2].decl_semantic.StreamY = (streams >> 2) & 3; out[2].decl_semantic.StreamZ = (streams >> 4) & 3; out[2].decl_semantic.StreamW = (streams >> 6) & 3; if (array_id) { out[3].value = 0; out[3].array.ArrayID = array_id; } } static void emit_decl_atomic_2d(struct ureg_program *ureg, unsigned first, unsigned last, unsigned index2D, unsigned array_id) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, array_id ? 4 : 3); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 3; out[0].decl.File = TGSI_FILE_HW_ATOMIC; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.Dimension = 1; out[0].decl.Array = array_id != 0; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = last; out[2].value = 0; out[2].decl_dim.Index2D = index2D; if (array_id) { out[3].value = 0; out[3].array.ArrayID = array_id; } } static void emit_decl_fs(struct ureg_program *ureg, unsigned file, unsigned first, unsigned last, enum tgsi_semantic semantic_name, unsigned semantic_index, enum tgsi_interpolate_mode interpolate, unsigned cylindrical_wrap, enum tgsi_interpolate_loc interpolate_location, unsigned array_id, unsigned usage_mask) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, array_id ? 5 : 4); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 4; out[0].decl.File = file; out[0].decl.UsageMask = usage_mask; out[0].decl.Interpolate = 1; out[0].decl.Semantic = 1; out[0].decl.Array = array_id != 0; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = last; out[2].value = 0; out[2].decl_interp.Interpolate = interpolate; out[2].decl_interp.CylindricalWrap = cylindrical_wrap; out[2].decl_interp.Location = interpolate_location; out[3].value = 0; out[3].decl_semantic.Name = semantic_name; out[3].decl_semantic.Index = semantic_index; if (array_id) { out[4].value = 0; out[4].array.ArrayID = array_id; } } static void emit_decl_temps( struct ureg_program *ureg, unsigned first, unsigned last, boolean local, unsigned arrayid ) { union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, arrayid ? 3 : 2 ); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 2; out[0].decl.File = TGSI_FILE_TEMPORARY; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.Local = local; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = last; if (arrayid) { out[0].decl.Array = 1; out[2].value = 0; out[2].array.ArrayID = arrayid; } } static void emit_decl_range( struct ureg_program *ureg, unsigned file, unsigned first, unsigned count ) { union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 2 ); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 2; out[0].decl.File = file; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.Semantic = 0; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = first + count - 1; } static void emit_decl_range2D(struct ureg_program *ureg, unsigned file, unsigned first, unsigned last, unsigned index2D) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 3; out[0].decl.File = file; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.Dimension = 1; out[1].value = 0; out[1].decl_range.First = first; out[1].decl_range.Last = last; out[2].value = 0; out[2].decl_dim.Index2D = index2D; } static void emit_decl_sampler_view(struct ureg_program *ureg, unsigned index, enum tgsi_texture_type target, enum tgsi_return_type return_type_x, enum tgsi_return_type return_type_y, enum tgsi_return_type return_type_z, enum tgsi_return_type return_type_w ) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 3; out[0].decl.File = TGSI_FILE_SAMPLER_VIEW; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[1].value = 0; out[1].decl_range.First = index; out[1].decl_range.Last = index; out[2].value = 0; out[2].decl_sampler_view.Resource = target; out[2].decl_sampler_view.ReturnTypeX = return_type_x; out[2].decl_sampler_view.ReturnTypeY = return_type_y; out[2].decl_sampler_view.ReturnTypeZ = return_type_z; out[2].decl_sampler_view.ReturnTypeW = return_type_w; } static void emit_decl_image(struct ureg_program *ureg, unsigned index, enum tgsi_texture_type target, enum pipe_format format, boolean wr, boolean raw) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 3; out[0].decl.File = TGSI_FILE_IMAGE; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[1].value = 0; out[1].decl_range.First = index; out[1].decl_range.Last = index; out[2].value = 0; out[2].decl_image.Resource = target; out[2].decl_image.Writable = wr; out[2].decl_image.Raw = raw; out[2].decl_image.Format = format; } static void emit_decl_buffer(struct ureg_program *ureg, unsigned index, bool atomic) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 2; out[0].decl.File = TGSI_FILE_BUFFER; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.Atomic = atomic; out[1].value = 0; out[1].decl_range.First = index; out[1].decl_range.Last = index; } static void emit_decl_memory(struct ureg_program *ureg, unsigned memory_type) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2); out[0].value = 0; out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION; out[0].decl.NrTokens = 2; out[0].decl.File = TGSI_FILE_MEMORY; out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW; out[0].decl.MemType = memory_type; out[1].value = 0; out[1].decl_range.First = memory_type; out[1].decl_range.Last = memory_type; } static void emit_immediate( struct ureg_program *ureg, const unsigned *v, unsigned type ) { union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 5 ); out[0].value = 0; out[0].imm.Type = TGSI_TOKEN_TYPE_IMMEDIATE; out[0].imm.NrTokens = 5; out[0].imm.DataType = type; out[0].imm.Padding = 0; out[1].imm_data.Uint = v[0]; out[2].imm_data.Uint = v[1]; out[3].imm_data.Uint = v[2]; out[4].imm_data.Uint = v[3]; } static void emit_property(struct ureg_program *ureg, unsigned name, unsigned data) { union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2); out[0].value = 0; out[0].prop.Type = TGSI_TOKEN_TYPE_PROPERTY; out[0].prop.NrTokens = 2; out[0].prop.PropertyName = name; out[1].prop_data.Data = data; } static void emit_decls( struct ureg_program *ureg ) { unsigned i,j; for (i = 0; i < ARRAY_SIZE(ureg->properties); i++) if (ureg->properties[i] != ~0u) emit_property(ureg, i, ureg->properties[i]); if (ureg->processor == PIPE_SHADER_VERTEX) { for (i = 0; i < PIPE_MAX_ATTRIBS; i++) { if (ureg->vs_inputs[i/32] & (1u << (i%32))) { emit_decl_range( ureg, TGSI_FILE_INPUT, i, 1 ); } } } else if (ureg->processor == PIPE_SHADER_FRAGMENT) { if (ureg->supports_any_inout_decl_range) { for (i = 0; i < ureg->nr_inputs; i++) { emit_decl_fs(ureg, TGSI_FILE_INPUT, ureg->input[i].first, ureg->input[i].last, ureg->input[i].semantic_name, ureg->input[i].semantic_index, ureg->input[i].interp, ureg->input[i].cylindrical_wrap, ureg->input[i].interp_location, ureg->input[i].array_id, ureg->input[i].usage_mask); } } else { for (i = 0; i < ureg->nr_inputs; i++) { for (j = ureg->input[i].first; j <= ureg->input[i].last; j++) { emit_decl_fs(ureg, TGSI_FILE_INPUT, j, j, ureg->input[i].semantic_name, ureg->input[i].semantic_index + (j - ureg->input[i].first), ureg->input[i].interp, ureg->input[i].cylindrical_wrap, ureg->input[i].interp_location, 0, ureg->input[i].usage_mask); } } } } else { if (ureg->supports_any_inout_decl_range) { for (i = 0; i < ureg->nr_inputs; i++) { emit_decl_semantic(ureg, TGSI_FILE_INPUT, ureg->input[i].first, ureg->input[i].last, ureg->input[i].semantic_name, ureg->input[i].semantic_index, 0, TGSI_WRITEMASK_XYZW, ureg->input[i].array_id); } } else { for (i = 0; i < ureg->nr_inputs; i++) { for (j = ureg->input[i].first; j <= ureg->input[i].last; j++) { emit_decl_semantic(ureg, TGSI_FILE_INPUT, j, j, ureg->input[i].semantic_name, ureg->input[i].semantic_index + (j - ureg->input[i].first), 