/************************************************************************** * * Copyright 2008 VMware, Inc. * All Rights Reserved. * Copyright 2008 VMware, Inc. All rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * TGSI program scan utility. * Used to determine which registers and instructions are used by a shader. * * Authors: Brian Paul */ #include "util/u_debug.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_prim.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_scan.h" static bool is_memory_file(unsigned file) { return file == TGSI_FILE_SAMPLER || file == TGSI_FILE_SAMPLER_VIEW || file == TGSI_FILE_IMAGE || file == TGSI_FILE_BUFFER; } static bool is_mem_query_inst(enum tgsi_opcode opcode) { return opcode == TGSI_OPCODE_RESQ || opcode == TGSI_OPCODE_TXQ || opcode == TGSI_OPCODE_TXQS || opcode == TGSI_OPCODE_LODQ; } /** * Is the opcode a "true" texture instruction which samples from a * texture map? */ static bool is_texture_inst(enum tgsi_opcode opcode) { return (!is_mem_query_inst(opcode) && tgsi_get_opcode_info(opcode)->is_tex); } /** * Is the opcode an instruction which computes a derivative explicitly or * implicitly? */ static bool computes_derivative(enum tgsi_opcode opcode) { if (tgsi_get_opcode_info(opcode)->is_tex) { return opcode != TGSI_OPCODE_TG4 && opcode != TGSI_OPCODE_TXD && opcode != TGSI_OPCODE_TXF && opcode != TGSI_OPCODE_TXF_LZ && opcode != TGSI_OPCODE_TEX_LZ && opcode != TGSI_OPCODE_TXL && opcode != TGSI_OPCODE_TXL2 && opcode != TGSI_OPCODE_TXQ && opcode != TGSI_OPCODE_TXQS; } return opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE || opcode == TGSI_OPCODE_DDY || opcode == TGSI_OPCODE_DDY_FINE || opcode == TGSI_OPCODE_SAMPLE || opcode == TGSI_OPCODE_SAMPLE_B || opcode == TGSI_OPCODE_SAMPLE_C; } static void scan_src_operand(struct tgsi_shader_info *info, const struct tgsi_full_instruction *fullinst, const struct tgsi_full_src_register *src, unsigned src_index, unsigned usage_mask_after_swizzle, bool is_interp_instruction, bool *is_mem_inst) { int ind = src->Register.Index; if (info->processor == PIPE_SHADER_COMPUTE && src->Register.File == TGSI_FILE_SYSTEM_VALUE) { unsigned name, mask; name = info->system_value_semantic_name[src->Register.Index]; switch (name) { case TGSI_SEMANTIC_THREAD_ID: case TGSI_SEMANTIC_BLOCK_ID: mask = usage_mask_after_swizzle & TGSI_WRITEMASK_XYZ; while (mask) { unsigned i = u_bit_scan(&mask); if (name == TGSI_SEMANTIC_THREAD_ID) info->uses_thread_id[i] = true; else info->uses_block_id[i] = true; } break; case TGSI_SEMANTIC_BLOCK_SIZE: /* The block size is translated to IMM with a fixed block size. */ if (info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0) info->uses_block_size = true; break; case TGSI_SEMANTIC_GRID_SIZE: info->uses_grid_size = true; break; } } /* Mark which inputs are effectively used */ if (src->Register.File == TGSI_FILE_INPUT) { if (src->Register.Indirect) { for (ind = 0; ind < info->num_inputs; ++ind) { info->input_usage_mask[ind] |= usage_mask_after_swizzle; } } else { assert(ind >= 0); assert(ind < PIPE_MAX_SHADER_INPUTS); info->input_usage_mask[ind] |= usage_mask_after_swizzle; } if (info->processor == PIPE_SHADER_FRAGMENT) { unsigned name, index, input; if (src->Register.Indirect && src->Indirect.ArrayID) input = info->input_array_first[src->Indirect.ArrayID]; else input = src->Register.Index; name = info->input_semantic_name[input]; index = info->input_semantic_index[input]; if (name == TGSI_SEMANTIC_POSITION && usage_mask_after_swizzle & TGSI_WRITEMASK_Z) info->reads_z = true; if (name == TGSI_SEMANTIC_COLOR) info->colors_read |= usage_mask_after_swizzle << (index * 4); /* Process only interpolated varyings. Don't include POSITION. * Don't include integer varyings, because they are not * interpolated. Don't process inputs interpolated by INTERP * opcodes. Those are tracked separately. */ if ((!is_interp_instruction || src_index != 0) && (name == TGSI_SEMANTIC_GENERIC || name == TGSI_SEMANTIC_TEXCOORD || name == TGSI_SEMANTIC_COLOR || name == TGSI_SEMANTIC_BCOLOR || name == TGSI_SEMANTIC_FOG || name == TGSI_SEMANTIC_CLIPDIST)) { switch (info->input_interpolate[input]) { case TGSI_INTERPOLATE_COLOR: case TGSI_INTERPOLATE_PERSPECTIVE: switch (info->input_interpolate_loc[input]) { case TGSI_INTERPOLATE_LOC_CENTER: info->uses_persp_center = TRUE; break; case TGSI_INTERPOLATE_LOC_CENTROID: info->uses_persp_centroid = TRUE; break; case TGSI_INTERPOLATE_LOC_SAMPLE: info->uses_persp_sample = TRUE; break; } break; case TGSI_INTERPOLATE_LINEAR: switch (info->input_interpolate_loc[input]) { case TGSI_INTERPOLATE_LOC_CENTER: info->uses_linear_center = TRUE; break; case TGSI_INTERPOLATE_LOC_CENTROID: info->uses_linear_centroid = TRUE; break; case TGSI_INTERPOLATE_LOC_SAMPLE: info->uses_linear_sample = TRUE; break; } break; /* TGSI_INTERPOLATE_CONSTANT doesn't do any interpolation. */ } } } } if (info->processor == PIPE_SHADER_TESS_CTRL && src->Register.File == TGSI_FILE_OUTPUT) { unsigned input; if (src->Register.Indirect && src->Indirect.ArrayID) input = info->output_array_first[src->Indirect.ArrayID]; else input = src->Register.Index; switch (info->output_semantic_name[input]) { case TGSI_SEMANTIC_PATCH: info->reads_perpatch_outputs = true; break; case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: info->reads_tessfactor_outputs = true; break; default: info->reads_pervertex_outputs = true; } } /* check for indirect register reads */ if (src->Register.Indirect) { info->indirect_files |= (1 << src->Register.File); info->indirect_files_read |= (1 << src->Register.File); /* record indirect constant buffer indexing */ if (src->Register.File == TGSI_FILE_CONSTANT) { if (src->Register.Dimension) { if (src->Dimension.Indirect) info->const_buffers_indirect = info->const_buffers_declared; else info->const_buffers_indirect |= 1u << src->Dimension.Index; } else { info->const_buffers_indirect |= 1; } } } if (src->Register.Dimension && src->Dimension.Indirect) info->dim_indirect_files |= 1u << src->Register.File; /* Texture samplers */ if (src->Register.File == TGSI_FILE_SAMPLER) { const unsigned index = src->Register.Index; assert(fullinst->Instruction.Texture); assert(index < PIPE_MAX_SAMPLERS); if (is_texture_inst(fullinst->Instruction.Opcode)) { const unsigned target = fullinst->Texture.Texture; assert(target < TGSI_TEXTURE_UNKNOWN); /* for texture instructions, check that the texture instruction * target matches the previous sampler view declaration (if there * was one.) */ if (info->sampler_targets[index] == TGSI_TEXTURE_UNKNOWN) { /* probably no sampler view declaration */ info->sampler_targets[index] = target; } else { /* Make sure the texture instruction's sampler/target info * agrees with the sampler view declaration. */ assert(info->sampler_targets[index] == target); } } } if (is_memory_file(src->Register.File) && !is_mem_query_inst(fullinst->Instruction.Opcode)) { *is_mem_inst = true; if (tgsi_get_opcode_info(fullinst->Instruction.Opcode)->is_store) { info->writes_memory = TRUE; if (src->Register.File == TGSI_FILE_IMAGE) { if (src->Register.Indirect) info->images_atomic = info->images_declared; else info->images_atomic |= 1 << src->Register.Index; } else if (src->Register.File == TGSI_FILE_BUFFER) { if (src->Register.Indirect) info->shader_buffers_atomic = info->shader_buffers_declared; else info->shader_buffers_atomic |= 1 << src->Register.Index; } } else { if (src->Register.File == TGSI_FILE_IMAGE) { if (src->Register.Indirect) info->images_load = info->images_declared; else info->images_load |= 1 << src->Register.Index; } else if (src->Register.File == TGSI_FILE_BUFFER) { if (src->Register.Indirect) info->shader_buffers_load = info->shader_buffers_declared; else info->shader_buffers_load |= 1 << src->Register.Index; } } } } static void scan_instruction(struct