/************************************************************************** * * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * Copyright 2009-2010 VMware, Inc. All rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * TGSI interpreter/executor. * * Flow control information: * * Since we operate on 'quads' (4 pixels or 4 vertices in parallel) * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special * care since a condition may be true for some quad components but false * for other components. * * We basically execute all statements (even if they're in the part of * an IF/ELSE clause that's "not taken") and use a special mask to * control writing to destination registers. This is the ExecMask. * See store_dest(). * * The ExecMask is computed from three other masks (CondMask, LoopMask and * ContMask) which are controlled by the flow control instructions (namely: * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT). * * * Authors: * Michal Krol * Brian Paul */ #include "pipe/p_compiler.h" #include "pipe/p_state.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi_exec.h" #include "util/u_memory.h" #include "util/u_math.h" #define DEBUG_EXECUTION 0 #define FAST_MATH 0 #define TILE_TOP_LEFT 0 #define TILE_TOP_RIGHT 1 #define TILE_BOTTOM_LEFT 2 #define TILE_BOTTOM_RIGHT 3 static void micro_abs(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = fabsf(src->f[0]); dst->f[1] = fabsf(src->f[1]); dst->f[2] = fabsf(src->f[2]); dst->f[3] = fabsf(src->f[3]); } static void micro_arl(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = (int)floorf(src->f[0]); dst->i[1] = (int)floorf(src->f[1]); dst->i[2] = (int)floorf(src->f[2]); dst->i[3] = (int)floorf(src->f[3]); } static void micro_arr(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = (int)floorf(src->f[0] + 0.5f); dst->i[1] = (int)floorf(src->f[1] + 0.5f); dst->i[2] = (int)floorf(src->f[2] + 0.5f); dst->i[3] = (int)floorf(src->f[3] + 0.5f); } static void micro_ceil(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = ceilf(src->f[0]); dst->f[1] = ceilf(src->f[1]); dst->f[2] = ceilf(src->f[2]); dst->f[3] = ceilf(src->f[3]); } static void micro_clamp(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0]; dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1]; dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2]; dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3]; } static void micro_cmp(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0]; dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1]; dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2]; dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3]; } static void micro_cnd(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0]; dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1]; dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2]; dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3]; } static void micro_cos(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = cosf(src->f[0]); dst->f[1] = cosf(src->f[1]); dst->f[2] = cosf(src->f[2]); dst->f[3] = cosf(src->f[3]); } static void micro_ddx(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = dst->f[1] = dst->f[2] = dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT]; } static void micro_ddy(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = dst->f[1] = dst->f[2] = dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT]; } static void micro_exp2(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { #if FAST_MATH dst->f[0] = util_fast_exp2(src->f[0]); dst->f[1] = util_fast_exp2(src->f[1]); dst->f[2] = util_fast_exp2(src->f[2]); dst->f[3] = util_fast_exp2(src->f[3]); #else #if DEBUG /* Inf is okay for this instruction, so clamp it to silence assertions. */ uint i; union tgsi_exec_channel clamped; for (i = 0; i < 4; i++) { if (src->f[i] > 127.99999f) { clamped.f[i] = 127.99999f; } else if (src->f[i] < -126.99999f) { clamped.f[i] = -126.99999f; } else { clamped.f[i] = src->f[i]; } } src = &clamped; #endif /* DEBUG */ dst->f[0] = powf(2.0f, src->f[0]); dst->f[1] = powf(2.0f, src->f[1]); dst->f[2] = powf(2.0f, src->f[2]); dst->f[3] = powf(2.0f, src->f[3]); #endif /* FAST_MATH */ } static void micro_flr(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = floorf(src->f[0]); dst->f[1] = floorf(src->f[1]); dst->f[2] = floorf(src->f[2]); dst->f[3] = floorf(src->f[3]); } static void micro_frc(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = src->f[0] - floorf(src->f[0]); dst->f[1] = src->f[1] - floorf(src->f[1]); dst->f[2] = src->f[2] - floorf(src->f[2]); dst->f[3] = src->f[3] - floorf(src->f[3]); } static void micro_iabs(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0]; dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1]; dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2]; dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3]; } static void micro_ineg(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = -src->i[0]; dst->i[1] = -src->i[1]; dst->i[2] = -src->i[2]; dst->i[3] = -src->i[3]; } static void micro_lg2(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { #if FAST_MATH dst->f[0] = util_fast_log2(src->f[0]); dst->f[1] = util_fast_log2(src->f[1]); dst->f[2] = util_fast_log2(src->f[2]); dst->f[3] = util_fast_log2(src->f[3]); #else dst->f[0] = logf(src->f[0]) * 1.442695f; dst->f[1] = logf(src->f[1]) * 1.442695f; dst->f[2] = logf(src->f[2]) * 1.442695f; dst->f[3] = logf(src->f[3]) * 1.442695f; #endif } static void micro_lrp(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0]; dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1]; dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2]; dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3]; } static void micro_mad(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0]; dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1]; dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2]; dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3]; } static void micro_mov(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->u[0] = src->u[0]; dst->u[1] = src->u[1]; dst->u[2] = src->u[2]; dst->u[3] = src->u[3]; } static void micro_rcp(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { #if 0 /* for debugging */ assert(src->f[0] != 0.0f); assert(src->f[1] != 0.0f); assert(src->f[2] != 0.0f); assert(src->f[3] != 0.0f); #endif dst->f[0] = 1.0f / src->f[0]; dst->f[1] = 1.0f / src->f[1]; dst->f[2] = 1.0f / src->f[2]; dst->f[3] = 1.0f / src->f[3]; } static void micro_rnd(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = floorf(src->f[0] + 0.5f); dst->f[1] = floorf(src->f[1] + 0.5f); dst->f[2] = floorf(src->f[2] + 0.5f); dst->f[3] = floorf(src->f[3] + 0.5f); } static void micro_rsq(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { #if 0 /* for debugging */ assert(src->f[0] != 0.0f); assert(src->f[1] != 0.0f); assert(src->f[2] != 0.0f); assert(src->f[3] != 0.0f); #endif dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0])); dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1])); dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2])); dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3])); } static void micro_sqrt(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = sqrtf(fabsf(src->f[0])); dst->f[1] = sqrtf(fabsf(src->f[1])); dst->f[2] = sqrtf(fabsf(src->f[2])); dst->f[3] = sqrtf(fabsf(src->f[3])); } static void micro_seq(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f; } static void micro_sge(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f; } static void micro_sgn(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f; dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f; dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f; dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f; } static void micro_isgn(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0; dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0; dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0; dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0; } static void micro_sgt(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f; } static void micro_sin(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = sinf(src->f[0]); dst->f[1] = sinf(src->f[1]); dst->f[2] = sinf(src->f[2]); dst->f[3] = sinf(src->f[3]); } static void micro_sle(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f; } static void micro_slt(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f; } static void micro_sne(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f; dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f; dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f; dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f; } static void micro_sfl(union tgsi_exec_channel *dst) { dst->f[0] = 0.0f; dst->f[1] = 0.0f; dst->f[2] = 0.0f; dst->f[3] = 0.0f; } static void micro_str(union tgsi_exec_channel *dst) { dst->f[0] = 1.0f; dst->f[1] = 1.0f; dst->f[2] = 1.0f; dst->f[3] = 1.0f; } static void micro_trunc(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = (float)(int)src->f[0]; dst->f[1] = (float)(int)src->f[1]; dst->f[2] = (float)(int)src->f[2]; dst->f[3] = (float)(int)src->f[3]; } enum tgsi_exec_datatype { TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT }; /* * Shorthand locations of various utility registers (_I = Index, _C = Channel) */ #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C /** The execution mask depends on the conditional mask and the loop mask */ #define UPDATE_EXEC_MASK(MACH) \ MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask static const union tgsi_exec_channel ZeroVec = { { 0.0, 0.0, 0.0, 0.0 } }; static const union tgsi_exec_channel OneVec = { {1.0f, 1.0f, 1.0f, 1.0f} }; static const union tgsi_exec_channel P128Vec = { {128.0f, 128.0f, 128.0f, 128.0f} }; static const union tgsi_exec_channel M128Vec = { {-128.0f, -128.0f, -128.0f, -128.0f} }; /** * Assert that none of the float values in 'chan' are infinite or NaN. * NaN and Inf may occur normally during program execution and should * not lead to crashes, etc. But when debugging, it's helpful to catch * them. */ static INLINE void check_inf_or_nan(const union tgsi_exec_channel *chan) { assert(!util_is_inf_or_nan((chan)->f[0])); assert(!util_is_inf_or_nan((chan)->f[1])); assert(!util_is_inf_or_nan((chan)->f[2])); assert(!util_is_inf_or_nan((chan)->f[3])); } #ifdef DEBUG static void print_chan(const char *msg, const union tgsi_exec_channel *chan) { debug_printf("%s = {%f, %f, %f, %f}\n", msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]); } #endif #ifdef DEBUG static void print_temp(const struct tgsi_exec_machine *mach, uint index) { const struct tgsi_exec_vector *tmp = &mach->Temps[index]; int i; debug_printf("Temp[%u] =\n", index); for (i = 0; i < 4; i++) { debug_printf(" %c: { %f, %f, %f, %f }\n", "XYZW"[i], tmp->xyzw[i].f[0], tmp->xyzw[i].f[1], tmp->xyzw[i].f[2], tmp->xyzw[i].f[3]); } } #endif void tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach, unsigned num_bufs, const void **bufs, const unsigned *buf_sizes) { unsigned i; for (i = 0; i < num_bufs; i++) { mach->Consts[i] = bufs[i]; mach->ConstsSize[i] = buf_sizes[i]; } } /** * Check if there's a potential src/dst register data dependency when * using SOA execution. * Example: * MOV T, T.yxwz; * This would expand into: * MOV t0, t1; * MOV t1, t0; * MOV t2, t3; * MOV t3, t2; * The second instruction will have the wrong value for t0 if executed as-is. */ boolean tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst) { uint i, chan; uint writemask = inst->Dst[0].Register.WriteMask; if (writemask == TGSI_WRITEMASK_X || writemask == TGSI_WRITEMASK_Y || writemask == TGSI_WRITEMASK_Z || writemask == TGSI_WRITEMASK_W || writemask == TGSI_WRITEMASK_NONE) { /* no chance of data dependency */ return FALSE; } /* loop over src regs */ for (i = 0; i < inst->Instruction.NumSrcRegs; i++) { if ((inst->Src[i].Register.File == inst->Dst[0].Register.File) && ((inst->Src[i].Register.Index == inst->Dst[0].Register.Index) || inst->Src[i].Register.Indirect || inst->Dst[0].Register.Indirect)) { /* loop over dest channels */ uint channelsWritten = 0x0; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { /* check if we're reading a channel that's been written */ uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan); if (channelsWritten & (1 << swizzle)) { return TRUE; } channelsWritten |= (1 << chan); } } } } return FALSE; } /** * Initialize machine state by expanding tokens to full instructions, * allocating temporary storage, setting up constants, etc. * After this, we can call tgsi_exec_machine_run() many times. */ void tgsi_exec_machine_bind_shader( struct tgsi_exec_machine *mach, const struct tgsi_token *tokens, struct tgsi_sampler *sampler) { uint k; struct tgsi_parse_context parse; struct tgsi_full_instruction *instructions; struct tgsi_full_declaration *declarations; uint maxInstructions = 10, numInstructions = 0; uint maxDeclarations = 10, numDeclarations = 0; #if 0 tgsi_dump(tokens, 0); #endif util_init_math(); mach->Tokens = tokens; mach->Sampler = sampler; if (!tokens) { /* unbind and free all */ FREE(mach->Declarations); mach->Declarations = NULL; mach->NumDeclarations = 0; FREE(mach->Instructions); mach->Instructions = NULL; mach->NumInstructions = 0; return; } k = tgsi_parse_init (&parse, mach->Tokens); if (k != TGSI_PARSE_OK) { debug_printf( "Problem parsing!\n" ); return; } mach->Processor = parse.FullHeader.Processor.Processor; mach->ImmLimit = 0; mach->NumOutputs = 0; if (mach->Processor == TGSI_PROCESSOR_GEOMETRY && !mach->UsedGeometryShader) { struct tgsi_exec_vector *inputs; struct tgsi_exec_vector *outputs; inputs = align_malloc(sizeof(struct tgsi_exec_vector) * TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS, 16); if (!inputs) return; outputs = align_malloc(sizeof(struct tgsi_exec_vector) * TGSI_MAX_TOTAL_VERTICES, 16); if (!outputs) { align_free(inputs); return; } align_free(mach->Inputs); align_free(mach->Outputs); mach->Inputs = inputs; mach->Outputs = outputs; mach->UsedGeometryShader = TRUE; } declarations = (struct tgsi_full_declaration *) MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) ); if (!declarations) { return; } instructions = (struct tgsi_full_instruction *) MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) ); if (!instructions) { FREE( declarations ); return; } while( !tgsi_parse_end_of_tokens( &parse ) ) { uint i; tgsi_parse_token( &parse ); switch( parse.FullToken.Token.Type ) { case TGSI_TOKEN_TYPE_DECLARATION: /* save expanded declaration */ if (numDeclarations == maxDeclarations) { declarations = REALLOC(declarations, maxDeclarations * sizeof(struct tgsi_full_declaration), (maxDeclarations + 10) * sizeof(struct tgsi_full_declaration)); maxDeclarations += 10; } if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) { unsigned reg; for (reg = parse.FullToken.FullDeclaration.Range.First; reg <= parse.FullToken.FullDeclaration.Range.Last; ++reg) { ++mach->NumOutputs; } } memcpy(declarations + numDeclarations, &parse.FullToken.FullDeclaration, sizeof(declarations[0])); numDeclarations++; break; case TGSI_TOKEN_TYPE_IMMEDIATE: { uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1; assert( size <= 4 ); assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES ); for( i = 0; i < size; i++ ) { mach->Imms[mach->ImmLimit][i] = parse.FullToken.FullImmediate.u[i].Float; } mach->ImmLimit += 1; } break; case TGSI_TOKEN_TYPE_INSTRUCTION: /* save expanded instruction */ if (numInstructions == maxInstructions) { instructions = REALLOC(instructions, maxInstructions * sizeof(struct tgsi_full_instruction), (maxInstructions + 10) * sizeof(struct tgsi_full_instruction)); maxInstructions += 10; } memcpy(instructions + numInstructions, &parse.FullToken.FullInstruction, sizeof(instructions[0])); numInstructions++; break; case TGSI_TOKEN_TYPE_PROPERTY: break; default: assert( 0 ); } } tgsi_parse_free (&parse); FREE(mach->Declarations); mach->Declarations = declarations; mach->NumDeclarations = numDeclarations; FREE(mach->Instructions); mach->Instructions = instructions; mach->NumInstructions = numInstructions; } struct tgsi_exec_machine * tgsi_exec_machine_create( void ) { struct tgsi_exec_machine *mach; uint i; mach = align_malloc( sizeof *mach, 16 ); if (!mach) goto fail; memset(mach, 0, sizeof(*mach)); mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR]; mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES; mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0]; mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16); mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16); if (!mach->Inputs || !mach->Outputs) goto fail; /* Setup constants needed by the SSE2 executor. */ for( i = 0; i < 4; i++ ) { mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000; mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF; mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000; mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */ mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f; mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */ mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f; mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f; mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f; mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f; } #ifdef DEBUG /* silence warnings */ (void) print_chan; (void) print_temp; #endif return mach; fail: if (mach) { align_free(mach->Inputs); align_free(mach->Outputs); align_free(mach); } return NULL; } void tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach) { if (mach) { FREE(mach->Instructions); FREE(mach->Declarations); align_free(mach->Inputs); align_free(mach->Outputs); align_free(mach); } } static void micro_add(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] + src1->f[0]; dst->f[1] = src0->f[1] + src1->f[1]; dst->f[2] = src0->f[2] + src1->f[2]; dst->f[3] = src0->f[3] + src1->f[3]; } static void micro_div( union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1 ) { if (src1->f[0] != 0) { dst->f[0] = src0->f[0] / src1->f[0]; } if (src1->f[1] != 0) { dst->f[1] = src0->f[1] / src1->f[1]; } if (src1->f[2] != 0) { dst->f[2] = src0->f[2] / src1->f[2]; } if (src1->f[3] != 0) { dst->f[3] = src0->f[3] / src1->f[3]; } } static void micro_rcc(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { uint i; for (i = 0; i < 4; i++) { float recip = 1.0f / src->f[i]; if (recip > 0.0f) { if (recip > 1.884467e+019f) { dst->f[i] = 1.884467e+019f; } else if (recip < 5.42101e-020f) { dst->f[i] = 5.42101e-020f; } else { dst->f[i] = recip; } } else { if (recip < -1.884467e+019f) { dst->f[i] = -1.884467e+019f; } else if (recip > -5.42101e-020f) { dst->f[i] = -5.42101e-020f; } else { dst->f[i] = recip; } } } } static void micro_lt( union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2, const union tgsi_exec_channel *src3 ) { dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0]; dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1]; dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2]; dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3]; } static void micro_max(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0]; dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1]; dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2]; dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3]; } static void micro_min(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0]; dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1]; dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2]; dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3]; } static void micro_mul(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] * src1->f[0]; dst->f[1] = src0->f[1] * src1->f[1]; dst->f[2] = src0->f[2] * src1->f[2]; dst->f[3] = src0->f[3] * src1->f[3]; } static void micro_neg( union tgsi_exec_channel *dst, const union tgsi_exec_channel *src ) { dst->f[0] = -src->f[0]; dst->f[1] = -src->f[1]; dst->f[2] = -src->f[2]; dst->f[3] = -src->f[3]; } static void micro_pow( union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1 ) { #if FAST_MATH dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] ); dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] ); dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] ); dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] ); #else dst->f[0] = powf( src0->f[0], src1->f[0] ); dst->f[1] = powf( src0->f[1], src1->f[1] ); dst->f[2] = powf( src0->f[2], src1->f[2] ); dst->f[3] = powf( src0->f[3], src1->f[3] ); #endif } static void micro_sub(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->f[0] = src0->f[0] - src1->f[0]; dst->f[1] = src0->f[1] - src1->f[1]; dst->f[2] = src0->f[2] - src1->f[2]; dst->f[3] = src0->f[3] - src1->f[3]; } static void fetch_src_file_channel(const struct tgsi_exec_machine *mach, const uint chan_index, const uint file, const uint swizzle, const union tgsi_exec_channel *index, const union tgsi_exec_channel *index2D, union tgsi_exec_channel *chan) { uint i; assert(swizzle < 4); switch (file) { case TGSI_FILE_CONSTANT: for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS); assert(mach->Consts[index2D->i[i]]); if (index->i[i] < 0) { chan->u[i] = 0; } else { /* NOTE: copying the const value as a uint instead of float */ const uint constbuf = index2D->i[i]; const uint *buf = (const uint *)mach->Consts[constbuf]; const int pos = index->i[i] * 4 + swizzle; /* const buffer bounds check */ if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) { if (0) { /* Debug: print warning */ static int count = 0; if (count++ < 100) debug_printf("TGSI Exec: const buffer index %d" " out of bounds\n", pos); } chan->u[i] = 0; } else chan->u[i] = buf[pos]; } } break; case TGSI_FILE_INPUT: for (i = 0; i < TGSI_QUAD_SIZE; i++) { /* if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) { debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n", index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i], index2D->i[i], index->i[i]); }*/ int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i]; assert(pos >= 0); assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS); chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i]; } break; case TGSI_FILE_SYSTEM_VALUE: /* XXX no swizzling at this point. Will be needed if we put * gl_FragCoord, for example, in a sys value register. */ for (i = 0; i < TGSI_QUAD_SIZE; i++) { chan->u[i] = mach->SystemValue[index->i[i]].u[i]; } break; case TGSI_FILE_TEMPORARY: for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index->i[i] < TGSI_EXEC_NUM_TEMPS); assert(index2D->i[i] == 0); chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i]; } break; case TGSI_FILE_IMMEDIATE: for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit); assert(index2D->i[i] == 0); chan->f[i] = mach->Imms[index->i[i]][swizzle]; } break; case TGSI_FILE_ADDRESS: for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index->i[i] >= 0); assert(index2D->i[i] == 0); chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i]; } break; case TGSI_FILE_PREDICATE: for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS); assert(index2D->i[i] == 0); chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i]; } break; case TGSI_FILE_OUTPUT: /* vertex/fragment output vars can be read too */ for (i = 0; i < TGSI_QUAD_SIZE; i++) { assert(index->i[i] >= 0); assert(index2D->i[i] == 0); chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i]; } break; default: assert(0); for (i = 0; i < TGSI_QUAD_SIZE; i++) { chan->u[i] = 0; } } } static void fetch_source(const struct tgsi_exec_machine *mach, union tgsi_exec_channel *chan, const struct tgsi_full_src_register *reg, const uint chan_index, enum tgsi_exec_datatype src_datatype) { union tgsi_exec_channel index; union tgsi_exec_channel index2D; uint swizzle; /* We start with a direct index into a register file. * * file[1], * where: * file = Register.File * [1] = Register.Index */ index.i[0] = index.i[1] = index.i[2] = index.i[3] = reg->Register.Index; /* There is an extra source register that indirectly subscripts * a register file. The direct index now becomes an offset * that is being added to the indirect register. * * file[ind[2].x+1], * where: * ind = Indirect.File * [2] = Indirect.Index * .x = Indirect.SwizzleX */ if (reg->Register.Indirect) { union tgsi_exec_channel index2; union tgsi_exec_channel indir_index; const uint execmask = mach->ExecMask; uint i; /* which address register (always zero now) */ index2.i[0] = index2.i[1] = index2.i[2] = index2.i[3] = reg->Indirect.Index; /* get current value of address register[swizzle] */ swizzle = reg->Indirect.Swizzle; fetch_src_file_channel(mach, chan_index, reg->Indirect.File, swizzle, &index2, &ZeroVec, &indir_index); /* add value of address register to the offset */ index.i[0] += indir_index.i[0]; index.i[1] += indir_index.i[1]; index.i[2] += indir_index.i[2]; index.i[3] += indir_index.i[3]; /* for disabled execution channels, zero-out the index to * avoid using a potential garbage value. */ for (i = 0; i < TGSI_QUAD_SIZE; i++) { if ((execmask & (1 << i)) == 0) index.i[i] = 0; } } /* There is an extra source register that is a second * subscript to a register file. Effectively it means that * the register file is actually a 2D array of registers. * * file[3][1], * where: * [3] = Dimension.Index */ if (reg->Register.Dimension) { index2D.i[0] = index2D.i[1] = index2D.i[2] = index2D.i[3] = reg->Dimension.Index; /* Again, the second subscript index can be addressed indirectly * identically to the first one. * Nothing stops us from indirectly addressing the indirect register, * but there is no need for that, so we won't exercise it. * * file[ind[4].y+3][1], * where: * ind = DimIndirect.File * [4] = DimIndirect.Index * .y = DimIndirect.SwizzleX */ if (reg->Dimension.Indirect) { union tgsi_exec_channel index2; union tgsi_exec_channel indir_index; const uint execmask = mach->ExecMask; uint i; index2.i[0] = index2.i[1] = index2.i[2] = index2.i[3] = reg->DimIndirect.Index; swizzle = reg->DimIndirect.Swizzle; fetch_src_file_channel(mach, chan_index, reg->DimIndirect.File, swizzle, &index2, &ZeroVec, &indir_index); index2D.i[0] += indir_index.i[0]; index2D.i[1] += indir_index.i[1]; index2D.i[2] += indir_index.i[2]; index2D.i[3] += indir_index.i[3]; /* for disabled execution channels, zero-out the index to * avoid using a potential garbage value. */ for (i = 0; i < TGSI_QUAD_SIZE; i++) { if ((execmask & (1 << i)) == 0) { index2D.i[i] = 0; } } } /* If by any chance there was a need for a 3D array of register * files, we would have to check whether Dimension is followed * by a dimension register and continue the saga. */ } else { index2D.i[0] = index2D.i[1] = index2D.i[2] = index2D.i[3] = 0; } swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index ); fetch_src_file_channel(mach, chan_index, reg->Register.File, swizzle, &index, &index2D, chan); if (reg->Register.Absolute) { if (src_datatype == TGSI_EXEC_DATA_FLOAT) { micro_abs(chan, chan); } else { micro_iabs(chan, chan); } } if (reg->Register.Negate) { if (src_datatype == TGSI_EXEC_DATA_FLOAT) { micro_neg(chan, chan); } else { micro_ineg(chan, chan); } } } static void store_dest(struct tgsi_exec_machine *mach, const union tgsi_exec_channel *chan, const struct tgsi_full_dst_register *reg, const struct tgsi_full_instruction *inst, uint chan_index, enum tgsi_exec_datatype dst_datatype) { uint i; union tgsi_exec_channel null; union tgsi_exec_channel *dst; union tgsi_exec_channel index2D; uint execmask = mach->ExecMask; int offset = 0; /* indirection offset */ int index; /* for debugging */ if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) { check_inf_or_nan(chan); } /* There is an extra source register that indirectly subscripts * a register file. The direct index now becomes an offset * that is being added to the indirect register. * * file[ind[2].x+1], * where: * ind = Indirect.File * [2] = Indirect.Index * .x = Indirect.SwizzleX */ if (reg->Register.Indirect) { union tgsi_exec_channel index; union tgsi_exec_channel indir_index; uint swizzle; /* which address register (always zero for now) */ index.i[0] = index.i[1] = index.i[2] = index.i[3] = reg->Indirect.Index; /* get current value of address register[swizzle] */ swizzle = reg->Indirect.Swizzle; /* fetch values from the address/indirection register */ fetch_src_file_channel(mach, chan_index, reg->Indirect.File, swizzle, &index, &ZeroVec, &indir_index); /* save indirection offset */ offset = indir_index.i[0]; } /* There is an extra source register that is a second * subscript to a register file. Effectively it means that * the register file is actually a 2D array of registers. * * file[3][1], * where: * [3] = Dimension.Index */ if (reg->Register.Dimension) { index2D.i[0] = index2D.i[1] = index2D.i[2] = index2D.i[3] = reg->Dimension.Index; /* Again, the second subscript index can be addressed indirectly * identically to the first one. * Nothing stops us from indirectly addressing the indirect register, * but there is no need for that, so we won't exercise it. * * file[ind[4].y+3][1], * where: * ind = DimIndirect.File * [4] = DimIndirect.Index * .y = DimIndirect.SwizzleX */ if (reg->Dimension.Indirect) { union tgsi_exec_channel index2; union tgsi_exec_channel indir_index; const uint execmask = mach->ExecMask; unsigned swizzle; uint i; index2.i[0] = index2.i[1] = index2.i[2] = index2.i[3] = reg->DimIndirect.Index; swizzle = reg->DimIndirect.Swizzle; fetch_src_file_channel(mach, chan_index, reg->DimIndirect.File, swizzle, &index2, &ZeroVec, &indir_index); index2D.i[0] += indir_index.i[0]; index2D.i[1] += indir_index.i[1]; index2D.i[2] += indir_index.i[2]; index2D.i[3] += indir_index.i[3]; /* for disabled execution channels, zero-out the index to * avoid using a potential garbage value. */ for (i = 0; i < TGSI_QUAD_SIZE; i++) { if ((execmask & (1 << i)) == 0) { index2D.i[i] = 0; } } } /* If by any chance there was a need for a 3D array of register * files, we would have to check whether Dimension is followed * by a dimension register and continue the saga. */ } else { index2D.i[0] = index2D.i[1] = index2D.i[2] = index2D.i[3] = 0; } switch (reg->Register.File) { case TGSI_FILE_NULL: dst = &null; break; case TGSI_FILE_OUTPUT: index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] + reg->Register.Index; dst = &mach->Outputs[offset + index].xyzw[chan_index]; #if 0 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n", mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0], reg->Register.Index); if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) { debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask); for (i = 0; i < TGSI_QUAD_SIZE; i++) if (execmask & (1 << i)) debug_printf("%f, ", chan->f[i]); debug_printf(")\n"); } #endif break; case TGSI_FILE_TEMPORARY: index = reg->Register.Index; assert( index < TGSI_EXEC_NUM_TEMPS ); dst = &mach->Temps[offset + index].xyzw[chan_index]; break; case TGSI_FILE_ADDRESS: index = reg->Register.Index; dst = &mach->Addrs[index].xyzw[chan_index]; break; case TGSI_FILE_PREDICATE: index = reg->Register.Index; assert(index < TGSI_EXEC_NUM_PREDS); dst = &mach->Predicates[index].xyzw[chan_index]; break; default: assert( 0 ); return; } if (inst->Instruction.Predicate) { uint swizzle; union tgsi_exec_channel *pred; switch (chan_index) { case TGSI_CHAN_X: swizzle = inst->Predicate.SwizzleX; break; case TGSI_CHAN_Y: swizzle = inst->Predicate.SwizzleY; break; case TGSI_CHAN_Z: swizzle = inst->Predicate.SwizzleZ; break; case TGSI_CHAN_W: swizzle = inst->Predicate.SwizzleW; break; default: assert(0); return; } assert(inst->Predicate.Index == 0); pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle]; if (inst->Predicate.Negate) { for (i = 0; i < TGSI_QUAD_SIZE; i++) { if (pred->u[i]) { execmask &= ~(1 << i); } } } else { for (i = 0; i < TGSI_QUAD_SIZE; i++) { if (!pred->u[i]) { execmask &= ~(1 << i); } } } } switch (inst->Instruction.Saturate) { case TGSI_SAT_NONE: for (i = 0; i < TGSI_QUAD_SIZE; i++) if (execmask & (1 << i)) dst->i[i] = chan->i[i]; break; case TGSI_SAT_ZERO_ONE: for (i = 0; i < TGSI_QUAD_SIZE; i++) if (execmask & (1 << i)) { if (chan->f[i] < 0.0f) dst->f[i] = 0.0f; else if (chan->f[i] > 1.0f) dst->f[i] = 1.0f; else dst->i[i] = chan->i[i]; } break; case TGSI_SAT_MINUS_PLUS_ONE: for (i = 0; i < TGSI_QUAD_SIZE; i++) if (execmask & (1 << i)) { if (chan->f[i] < -1.0f) dst->f[i] = -1.0f; else if (chan->f[i] > 1.0f) dst->f[i] = 1.0f; else dst->i[i] = chan->i[i]; } break; default: assert( 0 ); } } #define FETCH(VAL,INDEX,CHAN)\ fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT) #define IFETCH(VAL,INDEX,CHAN)\ fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT) /** * Execute ARB-style KIL which is predicated by a src register. * Kill fragment if any of the four values is less than zero. */ static void exec_kil(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { uint uniquemask; uint chan_index; uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */ union tgsi_exec_channel r[1]; /* This mask stores component bits that were already tested. */ uniquemask = 0; for (chan_index = 0; chan_index < 4; chan_index++) { uint swizzle; uint i; /* unswizzle channel */ swizzle = tgsi_util_get_full_src_register_swizzle ( &inst->Src[0], chan_index); /* check if the component has not been already tested */ if (uniquemask & (1 << swizzle)) continue; uniquemask |= 1 << swizzle; FETCH(&r[0], 0, chan_index); for (i = 0; i < 4; i++) if (r[0].f[i] < 0.0f) kilmask |= 1 << i; } mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask; } /** * Execute NVIDIA-style KIL which is predicated by a condition code. * Kill fragment if the condition code is TRUE. */ static void exec_kilp(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */ /* "unconditional" kil */ kilmask = mach->ExecMask; mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask; } static void emit_vertex(struct tgsi_exec_machine *mach) { /* FIXME: check for exec mask correctly unsigned i; for (i = 0; i < TGSI_QUAD_SIZE; ++i) { if ((mach->ExecMask & (1 << i))) */ if (mach->ExecMask) { mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs; mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++; } } static void emit_primitive(struct tgsi_exec_machine *mach) { unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]; /* FIXME: check for exec mask correctly unsigned i; for (i = 0; i < TGSI_QUAD_SIZE; ++i) { if ((mach->ExecMask & (1 << i))) */ if (mach->ExecMask) { ++(*prim_count); debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs); mach->Primitives[*prim_count] = 0; } } static void conditional_emit_primitive(struct tgsi_exec_machine *mach) { if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) { int emitted_verts = mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]; if (emitted_verts) { emit_primitive(mach); } } } /* * Fetch four texture samples using STR texture coordinates. */ static void fetch_texel( struct tgsi_sampler *sampler, const unsigned sview_idx, const unsigned sampler_idx, const union tgsi_exec_channel *s, const union tgsi_exec_channel *t, const union tgsi_exec_channel *p, const union tgsi_exec_channel *c0, const union tgsi_exec_channel *c1, float derivs[3][2][TGSI_QUAD_SIZE], const int8_t offset[3], enum tgsi_sampler_control control, union tgsi_exec_channel *r, union tgsi_exec_channel *g, union tgsi_exec_channel *b, union tgsi_exec_channel *a ) { uint j; float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; /* FIXME: handle explicit derivs, offsets */ sampler->get_samples(sampler, sview_idx, sampler_idx, s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba); for (j = 0; j < 4; j++) { r->f[j] = rgba[0][j]; g->f[j] = rgba[1][j]; b->f[j] = rgba[2][j]; a->f[j] = rgba[3][j]; } } #define TEX_MODIFIER_NONE 0 #define TEX_MODIFIER_PROJECTED 1 #define TEX_MODIFIER_LOD_BIAS 2 #define TEX_MODIFIER_EXPLICIT_LOD 3 #define TEX_MODIFIER_LEVEL_ZERO 4 /* * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array. */ static void fetch_texel_offsets(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, int8_t offsets[3]) { if (inst->Texture.NumOffsets == 1) { union tgsi_exec_channel index; union tgsi_exec_channel offset[3]; index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index; fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File, inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]); fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File, inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]); fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File, inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]); offsets[0] = offset[0].i[0]; offsets[1] = offset[1].i[0]; offsets[2] = offset[2].i[0]; } else { assert(inst->Texture.NumOffsets == 0); offsets[0] = offsets[1] = offsets[2] = 0; } } /* * Fetch dx and dy values for one channel (s, t or r). * Put dx values into one float array, dy values into another. */ static void fetch_assign_deriv_channel(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, unsigned regdsrcx, unsigned chan, float derivs[2][TGSI_QUAD_SIZE]) { union tgsi_exec_channel d; FETCH(&d, regdsrcx, chan); derivs[0][0] = d.f[0]; derivs[0][1] = d.f[1]; derivs[0][2] = d.f[2]; derivs[0][3] = d.f[3]; FETCH(&d, regdsrcx + 1, chan); derivs[1][0] = d.f[0]; derivs[1][1] = d.f[1]; derivs[1][2] = d.f[2]; derivs[1][3] = d.f[3]; } /* * execute a texture instruction. * * modifier is used to control the channel routing for the\ * instruction variants like proj, lod, and texture with lod bias. * sampler indicates which src register the sampler is contained in. */ static void exec_tex(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, uint modifier, uint sampler) { const uint unit = inst->Src[sampler].Register.Index; union tgsi_exec_channel r[4], cubearraycomp, cubelod; const union tgsi_exec_channel *lod = &ZeroVec; enum tgsi_sampler_control control = tgsi_sampler_lod_none; uint chan; int8_t offsets[3]; /* always fetch all 3 offsets, overkill but keeps code simple */ fetch_texel_offsets(mach, inst, offsets); assert(modifier != TEX_MODIFIER_LEVEL_ZERO); if (modifier != TEX_MODIFIER_NONE && (sampler == 1)) { FETCH(&r[3], 0, TGSI_CHAN_W); if (modifier != TEX_MODIFIER_PROJECTED) { lod = &r[3]; } } if (modifier == TEX_MODIFIER_EXPLICIT_LOD) { control = tgsi_sampler_lod_explicit; } else if (modifier == TEX_MODIFIER_LOD_BIAS){ control = tgsi_sampler_lod_bias; } switch (inst->Texture.Texture) { case TGSI_TEXTURE_1D: FETCH(&r[0], 0, TGSI_CHAN_X); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_SHADOW1D: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[2], 0, TGSI_CHAN_Z); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[2], &r[2], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[1], &r[1], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[1], &r[1], &r[3]); micro_div(&r[2], &r[2], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_1D_ARRAY: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_SHADOW1D_ARRAY: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[2], &r[2], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_2D_ARRAY: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[1], &r[1], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_SHADOW2D_ARRAY: case TGSI_TEXTURE_SHADOWCUBE: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_CUBE_ARRAY: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); if (modifier == TEX_MODIFIER_EXPLICIT_LOD || modifier == TEX_MODIFIER_LOD_BIAS) FETCH(&cubelod, 1, TGSI_CHAN_X); else cubelod = ZeroVec; fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &r[3], &cubelod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); if (modifier == TEX_MODIFIER_PROJECTED) { micro_div(&r[0], &r[0], &r[3]); micro_div(&r[1], &r[1], &r[3]); micro_div(&r[2], &r[2], &r[3]); } fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &ZeroVec, lod, NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); break; case TGSI_TEXTURE_SHADOWCUBE_ARRAY: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); FETCH(&cubearraycomp, 1, TGSI_CHAN_X); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &r[3], &cubearraycomp, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; default: assert(0); } #if 0 debug_printf("fetch r: %g %g %g %g\n", r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]); debug_printf("fetch g: %g %g %g %g\n", r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]); debug_printf("fetch b: %g %g %g %g\n", r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]); debug_printf("fetch a: %g %g %g %g\n", r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]); #endif for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_txd(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[3].Register.Index; union tgsi_exec_channel r[4]; float derivs[3][2][TGSI_QUAD_SIZE]; uint chan; int8_t offsets[3]; /* always fetch all 3 offsets, overkill but keeps code simple */ fetch_texel_offsets(mach, inst, offsets); switch (inst->Texture.Texture) { case TGSI_TEXTURE_1D: FETCH(&r[0], 0, TGSI_CHAN_X); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]); fetch_texel(mach->Sampler, unit, unit, &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */ FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: /* only SHADOW2D_ARRAY actually needs W */ FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: case TGSI_TEXTURE_CUBE_ARRAY: /* only TEXTURE_CUBE_ARRAY actually needs W */ FETCH(&r[0], 0, TGSI_CHAN_X); FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]); fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]); fetch_texel(mach->Sampler, unit, unit, &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; default: assert(0); } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_txf(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; union tgsi_exec_channel r[4]; uint chan; float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; int j; int8_t offsets[3]; unsigned target; /* always fetch all 3 offsets, overkill but keeps code simple */ fetch_texel_offsets(mach, inst, offsets); IFETCH(&r[3], 0, TGSI_CHAN_W); if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I) { target = mach->SamplerViews[unit].Resource; } else { target = inst->Texture.Texture; } switch(target) { case TGSI_TEXTURE_3D: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: IFETCH(&r[2], 0, TGSI_CHAN_Z); /* fallthrough */ case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOW1D_ARRAY: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_1D_ARRAY: IFETCH(&r[1], 0, TGSI_CHAN_Y); /* fallthrough */ case TGSI_TEXTURE_BUFFER: case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: IFETCH(&r[0], 0, TGSI_CHAN_X); break; default: assert(0); break; } mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i, offsets, rgba); for (j = 0; j < TGSI_QUAD_SIZE; j++) { r[0].f[j] = rgba[0][j]; r[1].f[j] = rgba[1][j]; r[2].f[j] = rgba[2][j]; r[3].f[j] = rgba[3][j]; } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_txq(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; int result[4]; union tgsi_exec_channel r[4], src; uint chan; int i,j; fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT); mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result); for (i = 0; i < TGSI_QUAD_SIZE; i++) { for (j = 0; j < 4; j++) { r[j].i[i] = result[j]; } } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_INT); } } } static void exec_sample(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, uint modifier, boolean compare) { const uint resource_unit = inst->Src[1].Register.Index; const uint sampler_unit = inst->Src[2].Register.Index; union tgsi_exec_channel r[4], c1; const union tgsi_exec_channel *lod = &ZeroVec; enum tgsi_sampler_control control = tgsi_sampler_lod_none; uint chan; int8_t offsets[3]; /* always fetch all 3 offsets, overkill but keeps code simple */ fetch_texel_offsets(mach, inst, offsets); assert(modifier != TEX_MODIFIER_PROJECTED); if (modifier != TEX_MODIFIER_NONE) { if (modifier == TEX_MODIFIER_LOD_BIAS) { FETCH(&c1, 3, TGSI_CHAN_X); lod = &c1; control = tgsi_sampler_lod_bias; } else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) { FETCH(&c1, 3, TGSI_CHAN_X); lod = &c1; control = tgsi_sampler_lod_explicit; } else { assert(modifier == TEX_MODIFIER_LEVEL_ZERO); control = tgsi_sampler_lod_zero; } } FETCH(&r[0], 0, TGSI_CHAN_X); switch (mach->SamplerViews[resource_unit].Resource) { case TGSI_TEXTURE_1D: if (compare) { FETCH(&r[2], 3, TGSI_CHAN_X); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ } else { fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ } break; case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: FETCH(&r[1], 0, TGSI_CHAN_Y); if (compare) { FETCH(&r[2], 3, TGSI_CHAN_X); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ } else { fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */ NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); /* outputs */ } break; case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); if(compare) { FETCH(&r[3], 3, TGSI_CHAN_X); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &r[3], lod, NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); } else { fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &ZeroVec, lod, NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); } break; case TGSI_TEXTURE_CUBE_ARRAY: FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); if(compare) { FETCH(&r[4], 3, TGSI_CHAN_X); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &r[3], &r[4], NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); } else { fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &r[3], lod, NULL, offsets, control, &r[0], &r[1], &r[2], &r[3]); } break; default: assert(0); } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_sample_d(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { const uint resource_unit = inst->Src[1].Register.Index; const uint sampler_unit = inst->Src[2].Register.Index; union tgsi_exec_channel r[4]; float derivs[3][2][TGSI_QUAD_SIZE]; uint chan; int8_t offsets[3]; /* always fetch all 3 offsets, overkill but keeps code simple */ fetch_texel_offsets(mach, inst, offsets); FETCH(&r[0], 0, TGSI_CHAN_X); switch (mach->SamplerViews[resource_unit].Resource) { case TGSI_TEXTURE_1D: case TGSI_TEXTURE_1D_ARRAY: /* only 1D array actually needs Y */ FETCH(&r[1], 0, TGSI_CHAN_Y); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ break; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_2D_ARRAY: /* only 2D array actually needs Z */ FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */ derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); /* outputs */ break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: case TGSI_TEXTURE_CUBE_ARRAY: /* only cube array actually needs W */ FETCH(&r[1], 0, TGSI_CHAN_Y); FETCH(&r[2], 0, TGSI_CHAN_Z); FETCH(&r[3], 0, TGSI_CHAN_W); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]); fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]); fetch_texel(mach->Sampler, resource_unit, sampler_unit, &r[0], &r[1], &r[2], &r[3], &ZeroVec, derivs, offsets, tgsi_sampler_derivs_explicit, &r[0], &r[1], &r[2], &r[3]); break; default: assert(0); } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } /** * Evaluate a constant-valued coefficient at the position of the * current quad. */ static void eval_constant_coef( struct tgsi_exec_machine *mach, unsigned attrib, unsigned chan ) { unsigned i; for( i = 0; i < TGSI_QUAD_SIZE; i++ ) { mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan]; } } /** * Evaluate a linear-valued coefficient at the position of the * current quad. */ static void eval_linear_coef( struct tgsi_exec_machine *mach, unsigned attrib, unsigned chan ) { const float x = mach->QuadPos.xyzw[0].f[0]; const float y = mach->QuadPos.xyzw[1].f[0]; const float dadx = mach->InterpCoefs[attrib].dadx[chan]; const float dady = mach->InterpCoefs[attrib].dady[chan]; const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y; mach->Inputs[attrib].xyzw[chan].f[0] = a0; mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx; mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady; mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady; } /** * Evaluate a perspective-valued coefficient at the position of the * current quad. */ static void eval_perspective_coef( struct tgsi_exec_machine *mach, unsigned attrib, unsigned chan ) { const float x = mach->QuadPos.xyzw[0].f[0]; const float y = mach->QuadPos.xyzw[1].f[0]; const float dadx = mach->InterpCoefs[attrib].dadx[chan]; const float dady = mach->InterpCoefs[attrib].dady[chan]; const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y; const float *w = mach->QuadPos.xyzw[3].f; /* divide by W here */ mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0]; mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1]; mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2]; mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3]; } typedef void (* eval_coef_func)( struct tgsi_exec_machine *mach, unsigned attrib, unsigned chan ); static void exec_declaration(struct tgsi_exec_machine *mach, const struct tgsi_full_declaration *decl) { if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) { mach->SamplerViews[decl->Range.First] = decl->SamplerView; return; } if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) { if (decl->Declaration.File == TGSI_FILE_INPUT) { uint first, last, mask; first = decl->Range.First; last = decl->Range.Last; mask = decl->Declaration.UsageMask; /* XXX we could remove this special-case code since * mach->InterpCoefs[first].a0 should already have the * front/back-face value. But we should first update the * ureg code to emit the right UsageMask value (WRITEMASK_X). * Then, we could remove the tgsi_exec_machine::Face field. */ /* XXX make FACE a system value */ if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) { uint i; assert(decl->Semantic.Index == 0); assert(first == last); for (i = 0; i < TGSI_QUAD_SIZE; i++) { mach->Inputs[first].xyzw[0].f[i] = mach->Face; } } else { eval_coef_func eval; uint i, j; switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_CONSTANT: eval = eval_constant_coef; break; case TGSI_INTERPOLATE_LINEAR: eval = eval_linear_coef; break; case TGSI_INTERPOLATE_PERSPECTIVE: eval = eval_perspective_coef; break; case TGSI_INTERPOLATE_COLOR: eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef; break; default: assert(0); return; } for (j = 0; j < TGSI_NUM_CHANNELS; j++) { if (mask & (1 << j)) { for (i = first; i <= last; i++) { eval(mach, i, j); } } } } if (DEBUG_EXECUTION) { uint i, j; for (i = first; i <= last; ++i) { debug_printf("IN[%2u] = ", i); for (j = 0; j < TGSI_NUM_CHANNELS; j++) { if (j > 0) { debug_printf(" "); } debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n", mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j], mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j], mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j], mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]); } } } } } if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) { mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First; } } typedef