0, TGSI_WRITEMASK_XYZW, 0); } } } } for (i = 0; i < ureg->nr_system_values; i++) { emit_decl_semantic(ureg, TGSI_FILE_SYSTEM_VALUE, i, i, ureg->system_value[i].semantic_name, ureg->system_value[i].semantic_index, 0, TGSI_WRITEMASK_XYZW, 0); } if (ureg->supports_any_inout_decl_range) { for (i = 0; i < ureg->nr_outputs; i++) { emit_decl_semantic(ureg, TGSI_FILE_OUTPUT, ureg->output[i].first, ureg->output[i].last, ureg->output[i].semantic_name, ureg->output[i].semantic_index, ureg->output[i].streams, ureg->output[i].usage_mask, ureg->output[i].array_id); } } else { for (i = 0; i < ureg->nr_outputs; i++) { for (j = ureg->output[i].first; j <= ureg->output[i].last; j++) { emit_decl_semantic(ureg, TGSI_FILE_OUTPUT, j, j, ureg->output[i].semantic_name, ureg->output[i].semantic_index + (j - ureg->output[i].first), ureg->output[i].streams, ureg->output[i].usage_mask, 0); } } } for (i = 0; i < ureg->nr_samplers; i++) { emit_decl_range( ureg, TGSI_FILE_SAMPLER, ureg->sampler[i].Index, 1 ); } for (i = 0; i < ureg->nr_sampler_views; i++) { emit_decl_sampler_view(ureg, ureg->sampler_view[i].index, ureg->sampler_view[i].target, ureg->sampler_view[i].return_type_x, ureg->sampler_view[i].return_type_y, ureg->sampler_view[i].return_type_z, ureg->sampler_view[i].return_type_w); } for (i = 0; i < ureg->nr_images; i++) { emit_decl_image(ureg, ureg->image[i].index, ureg->image[i].target, ureg->image[i].format, ureg->image[i].wr, ureg->image[i].raw); } for (i = 0; i < ureg->nr_buffers; i++) { emit_decl_buffer(ureg, ureg->buffer[i].index, ureg->buffer[i].atomic); } for (i = 0; i < TGSI_MEMORY_TYPE_COUNT; i++) { if (ureg->use_memory[i]) emit_decl_memory(ureg, i); } for (i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) { struct const_decl *decl = &ureg->const_decls[i]; if (decl->nr_constant_ranges) { uint j; for (j = 0; j < decl->nr_constant_ranges; j++) { emit_decl_range2D(ureg, TGSI_FILE_CONSTANT, decl->constant_range[j].first, decl->constant_range[j].last, i); } } } for (i = 0; i < PIPE_MAX_HW_ATOMIC_BUFFERS; i++) { struct hw_atomic_decl *decl = &ureg->hw_atomic_decls[i]; if (decl->nr_hw_atomic_ranges) { uint j; for (j = 0; j < decl->nr_hw_atomic_ranges; j++) { emit_decl_atomic_2d(ureg, decl->hw_atomic_range[j].first, decl->hw_atomic_range[j].last, i, decl->hw_atomic_range[j].array_id); } } } if (ureg->nr_temps) { unsigned array = 0; for (i = 0; i < ureg->nr_temps;) { boolean local = util_bitmask_get(ureg->local_temps, i); unsigned first = i; i = util_bitmask_get_next_index(ureg->decl_temps, i + 1); if (i == UTIL_BITMASK_INVALID_INDEX) i = ureg->nr_temps; if (array < ureg->nr_array_temps && ureg->array_temps[array] == first) emit_decl_temps( ureg, first, i - 1, local, ++array ); else emit_decl_temps( ureg, first, i - 1, local, 0 ); } } if (ureg->nr_addrs) { emit_decl_range( ureg, TGSI_FILE_ADDRESS, 0, ureg->nr_addrs ); } for (i = 0; i < ureg->nr_immediates; i++) { emit_immediate( ureg, ureg->immediate[i].value.u, ureg->immediate[i].type ); } } /* Append the instruction tokens onto the declarations to build a * contiguous stream suitable to send to the driver. */ static void copy_instructions( struct ureg_program *ureg ) { unsigned nr_tokens = ureg->domain[DOMAIN_INSN].count; union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, nr_tokens ); memcpy(out, ureg->domain[DOMAIN_INSN].tokens, nr_tokens * sizeof out[0] ); } static void fixup_header_size(struct ureg_program *ureg) { union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_DECL, 0 ); out->header.BodySize = ureg->domain[DOMAIN_DECL].count - 2; } static void emit_header( struct ureg_program *ureg ) { union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 2 ); out[0].header.HeaderSize = 2; out[0].header.BodySize = 0; out[1].processor.Processor = ureg->processor; out[1].processor.Padding = 0; } const struct tgsi_token *ureg_finalize( struct ureg_program *ureg ) { const struct tgsi_token *tokens; switch (ureg->processor) { case PIPE_SHADER_VERTEX: case PIPE_SHADER_TESS_EVAL: ureg_property(ureg, TGSI_PROPERTY_NEXT_SHADER, ureg->next_shader_processor == -1 ? PIPE_SHADER_FRAGMENT : ureg->next_shader_processor); break; default: ; /* nothing */ } emit_header( ureg ); emit_decls( ureg ); copy_instructions( ureg ); fixup_header_size( ureg ); if (ureg->domain[0].tokens == error_tokens || ureg->domain[1].tokens == error_tokens) { debug_printf("%s: error in generated shader\n", __FUNCTION__); assert(0); return NULL; } tokens = &ureg->domain[DOMAIN_DECL].tokens[0].token; if (0) { debug_printf("%s: emitted shader %d tokens:\n", __FUNCTION__, ureg->domain[DOMAIN_DECL].count); tgsi_dump( tokens, 0 ); } #if DEBUG if (tokens && !tgsi_sanity_check(tokens)) { debug_printf("tgsi_ureg.c, sanity check failed on generated tokens:\n"); tgsi_dump(tokens, 0); assert(0); } #endif return tokens; } void *ureg_create_shader( struct ureg_program *ureg, struct pipe_context *pipe, const struct pipe_stream_output_info *so ) { struct pipe_shader_state state; pipe_shader_state_from_tgsi(&state, ureg_finalize(ureg)); if(!state.tokens) return NULL; if (so) state.stream_output = *so; switch (ureg->processor) { case PIPE_SHADER_VERTEX: return pipe->create_vs_state(pipe, &state); case PIPE_SHADER_TESS_CTRL: return pipe->create_tcs_state(pipe, &state); case PIPE_SHADER_TESS_EVAL: return pipe->create_tes_state(pipe, &state); case PIPE_SHADER_GEOMETRY: return pipe->create_gs_state(pipe, &state); case PIPE_SHADER_FRAGMENT: return pipe->create_fs_state(pipe, &state); default: return NULL; } } const struct tgsi_token *ureg_get_tokens( struct ureg_program *ureg, unsigned *nr_tokens ) { const struct tgsi_token *tokens; ureg_finalize(ureg); tokens = &ureg->domain[DOMAIN_DECL].tokens[0].token; if (nr_tokens) *nr_tokens = ureg->domain[DOMAIN_DECL].count; ureg->domain[DOMAIN_DECL].tokens = 0; ureg->domain[DOMAIN_DECL].size = 0; ureg->domain[DOMAIN_DECL].order = 0; ureg->domain[DOMAIN_DECL].count = 0; return tokens; } void ureg_free_tokens( const struct tgsi_token *tokens ) { FREE((struct tgsi_token *)tokens); } struct ureg_program * ureg_create(enum pipe_shader_type processor) { return ureg_create_with_screen(processor, NULL); } struct ureg_program * ureg_create_with_screen(enum pipe_shader_type processor, struct pipe_screen *screen) { uint i; struct ureg_program *ureg = CALLOC_STRUCT( ureg_program ); if (!ureg) goto no_ureg; ureg->processor = processor; ureg->supports_any_inout_decl_range = screen && screen->get_shader_param(screen, processor, PIPE_SHADER_CAP_TGSI_ANY_INOUT_DECL_RANGE) != 0; ureg->next_shader_processor = -1; for (i = 0; i < ARRAY_SIZE(ureg->properties); i++) ureg->properties[i] = ~0; ureg->free_temps = util_bitmask_create(); if (ureg->free_temps == NULL) goto no_free_temps; ureg->local_temps = util_bitmask_create(); if (ureg->local_temps == NULL) goto no_local_temps; ureg->decl_temps = util_bitmask_create(); if (ureg->decl_temps == NULL) goto no_decl_temps; return ureg; no_decl_temps: util_bitmask_destroy(ureg->local_temps); no_local_temps: util_bitmask_destroy(ureg->free_temps); no_free_temps: FREE(ureg); no_ureg: return NULL; } void ureg_set_next_shader_processor(struct ureg_program *ureg, unsigned processor) { ureg->next_shader_processor = processor; } unsigned ureg_get_nr_outputs( const struct ureg_program *ureg ) { if (!ureg) return 0; return ureg->nr_outputs; } void ureg_destroy( struct ureg_program *ureg ) { unsigned i; for (i = 0; i < ARRAY_SIZE(ureg->domain); i++) { if (ureg->domain[i].tokens && ureg->domain[i].tokens != error_tokens) FREE(ureg->domain[i].tokens); } util_bitmask_destroy(ureg->free_temps); util_bitmask_destroy(ureg->local_temps); util_bitmask_destroy(ureg->decl_temps); FREE(ureg); }