tgsi_shader_info *info, const struct tgsi_full_instruction *fullinst, unsigned *current_depth) { unsigned i; bool is_mem_inst = false; bool is_interp_instruction = false; unsigned sampler_src; assert(fullinst->Instruction.Opcode < TGSI_OPCODE_LAST); info->opcode_count[fullinst->Instruction.Opcode]++; switch (fullinst->Instruction.Opcode) { case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: case TGSI_OPCODE_BGNLOOP: (*current_depth)++; info->max_depth = MAX2(info->max_depth, *current_depth); break; case TGSI_OPCODE_ENDIF: case TGSI_OPCODE_ENDLOOP: (*current_depth)--; break; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TEX_LZ: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXD: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: case TGSI_OPCODE_TXQ: case TGSI_OPCODE_TXQS: case TGSI_OPCODE_TXF: case TGSI_OPCODE_TXF_LZ: case TGSI_OPCODE_TEX2: case TGSI_OPCODE_TXB2: case TGSI_OPCODE_TXL2: case TGSI_OPCODE_TG4: case TGSI_OPCODE_LODQ: sampler_src = fullinst->Instruction.NumSrcRegs - 1; if (fullinst->Src[sampler_src].Register.File != TGSI_FILE_SAMPLER) info->uses_bindless_samplers = true; break; case TGSI_OPCODE_RESQ: case TGSI_OPCODE_LOAD: case TGSI_OPCODE_ATOMUADD: case TGSI_OPCODE_ATOMXCHG: case TGSI_OPCODE_ATOMCAS: case TGSI_OPCODE_ATOMAND: case TGSI_OPCODE_ATOMOR: case TGSI_OPCODE_ATOMXOR: case TGSI_OPCODE_ATOMUMIN: case TGSI_OPCODE_ATOMUMAX: case TGSI_OPCODE_ATOMIMIN: case TGSI_OPCODE_ATOMIMAX: if (tgsi_is_bindless_image_file(fullinst->Src[0].Register.File)) info->uses_bindless_images = true; break; case TGSI_OPCODE_STORE: if (tgsi_is_bindless_image_file(fullinst->Dst[0].Register.File)) info->uses_bindless_images = true; break; default: break; } if (fullinst->Instruction.Opcode == TGSI_OPCODE_INTERP_CENTROID || fullinst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET || fullinst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) { const struct tgsi_full_src_register *src0 = &fullinst->Src[0]; unsigned input; is_interp_instruction = true; if (src0->Register.Indirect && src0->Indirect.ArrayID) input = info->input_array_first[src0->Indirect.ArrayID]; else input = src0->Register.Index; /* For the INTERP opcodes, the interpolation is always * PERSPECTIVE unless LINEAR is specified. */ switch (info->input_interpolate[input]) { case TGSI_INTERPOLATE_COLOR: case TGSI_INTERPOLATE_CONSTANT: case TGSI_INTERPOLATE_PERSPECTIVE: switch (fullinst->Instruction.Opcode) { case TGSI_OPCODE_INTERP_CENTROID: info->uses_persp_opcode_interp_centroid = TRUE; break; case TGSI_OPCODE_INTERP_OFFSET: info->uses_persp_opcode_interp_offset = TRUE; break; case TGSI_OPCODE_INTERP_SAMPLE: info->uses_persp_opcode_interp_sample = TRUE; break; } break; case TGSI_INTERPOLATE_LINEAR: switch (fullinst->Instruction.Opcode) { case TGSI_OPCODE_INTERP_CENTROID: info->uses_linear_opcode_interp_centroid = TRUE; break; case TGSI_OPCODE_INTERP_OFFSET: info->uses_linear_opcode_interp_offset = TRUE; break; case TGSI_OPCODE_INTERP_SAMPLE: info->uses_linear_opcode_interp_sample = TRUE; break; } break; } } if ((fullinst->Instruction.Opcode >= TGSI_OPCODE_F2D && fullinst->Instruction.Opcode <= TGSI_OPCODE_DSSG) || fullinst->Instruction.Opcode == TGSI_OPCODE_DFMA || fullinst->Instruction.Opcode == TGSI_OPCODE_DDIV || fullinst->Instruction.Opcode == TGSI_OPCODE_D2U64 || fullinst->Instruction.Opcode == TGSI_OPCODE_D2I64 || fullinst->Instruction.Opcode == TGSI_OPCODE_U642D || fullinst->Instruction.Opcode == TGSI_OPCODE_I642D) info->uses_doubles = TRUE; for (i = 0; i < fullinst->Instruction.NumSrcRegs; i++) { scan_src_operand(info, fullinst, &fullinst->Src[i], i, tgsi_util_get_inst_usage_mask(fullinst, i), is_interp_instruction, &is_mem_inst); if (fullinst->Src[i].Register.Indirect) { struct tgsi_full_src_register src = {{0}}; src.Register.File = fullinst->Src[i].Indirect.File; src.Register.Index = fullinst->Src[i].Indirect.Index; scan_src_operand(info, fullinst, &src, -1, 