void (* micro_op)(union tgsi_exec_channel *dst); static void exec_vector(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_op op, enum tgsi_exec_datatype dst_datatype) { unsigned int chan; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { union tgsi_exec_channel dst; op(&dst); store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype); } } } typedef void (* micro_unary_op)(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src); static void exec_scalar_unary(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_unary_op op, enum tgsi_exec_datatype dst_datatype, enum tgsi_exec_datatype src_datatype) { unsigned int chan; union tgsi_exec_channel src; union tgsi_exec_channel dst; fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype); op(&dst, &src); for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype); } } } static void exec_vector_unary(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_unary_op op, enum tgsi_exec_datatype dst_datatype, enum tgsi_exec_datatype src_datatype) { unsigned int chan; struct tgsi_exec_vector dst; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { union tgsi_exec_channel src; fetch_source(mach, &src, &inst->Src[0], chan, src_datatype); op(&dst.xyzw[chan], &src); } } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype); } } } typedef void (* micro_binary_op)(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1); static void exec_scalar_binary(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_binary_op op, enum tgsi_exec_datatype dst_datatype, enum tgsi_exec_datatype src_datatype) { unsigned int chan; union tgsi_exec_channel src[2]; union tgsi_exec_channel dst; fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype); fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_Y, src_datatype); op(&dst, &src[0], &src[1]); for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype); } } } static void exec_vector_binary(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_binary_op op, enum tgsi_exec_datatype dst_datatype, enum tgsi_exec_datatype src_datatype) { unsigned int chan; struct tgsi_exec_vector dst; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { union tgsi_exec_channel src[2]; fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype); fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype); op(&dst.xyzw[chan], &src[0], &src[1]); } } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype); } } } typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2); static void exec_vector_trinary(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, micro_trinary_op op, enum tgsi_exec_datatype dst_datatype, enum tgsi_exec_datatype src_datatype) { unsigned int chan; struct tgsi_exec_vector dst; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { union tgsi_exec_channel src[3]; fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype); fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype); fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype); op(&dst.xyzw[chan], &src[0], &src[1], &src[2]); } } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype); } } } static void exec_dp3(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[3]; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&arg[2], &arg[0], &arg[1]); for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) { fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]); } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_dp4(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[3]; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&arg[2], &arg[0], &arg[1]); for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) { fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]); } for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_dp2a(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[3]; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&arg[2], &arg[0], &arg[1]); fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]); fetch_source(mach, &arg[1], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_add(&arg[0], &arg[0], &arg[1]); for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_dph(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[3]; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&arg[2], &arg[0], &arg[1]); fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]); fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); micro_add(&arg[0], &arg[0], &arg[1]); for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_dp2(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[3]; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&arg[2], &arg[0], &arg[1]); fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]); for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_nrm4(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { unsigned int chan; union tgsi_exec_channel arg[4]; union tgsi_exec_channel scale; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&scale, &arg[0], &arg[0]); for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) { union tgsi_exec_channel product; fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT); micro_mul(&product, &arg[chan], &arg[chan]); micro_add(&scale, &scale, &product); } micro_rsq(&scale, &scale); for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_W; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { micro_mul(&arg[chan], &arg[chan], &scale); store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } static void exec_nrm3(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) { unsigned int chan; union tgsi_exec_channel arg[3]; union tgsi_exec_channel scale; fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&scale, &arg[0], &arg[0]); for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) { union tgsi_exec_channel product; fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT); micro_mul(&product, &arg[chan], &arg[chan]); micro_add(&scale, &scale, &product); } micro_rsq(&scale, &scale); for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_Z; chan++) { if (inst->Dst[0].Register.WriteMask & (1 << chan)) { micro_mul(&arg[chan], &arg[chan], &scale); store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT); } } } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_scs(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) { union tgsi_exec_channel arg; union tgsi_exec_channel result; fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { micro_cos(&result, &arg); store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { micro_sin(&result, &arg); store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_x2d(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[4]; union tgsi_exec_channel d[2]; fetch_source(mach, &r[0], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) { fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[2], &r[2], &r[0]); fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[3], &r[3], &r[1]); micro_add(&r[2], &r[2], &r[3]); fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_add(&d[0], &r[2], &r[3]); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) { fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[2], &r[2], &r[0]); fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[3], &r[3], &r[1]); micro_add(&r[2], &r[2], &r[3]); fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_add(&d[1], &r[2], &r[3]); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_rfl(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[9]; if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) { /* r0 = dp3(src0, src0) */ fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[0], &r[2], &r[2]); fetch_source(mach, &r[4], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[8], &r[4], &r[4]); micro_add(&r[0], &r[0], &r[8]); fetch_source(mach, &r[6], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[8], &r[6], &r[6]); micro_add(&r[0], &r[0], &r[8]); /* r1 = dp3(src0, src1) */ fetch_source(mach, &r[3], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[1], &r[2], &r[3]); fetch_source(mach, &r[5], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[8], &r[4], &r[5]); micro_add(&r[1], &r[1], &r[8]); fetch_source(mach, &r[7], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[8], &r[6], &r[7]); micro_add(&r[1], &r[1], &r[8]); /* r1 = 2 * r1 / r0 */ micro_add(&r[1], &r[1], &r[1]); micro_div(&r[1], &r[1], &r[0]); if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { micro_mul(&r[2], &r[2], &r[1]); micro_sub(&r[2], &r[2], &r[3]); store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { micro_mul(&r[4], &r[4], &r[1]); micro_sub(&r[4], &r[4], &r[5]); store_dest(mach, &r[4], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { micro_mul(&r[6], &r[6], &r[1]); micro_sub(&r[6], &r[6], &r[7]); store_dest(mach, &r[6], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_xpd(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[6]; union tgsi_exec_channel d[3]; fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[2], &r[0], &r[1]); fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &r[4], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[5], &r[3], &r[4] ); micro_sub(&d[TGSI_CHAN_X], &r[2], &r[5]); fetch_source(mach, &r[2], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[3], &r[3], &r[2]); fetch_source(mach, &r[5], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_mul(&r[1], &r[1], &r[5]); micro_sub(&d[TGSI_CHAN_Y], &r[3], &r[1]); micro_mul(&r[5], &r[5], &r[4]); micro_mul(&r[0], &r[0], &r[2]); micro_sub(&d[TGSI_CHAN_Z], &r[5], &r[0]); if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { store_dest(mach, &d[TGSI_CHAN_X], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_dst(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[2]; union tgsi_exec_channel d[4]; if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_log(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[3]; fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */ micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */ micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */ micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */ store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_exp(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[3]; fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */ store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */ store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */ store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_lit(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { union tgsi_exec_channel r[3]; union tgsi_exec_channel d[3]; if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) { fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); micro_max(&r[1], &r[1], &ZeroVec); fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); micro_min(&r[2], &r[2], &P128Vec); micro_max(&r[2], &r[2], &M128Vec); micro_pow(&r[1], &r[1], &r[2]); micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec); store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec); store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT); } } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT); } if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT); } } static void exec_break(struct tgsi_exec_machine *mach) { if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) { /* turn off loop channels for each enabled exec channel */ mach->LoopMask &= ~mach->ExecMask; /* Todo: if mach->LoopMask == 0, jump to end of loop */ UPDATE_EXEC_MASK(mach); } else { assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH); mach->Switch.mask = 0x0; UPDATE_EXEC_MASK(mach); } } static void exec_switch(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING); assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK); mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch; fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT); mach->Switch.mask = 0x0; mach->Switch.defaultMask = 0x0; mach->BreakStack[mach->BreakStackTop++] = mach->BreakType; mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH; UPDATE_EXEC_MASK(mach); } static void exec_case(struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst) { uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask; union tgsi_exec_channel src; uint mask = 0; fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT); if (mach->Switch.selector.u[0] == src.u[0]) { mask |= 0x1; } if (mach->Switch.selector.u[1] == src.u[1]) { mask |= 0x2; } if (mach->Switch.selector.u[2] == src.u[2]) { mask |= 0x4; } if (mach->Switch.selector.u[3] == src.u[3]) { mask |= 0x8; } mach->Switch.defaultMask |= mask; mach->Switch.mask |= mask & prevMask; UPDATE_EXEC_MASK(mach); } static void exec_default(struct tgsi_exec_machine *mach) { uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask; mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask; UPDATE_EXEC_MASK(mach); } static void exec_endswitch(struct tgsi_exec_machine *mach) { mach->Switch = mach->SwitchStack[--mach->SwitchStackTop]; mach->BreakType = mach->BreakStack[--mach->BreakStackTop]; UPDATE_EXEC_MASK(mach); } static void micro_i2f(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = (float)src->i[0]; dst->f[1] = (float)src->i[1]; dst->f[2] = (float)src->i[2]; dst->f[3] = (float)src->i[3]; } static void micro_not(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->u[0] = ~src->u[0]; dst->u[1] = ~src->u[1]; dst->u[2] = ~src->u[2]; dst->u[3] = ~src->u[3]; } static void micro_shl(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] << src1->u[0]; dst->u[1] = src0->u[1] << src1->u[1]; dst->u[2] = src0->u[2] << src1->u[2]; dst->u[3] = src0->u[3] << src1->u[3]; } static void micro_and(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] & src1->u[0]; dst->u[1] = src0->u[1] & src1->u[1]; dst->u[2] = src0->u[2] & src1->u[2]; dst->u[3] = src0->u[3] & src1->u[3]; } static void micro_or(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] | src1->u[0]; dst->u[1] = src0->u[1] | src1->u[1]; dst->u[2] = src0->u[2] | src1->u[2]; dst->u[3] = src0->u[3] | src1->u[3]; } static void micro_xor(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] ^ src1->u[0]; dst->u[1] = src0->u[1] ^ src1->u[1]; dst->u[2] = src0->u[2] ^ src1->u[2]; dst->u[3] = src0->u[3] ^ src1->u[3]; } static void micro_mod(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] % src1->i[0]; dst->i[1] = src0->i[1] % src1->i[1]; dst->i[2] = src0->i[2] % src1->i[2]; dst->i[3] = src0->i[3] % src1->i[3]; } static void micro_f2i(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = (int)src->f[0]; dst->i[1] = (int)src->f[1]; dst->i[2] = (int)src->f[2]; dst->i[3] = (int)src->f[3]; } static void micro_idiv(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] / src1->i[0]; dst->i[1] = src0->i[1] / src1->i[1]; dst->i[2] = src0->i[2] / src1->i[2]; dst->i[3] = src0->i[3] / src1->i[3]; } static void micro_imax(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0]; dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1]; dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2]; dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3]; } static void micro_imin(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0]; dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1]; dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2]; dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3]; } static void micro_isge(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0; dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0; dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0; dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0; } static void micro_ishr(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] >> src1->i[0]; dst->i[1] = src0->i[1] >> src1->i[1]; dst->i[2] = src0->i[2] >> src1->i[2]; dst->i[3] = src0->i[3] >> src1->i[3]; } static void micro_islt(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0; dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0; dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0; dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0; } static void micro_f2u(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->u[0] = (uint)src->f[0]; dst->u[1] = (uint)src->f[1]; dst->u[2] = (uint)src->f[2]; dst->u[3] = (uint)src->f[3]; } static void micro_u2f(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->f[0] = (float)src->u[0]; dst->f[1] = (float)src->u[1]; dst->f[2] = (float)src->u[2]; dst->f[3] = (float)src->u[3]; } static void micro_uadd(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] + src1->u[0]; dst->u[1] = src0->u[1] + src1->u[1]; dst->u[2] = src0->u[2] + src1->u[2]; dst->u[3] = src0->u[3] + src1->u[3]; } static void micro_udiv(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] / src1->u[0]; dst->u[1] = src0->u[1] / src1->u[1]; dst->u[2] = src0->u[2] / src1->u[2]; dst->u[3] = src0->u[3] / src1->u[3]; } static void micro_umad(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0]; dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1]; dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2]; dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3]; } static void micro_umax(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0]; dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1]; dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2]; dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3]; } static void micro_umin(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0]; dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1]; dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2]; dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3]; } static void micro_umod(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] % src1->u[0]; dst->u[1] = src0->u[1] % src1->u[1]; dst->u[2] = src0->u[2] % src1->u[2]; dst->u[3] = src0->u[3] % src1->u[3]; } static void micro_umul(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] * src1->u[0]; dst->u[1] = src0->u[1] * src1->u[1]; dst->u[2] = src0->u[2] * src1->u[2]; dst->u[3] = src0->u[3] * src1->u[3]; } static void micro_useq(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0; dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0; dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0; dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0; } static void micro_usge(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0; dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0; dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0; dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0; } static void micro_ushr(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] >> src1->u[0]; dst->u[1] = src0->u[1] >> src1->u[1]; dst->u[2] = src0->u[2] >> src1->u[2]; dst->u[3] = src0->u[3] >> src1->u[3]; } static void micro_uslt(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0; dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0; dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0; dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0; } static void micro_usne(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1) { dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0; dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0; dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0; dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0; } static void micro_uarl(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src) { dst->i[0] = src->u[0]; dst->i[1] = src->u[1]; dst->i[2] = src->u[2]; dst->i[3] = src->u[3]; } static void micro_ucmp(union tgsi_exec_channel *dst, const union tgsi_exec_channel *src0, const union tgsi_exec_channel *src1, const union tgsi_exec_channel *src2) { dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0]; dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1]; dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2]; dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3]; } static void exec_instruction( struct tgsi_exec_machine *mach, const struct tgsi_full_instruction *inst, int *pc ) { union tgsi_exec_channel r[10]; (*pc)++; switch (inst->Instruction.Opcode) { case TGSI_OPCODE_ARL: exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_MOV: exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_LIT: exec_lit(mach, inst); break; case TGSI_OPCODE_RCP: exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_RSQ: exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_EXP: exec_exp(mach, inst); break; case TGSI_OPCODE_LOG: exec_log(mach, inst); break; case