1 << fullinst->Src[i].Indirect.Swizzle, false, NULL); } if (fullinst->Src[i].Register.Dimension && fullinst->Src[i].Dimension.Indirect) { struct tgsi_full_src_register src = {{0}}; src.Register.File = fullinst->Src[i].DimIndirect.File; src.Register.Index = fullinst->Src[i].DimIndirect.Index; scan_src_operand(info, fullinst, &src, -1, 1 << fullinst->Src[i].DimIndirect.Swizzle, false, NULL); } } if (fullinst->Instruction.Texture) { for (i = 0; i < fullinst->Texture.NumOffsets; i++) { struct tgsi_full_src_register src = {{0}}; src.Register.File = fullinst->TexOffsets[i].File; src.Register.Index = fullinst->TexOffsets[i].Index; /* The usage mask is suboptimal but should be safe. */ scan_src_operand(info, fullinst, &src, -1, (1 << fullinst->TexOffsets[i].SwizzleX) | (1 << fullinst->TexOffsets[i].SwizzleY) | (1 << fullinst->TexOffsets[i].SwizzleZ), false, &is_mem_inst); } } /* check for indirect register writes */ for (i = 0; i < fullinst->Instruction.NumDstRegs; i++) { const struct tgsi_full_dst_register *dst = &fullinst->Dst[i]; if (dst->Register.Indirect) { struct tgsi_full_src_register src = {{0}}; src.Register.File = dst->Indirect.File; src.Register.Index = dst->Indirect.Index; scan_src_operand(info, fullinst, &src, -1, 1 << dst->Indirect.Swizzle, false, NULL); info->indirect_files |= (1 << dst->Register.File); info->indirect_files_written |= (1 << dst->Register.File); } if (dst->Register.Dimension && dst->Dimension.Indirect) { struct tgsi_full_src_register src = {{0}}; src.Register.File = dst->DimIndirect.File; src.Register.Index = dst->DimIndirect.Index; scan_src_operand(info, fullinst, &src, -1, 1 << dst->DimIndirect.Swizzle, false, NULL); info->dim_indirect_files |= 1u << dst->Register.File; } if (is_memory_file(dst->Register.File)) { assert(fullinst->Instruction.Opcode == TGSI_OPCODE_STORE); is_mem_inst = true; info->writes_memory = TRUE; if (dst->Register.File == TGSI_FILE_IMAGE) { if (dst->Register.Indirect) info->images_store = info->images_declared; else info->images_store |= 1 << dst->Register.Index; } else if (dst->Register.File == TGSI_FILE_BUFFER) { if (dst->Register.Indirect) info->shader_buffers_store = info->shader_buffers_declared; else info->shader_buffers_store |= 1 << dst->Register.Index; } } } if (is_mem_inst) info->num_memory_instructions++; if (computes_derivative(fullinst->Instruction.Opcode)) info->uses_derivatives = true; info->num_instructions++; } static void scan_declaration(struct tgsi_shader_info *info, const struct tgsi_full_declaration *fulldecl) { const uint file = fulldecl->Declaration.File; const unsigned procType = info->processor; uint reg; if (fulldecl->Declaration.Array) { unsigned array_id = fulldecl->Array.ArrayID; switch (file) { case TGSI_FILE_INPUT: assert(array_id < ARRAY_SIZE(info->input_array_first)); info->input_array_first[array_id] = fulldecl->Range.First; info->input_array_last[array_id] = fulldecl->Range.Last; break; case TGSI_FILE_OUTPUT: assert(array_id < ARRAY_SIZE(info->output_array_first)); info->output_array_first[array_id] = fulldecl->Range.First; info->output_array_last[array_id] = fulldecl->Range.Last; break; } info->array_max[file] = MAX2(info->array_max[file], array_id); } for (reg = fulldecl->Range.First; reg <= fulldecl->Range.Last; reg++) { unsigned semName = fulldecl->Semantic.Name; unsigned semIndex = fulldecl->Semantic.Index + (reg - fulldecl->Range.First); int buffer; unsigned index, target, type; /* * only first 32 regs will appear in this bitfield, if larger * bits will wrap around. */ info->file_mask[file] |= (1u << (reg & 31)); info->file_count[file]++; info->file_max[file] = MAX2(info->file_max[file], (int)reg); switch (file) { case TGSI_FILE_CONSTANT: buffer = 0; if (fulldecl->Declaration.Dimension) buffer = fulldecl->Dim.Index2D; info->const_file_max[buffer] = MAX2(info->const_file_max[buffer], (int)reg); info->const_buffers_declared |= 1u << buffer; break; case TGSI_FILE_IMAGE: info->images_declared |= 1u << reg; if (fulldecl->Image.Resource == TGSI_TEXTURE_BUFFER) info->images_buffers |= 1 << reg; break; case TGSI_FILE_BUFFER: info->shader_buffers_declared |= 1u << reg; break; case TGSI_FILE_INPUT: info->input_semantic_name[reg] = (ubyte) semName; info->input_semantic_index[reg] = (ubyte) semIndex; info->input_interpolate[reg] = (ubyte)fulldecl->Interp.Interpolate; info->input_interpolate_loc[reg] = (ubyte)fulldecl->Interp.Location; info->input_cylindrical_wrap[reg] = (ubyte)fulldecl->Interp.CylindricalWrap; /* Vertex shaders can have inputs with holes between them. */ info->num_inputs = MAX2(info->num_inputs, reg + 1); switch (semName) { case TGSI_SEMANTIC_PRIMID: info->uses_primid = true; break; case TGSI_SEMANTIC_POSITION: info->reads_position = true; break; case TGSI_SEMANTIC_FACE: info->uses_frontface = true; break; } break; case TGSI_FILE_SYSTEM_VALUE: index = fulldecl->Range.First; info->system_value_semantic_name[index] = semName; info->num_system_values = MAX2(info->num_system_values, index + 1); switch (semName) { case TGSI_SEMANTIC_INSTANCEID: info->uses_instanceid = TRUE; break; case TGSI_SEMANTIC_VERTEXID: info->uses_vertexid = TRUE; break; case TGSI_SEMANTIC_VERTEXID_NOBASE: info->uses_vertexid_nobase = TRUE; break; case TGSI_SEMANTIC_BASEVERTEX: info->uses_basevertex = TRUE; break; case TGSI_SEMANTIC_PRIMID: info->uses_primid = TRUE; break; case TGSI_SEMANTIC_INVOCATIONID: info->uses_invocationid = TRUE; break; case TGSI_SEMANTIC_POSITION: info->reads_position = TRUE; break; case TGSI_SEMANTIC_FACE: info->uses_frontface = TRUE; break; case TGSI_SEMANTIC_SAMPLEMASK: info->reads_samplemask = TRUE; break; case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: info->reads_tess_factors = true; break; } break; case TGSI_FILE_OUTPUT: info->output_semantic_name[reg] = (ubyte) semName; info->output_semantic_index[reg] = (ubyte) semIndex; info->output_usagemask[reg] |= fulldecl->Declaration.UsageMask; info->num_outputs = MAX2(info->num_outputs, reg + 1); if (fulldecl->Declaration.UsageMask & TGSI_WRITEMASK_X) { info->output_streams[reg] |= (ubyte)fulldecl->Semantic.StreamX; info->num_stream_output_components[fulldecl->Semantic.StreamX]++; } if (fulldecl->Declaration.UsageMask & TGSI_WRITEMASK_Y) { info->output_streams[reg] |= (ubyte)fulldecl->Semantic.StreamY << 2; info->num_stream_output_components[fulldecl->Semantic.StreamY]++; } if (fulldecl->Declaration.UsageMask & TGSI_WRITEMASK_Z) { info->output_streams[reg] |= (ubyte)fulldecl->Semantic.StreamZ << 4; info->num_stream_output_components[fulldecl->Semantic.StreamZ]++; } if (fulldecl->Declaration.UsageMask & TGSI_WRITEMASK_W) { info->output_streams[reg] |= (ubyte)fulldecl->Semantic.StreamW << 6; info->num_stream_output_components[fulldecl->Semantic.StreamW]++; } switch (semName) { case TGSI_SEMANTIC_PRIMID: info->writes_primid = true; break; case TGSI_SEMANTIC_VIEWPORT_INDEX: info->writes_viewport_index = true; break; case TGSI_SEMANTIC_LAYER: info->writes_layer = true; break; case TGSI_SEMANTIC_PSIZE: info->writes_psize = true; break; case TGSI_SEMANTIC_CLIPVERTEX: info->writes_clipvertex = true; break; case TGSI_SEMANTIC_COLOR: info->colors_written |= 1 << semIndex; break; case TGSI_SEMANTIC_STENCIL: info->writes_stencil = true; break; case TGSI_SEMANTIC_SAMPLEMASK: info->writes_samplemask = true; break; case TGSI_SEMANTIC_EDGEFLAG: info->writes_edgeflag = true; break; case TGSI_SEMANTIC_POSITION: if (procType == PIPE_SHADER_FRAGMENT) info->writes_z = true; else info->writes_position = true; break; } break; case TGSI_FILE_SAMPLER: STATIC_ASSERT(sizeof(info->samplers_declared) * 8 >= PIPE_MAX_SAMPLERS); info->samplers_declared |= 1u << reg; break; case TGSI_FILE_SAMPLER_VIEW: target = fulldecl->SamplerView.Resource; type = fulldecl->SamplerView.ReturnTypeX; assert(target < TGSI_TEXTURE_UNKNOWN); if (info->sampler_targets[reg] == TGSI_TEXTURE_UNKNOWN) { /* Save sampler target for this sampler index */ info->sampler_targets[reg] = target; info->sampler_type[reg] = type; } else { /* if previously declared, make sure targets agree */ assert(info->sampler_targets[reg] == target); assert(info->sampler_type[reg] == type); } break; } } } static void scan_immediate(struct tgsi_shader_info *info) { uint reg = info->immediate_count++; uint file = TGSI_FILE_IMMEDIATE; info->file_mask[file] |= (1 << reg); info->file_count[file]++; info->file_max[file] = MAX2(info->file_max[file], (int)reg); } static void scan_property(struct tgsi_shader_info *info, const struct tgsi_full_property *fullprop) { unsigned name = fullprop->Property.PropertyName; unsigned value = fullprop->u[0].Data; assert(name < ARRAY_SIZE(info->properties)); info->properties[name] = value; switch (name) { case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED: info->num_written_clipdistance = value; info->clipdist_writemask |= (1 << value) - 1; break; case TGSI_PROPERTY_NUM_CULLDIST_ENABLED: info->num_written_culldistance = value; info->culldist_writemask |= (1 << value) - 1; break; } } /** * Scan the given TGSI shader to collect information such as number of * registers used, special instructions used, etc. * \return info the result of the scan */ void tgsi_scan_shader(const struct tgsi_token *tokens, struct tgsi_shader_info *info) { uint procType, i; struct tgsi_parse_context parse; unsigned current_depth = 0; memset(info, 0, sizeof(*info)); for (i = 0; i < TGSI_FILE_COUNT; i++) info->file_max[i] = -1; for (i = 0; i < ARRAY_SIZE(info->const_file_max); i++) info->const_file_max[i] = -1; info->properties[TGSI_PROPERTY_GS_INVOCATIONS] = 1; for (i = 0; i < ARRAY_SIZE(info->sampler_targets); i++) info->sampler_targets[i] = TGSI_TEXTURE_UNKNOWN; /** ** Setup to begin parsing input shader **/ if (tgsi_parse_init( &parse, tokens ) != TGSI_PARSE_OK) { debug_printf("tgsi_parse_init() failed in tgsi_scan_shader()!\n"); return; } procType = parse.FullHeader.Processor.Processor; assert(procType == PIPE_SHADER_FRAGMENT || procType == PIPE_SHADER_VERTEX || procType == PIPE_SHADER_GEOMETRY || procType == PIPE_SHADER_TESS_CTRL || procType == PIPE_SHADER_TESS_EVAL || procType == PIPE_SHADER_COMPUTE); info->processor = procType; /** ** Loop over incoming program tokens/instructions */ while (!tgsi_parse_end_of_tokens(&parse)) { info->num_tokens++; tgsi_parse_token( &parse ); switch( parse.FullToken.Token.Type ) { case TGSI_TOKEN_TYPE_INSTRUCTION: scan_instruction(info, &parse.FullToken.FullInstruction, ¤t_depth); break; case TGSI_TOKEN_TYPE_DECLARATION: scan_declaration(info, &parse.FullToken.FullDeclaration); break; case TGSI_TOKEN_TYPE_IMMEDIATE: scan_immediate(info); break; case TGSI_TOKEN_TYPE_PROPERTY: scan_property(info, &parse.FullToken.FullProperty); break; default: assert(!"Unexpected TGSI token type"); } } info->uses_kill = (info->opcode_count[TGSI_OPCODE_KILL_IF] || info->opcode_count[TGSI_OPCODE_KILL]); /* The dimensions of the IN decleration in geometry shader have * to be deduced from the type of the input primitive. */ if (procType == PIPE_SHADER_GEOMETRY) { unsigned input_primitive = info->properties[TGSI_PROPERTY_GS_INPUT_PRIM]; int num_verts = u_vertices_per_prim(input_primitive); int j; info->file_count[TGSI_FILE_INPUT] = num_verts; info->file_max[TGSI_FILE_INPUT] = MAX2(info->file_max[TGSI_FILE_INPUT], num_verts - 1); for (j = 0; j < num_verts; ++j) { info->file_mask[TGSI_FILE_INPUT] |= (1 << j); } } tgsi_parse_free(&parse); } /** * Collect information about the arrays of a given register file. * * @param tokens TGSI shader * @param file the register file to scan through * @param max_array_id number of entries in @p arrays; should be equal to the * highest array id, i.e. tgsi_shader_info::array_max[file]. * @param arrays info for array of each ID will be written to arrays[ID - 1]. */ void tgsi_scan_arrays(const struct tgsi_token *tokens, unsigned file, unsigned max_array_id, struct tgsi_array_info *arrays) { struct tgsi_parse_context parse; if (tgsi_parse_init(&parse, tokens) != TGSI_PARSE_OK) { debug_printf("tgsi_parse_init() failed in tgsi_scan_arrays()!\n"); return; } memset(arrays, 0, sizeof(arrays[0]) * max_array_id); while (!tgsi_parse_end_of_tokens(&parse)) { struct tgsi_full_instruction *inst; tgsi_parse_token(&parse); if (parse.FullToken.Token.Type == TGSI_TOKEN_TYPE_DECLARATION) { struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration; if (decl->Declaration.Array && decl->Declaration.File == file && decl->Array.ArrayID > 0 && decl->Array.ArrayID <= max_array_id) { struct tgsi_array_info *array = &arrays[decl->Array.ArrayID - 1]; assert(!array->declared); array->declared = true; array->range = decl->Range; } } if (parse.FullToken.Token.Type != TGSI_TOKEN_TYPE_INSTRUCTION) continue; inst = &parse.FullToken.FullInstruction; for (unsigned i = 0; i < inst->Instruction.NumDstRegs; i++) { const struct tgsi_full_dst_register *dst = &inst->Dst[i]; if (dst->Register.File != file) continue; if (dst->Register.Indirect) { if (dst->Indirect.ArrayID > 0 && dst->Indirect.ArrayID <= max_array_id) { arrays[dst->Indirect.ArrayID - 1].writemask |= dst->Register.WriteMask; } else { /* Indirect writes without an ArrayID can write anywhere. */ for (unsigned j = 0; j < max_array_id; ++j) arrays[j].writemask |= dst->Register.WriteMask; } } else { /* Check whether the write falls into any of the arrays anyway. */ for (unsigned j = 0; j < max_array_id; ++j) { struct tgsi_array_info *array = &arrays[j]; if (array->declared && dst->Register.Index >= array->range.First && dst->Register.Index <= array->range.Last) array->writemask |= dst->Register.WriteMask; } } } } tgsi_parse_free(&parse); return; } static void check_no_subroutines(const struct tgsi_full_instruction *inst) { switch (inst->Instruction.Opcode) { case TGSI_OPCODE_BGNSUB: case TGSI_OPCODE_ENDSUB: case TGSI_OPCODE_CAL: unreachable("subroutines unhandled"); } } static unsigned get_inst_tessfactor_writemask(const struct tgsi_shader_info *info, const struct tgsi_full_instruction *inst) { unsigned writemask = 0; for (unsigned i = 0; i < inst->Instruction.NumDstRegs; i++) { const struct tgsi_full_dst_register *dst = &inst->Dst[i]; if (dst->Register.File == TGSI_FILE_OUTPUT && !dst->Register.Indirect) { unsigned name = info->output_semantic_name[dst->Register.Index]; if (name == TGSI_SEMANTIC_TESSINNER) writemask |= dst->Register.WriteMask; else if (name == TGSI_SEMANTIC_TESSOUTER) writemask |= dst->Register.WriteMask << 4; } } return writemask; } static unsigned get_block_tessfactor_writemask(const struct tgsi_shader_info *info, struct tgsi_parse_context *parse, unsigned end_opcode) { struct tgsi_full_instruction *inst; unsigned writemask = 0; do { tgsi_parse_token(parse); assert(parse->FullToken.Token.Type == TGSI_TOKEN_TYPE_INSTRUCTION); inst = &parse->FullToken.FullInstruction; check_no_subroutines(inst); /* Recursively process nested blocks. */ switch (inst->Instruction.Opcode) { case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: writemask |= get_block_tessfactor_writemask(info, parse, TGSI_OPCODE_ENDIF); continue; case TGSI_OPCODE_BGNLOOP: writemask |= get_block_tessfactor_writemask(info, parse, TGSI_OPCODE_ENDLOOP); continue; case TGSI_OPCODE_BARRIER: unreachable("nested BARRIER is illegal"); continue; } writemask |= get_inst_tessfactor_writemask(info, inst); } while (inst->Instruction.Opcode != end_opcode); return writemask; } static void get_if_block_tessfactor_writemask(const struct tgsi_shader_info *info, struct tgsi_parse_context *parse, unsigned *upper_block_tf_writemask, unsigned *cond_block_tf_writemask) { struct tgsi_full_instruction *inst; unsigned then_tessfactor_writemask = 0; unsigned else_tessfactor_writemask = 0; bool is_then = true; do { tgsi_parse_token(parse); assert(parse->FullToken.Token.Type == TGSI_TOKEN_TYPE_INSTRUCTION); inst = &parse->FullToken.FullInstruction; check_no_subroutines(inst); switch (inst->Instruction.Opcode) { case TGSI_OPCODE_ELSE: is_then = false; continue; /* Recursively process nested blocks. */ case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: get_if_block_tessfactor_writemask(info, parse, is_then ? &then_tessfactor_writemask : &else_tessfactor_writemask, cond_block_tf_writemask); continue; case TGSI_OPCODE_BGNLOOP: *cond_block_tf_writemask |= get_block_tessfactor_writemask(info, parse, TGSI_OPCODE_ENDLOOP); continue; case TGSI_OPCODE_BARRIER: unreachable("nested BARRIER is illegal"); continue; } /* Process an instruction in the current block. */ unsigned writemask = get_inst_tessfactor_writemask(info, inst); if (writemask) { if (is_then) then_tessfactor_writemask |= writemask; else else_tessfactor_writemask |= writemask; } } while (inst->Instruction.Opcode != TGSI_OPCODE_ENDIF); if (then_tessfactor_writemask || else_tessfactor_writemask) { /* If both statements write the same tess factor channels, * we can say that the upper block writes them too. */ *upper_block_tf_writemask |= then_tessfactor_writemask & else_tessfactor_writemask; *cond_block_tf_writemask |= then_tessfactor_writemask | else_tessfactor_writemask; } } void tgsi_scan_tess_ctrl(const struct tgsi_token *tokens, const struct tgsi_shader_info *info, struct tgsi_tessctrl_info *out) { memset(out, 0, sizeof(*out)); if (info->processor != PIPE_SHADER_TESS_CTRL) return; struct tgsi_parse_context parse; if (tgsi_parse_init(&parse, tokens) != TGSI_PARSE_OK) { debug_printf("tgsi_parse_init() failed in tgsi_scan_arrays()!\n"); return; } /* The pass works as follows: * If all codepaths write tess factors, we can say that all invocations * define tess factors. * * Each tess factor channel is tracked separately. */ unsigned main_block_tf_writemask = 0; /* if main block writes tess factors */ unsigned cond_block_tf_writemask = 0; /* if cond block writes tess factors */ /* Initial value = true. Here the pass will accumulate results from multiple * segments surrounded by barriers. If tess factors aren't written at all, * it's a shader bug and we don't care if this will be true. */ out->tessfactors_are_def_in_all_invocs = true; while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); if (parse.FullToken.Token.Type != TGSI_TOKEN_TYPE_INSTRUCTION) continue; struct tgsi_full_instruction *inst = &parse.FullToken.FullInstruction; check_no_subroutines(inst); /* Process nested blocks. */ switch (inst->Instruction.Opcode) { case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: get_if_block_tessfactor_writemask(info, &parse, &main_block_tf_writemask, &cond_block_tf_writemask); continue; case TGSI_OPCODE_BGNLOOP: cond_block_tf_writemask |= get_block_tessfactor_writemask(info, &parse, TGSI_OPCODE_ENDIF); continue; case TGSI_OPCODE_BARRIER: /* The following case must be prevented: * gl_TessLevelInner = ...; * barrier(); * if (gl_InvocationID == 1) * gl_TessLevelInner = ...; * * If you consider disjoint code segments separated by barriers, each * such segment that writes tess factor channels should write the same * channels in all codepaths within that segment. */ if (main_block_tf_writemask || cond_block_tf_writemask) { /* Accumulate the result: */ out->tessfactors_are_def_in_all_invocs &= !(cond_block_tf_writemask & ~main_block_tf_writemask); /* Analyze the next code segment from scratch. */ main_block_tf_writemask = 0; cond_block_tf_writemask = 0; } continue; } main_block_tf_writemask |= get_inst_tessfactor_writemask(info, inst); } /* Accumulate the result for the last code segment separated by a barrier. */ if (main_block_tf_writemask || cond_block_tf_writemask) { out->tessfactors_are_def_in_all_invocs &= !(cond_block_tf_writemask & ~main_block_tf_writemask); } tgsi_parse_free(&parse); }