TGSI_OPCODE_MUL: exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_ADD: exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DP3: exec_dp3(mach, inst); break; case TGSI_OPCODE_DP4: exec_dp4(mach, inst); break; case TGSI_OPCODE_DST: exec_dst(mach, inst); break; case TGSI_OPCODE_MIN: exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_MAX: exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SLT: exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SGE: exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_MAD: exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SUB: exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_LRP: exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_CND: exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SQRT: exec_vector_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DP2A: exec_dp2a(mach, inst); break; case TGSI_OPCODE_FRC: exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_CLAMP: exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_FLR: exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_ROUND: exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_EX2: exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_LG2: exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_POW: exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_XPD: exec_xpd(mach, inst); break; case TGSI_OPCODE_ABS: exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_RCC: exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DPH: exec_dph(mach, inst); break; case TGSI_OPCODE_COS: exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DDX: exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DDY: exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_KILP: exec_kilp (mach, inst); break; case TGSI_OPCODE_KIL: exec_kil (mach, inst); break; case TGSI_OPCODE_PK2H: assert (0); break; case TGSI_OPCODE_PK2US: assert (0); break; case TGSI_OPCODE_PK4B: assert (0); break; case TGSI_OPCODE_PK4UB: assert (0); break; case TGSI_OPCODE_RFL: exec_rfl(mach, inst); break; case TGSI_OPCODE_SEQ: exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SFL: exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SGT: exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SIN: exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SLE: exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SNE: exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_STR: exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_TEX: /* simple texture lookup */ /* src[0] = texcoord */ /* src[1] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_NONE, 1); break; case TGSI_OPCODE_TXB: /* Texture lookup with lod bias */ /* src[0] = texcoord (src[0].w = LOD bias) */ /* src[1] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1); break; case TGSI_OPCODE_TXD: /* Texture lookup with explict partial derivatives */ /* src[0] = texcoord */ /* src[1] = d[strq]/dx */ /* src[2] = d[strq]/dy */ /* src[3] = sampler unit */ exec_txd(mach, inst); break; case TGSI_OPCODE_TXL: /* Texture lookup with explit LOD */ /* src[0] = texcoord (src[0].w = LOD) */ /* src[1] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1); break; case TGSI_OPCODE_TXP: /* Texture lookup with projection */ /* src[0] = texcoord (src[0].w = projection) */ /* src[1] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1); break; case TGSI_OPCODE_UP2H: assert (0); break; case TGSI_OPCODE_UP2US: assert (0); break; case TGSI_OPCODE_UP4B: assert (0); break; case TGSI_OPCODE_UP4UB: assert (0); break; case TGSI_OPCODE_X2D: exec_x2d(mach, inst); break; case TGSI_OPCODE_ARA: assert (0); break; case TGSI_OPCODE_ARR: exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_BRA: assert (0); break; case TGSI_OPCODE_CAL: /* skip the call if no execution channels are enabled */ if (mach->ExecMask) { /* do the call */ /* First, record the depths of the execution stacks. * This is important for deeply nested/looped return statements. * We have to unwind the stacks by the correct amount. For a * real code generator, we could determine the number of entries * to pop off each stack with simple static analysis and avoid * implementing this data structure at run time. */ mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop; mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop; mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop; mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop; mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop; /* note that PC was already incremented above */ mach->CallStack[mach->CallStackTop].ReturnAddr = *pc; mach->CallStackTop++; /* Second, push the Cond, Loop, Cont, Func stacks */ assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING); assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING); assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING); assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING); assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK); assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING); mach->CondStack[mach->CondStackTop++] = mach->CondMask; mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask; mach->ContStack[mach->ContStackTop++] = mach->ContMask; mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch; mach->BreakStack[mach->BreakStackTop++] = mach->BreakType; mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask; /* Finally, jump to the subroutine */ *pc = inst->Label.Label; } break; case TGSI_OPCODE_RET: mach->FuncMask &= ~mach->ExecMask; UPDATE_EXEC_MASK(mach); if (mach->FuncMask == 0x0) { /* really return now (otherwise, keep executing */ if (mach->CallStackTop == 0) { /* returning from main() */ mach->CondStackTop = 0; mach->LoopStackTop = 0; *pc = -1; return; } assert(mach->CallStackTop > 0); mach->CallStackTop--; mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop; mach->CondMask = mach->CondStack[mach->CondStackTop]; mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop; mach->LoopMask = mach->LoopStack[mach->LoopStackTop]; mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop; mach->ContMask = mach->ContStack[mach->ContStackTop]; mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop; mach->Switch = mach->SwitchStack[mach->SwitchStackTop]; mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop; mach->BreakType = mach->BreakStack[mach->BreakStackTop]; assert(mach->FuncStackTop > 0); mach->FuncMask = mach->FuncStack[--mach->FuncStackTop]; *pc = mach->CallStack[mach->CallStackTop].ReturnAddr; UPDATE_EXEC_MASK(mach); } break; case TGSI_OPCODE_SSG: exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_CMP: exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SCS: exec_scs(mach, inst); break; case TGSI_OPCODE_NRM: exec_nrm3(mach, inst); break; case TGSI_OPCODE_NRM4: exec_nrm4(mach, inst); break; case TGSI_OPCODE_DIV: exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_DP2: exec_dp2(mach, inst); break; case TGSI_OPCODE_IF: /* push CondMask */ assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING); mach->CondStack[mach->CondStackTop++] = mach->CondMask; FETCH( &r[0], 0, TGSI_CHAN_X ); /* update CondMask */ if( ! r[0].u[0] ) { mach->CondMask &= ~0x1; } if( ! r[0].u[1] ) { mach->CondMask &= ~0x2; } if( ! r[0].u[2] ) { mach->CondMask &= ~0x4; } if( ! r[0].u[3] ) { mach->CondMask &= ~0x8; } UPDATE_EXEC_MASK(mach); /* Todo: If CondMask==0, jump to ELSE */ break; case TGSI_OPCODE_ELSE: /* invert CondMask wrt previous mask */ { uint prevMask; assert(mach->CondStackTop > 0); prevMask = mach->CondStack[mach->CondStackTop - 1]; mach->CondMask = ~mach->CondMask & prevMask; UPDATE_EXEC_MASK(mach); /* Todo: If CondMask==0, jump to ENDIF */ } break; case TGSI_OPCODE_ENDIF: /* pop CondMask */ assert(mach->CondStackTop > 0); mach->CondMask = mach->CondStack[--mach->CondStackTop]; UPDATE_EXEC_MASK(mach); break; case TGSI_OPCODE_END: /* make sure we end primitives which haven't * been explicitly emitted */ conditional_emit_primitive(mach); /* halt execution */ *pc = -1; break; case TGSI_OPCODE_PUSHA: assert (0); break; case TGSI_OPCODE_POPA: assert (0); break; case TGSI_OPCODE_CEIL: exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_I2F: exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_NOT: exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_TRUNC: exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_SHL: exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_AND: exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_OR: exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_MOD: exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_XOR: exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_SAD: assert (0); break; case TGSI_OPCODE_TXF: exec_txf(mach, inst); break; case TGSI_OPCODE_TXQ: exec_txq(mach, inst); break; case TGSI_OPCODE_EMIT: emit_vertex(mach); break; case TGSI_OPCODE_ENDPRIM: emit_primitive(mach); break; case TGSI_OPCODE_BGNLOOP: /* push LoopMask and ContMasks */ assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING); assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING); assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING); assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK); mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask; mach->ContStack[mach->ContStackTop++] = mach->ContMask; mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1; mach->BreakStack[mach->BreakStackTop++] = mach->BreakType; mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP; break; case TGSI_OPCODE_ENDLOOP: /* Restore ContMask, but don't pop */ assert(mach->ContStackTop > 0); mach->ContMask = mach->ContStack[mach->ContStackTop - 1]; UPDATE_EXEC_MASK(mach); if (mach->ExecMask) { /* repeat loop: jump to instruction just past BGNLOOP */ assert(mach->LoopLabelStackTop > 0); *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1; } else { /* exit loop: pop LoopMask */ assert(mach->LoopStackTop > 0); mach->LoopMask = mach->LoopStack[--mach->LoopStackTop]; /* pop ContMask */ assert(mach->ContStackTop > 0); mach->ContMask = mach->ContStack[--mach->ContStackTop]; assert(mach->LoopLabelStackTop > 0); --mach->LoopLabelStackTop; mach->BreakType = mach->BreakStack[--mach->BreakStackTop]; } UPDATE_EXEC_MASK(mach); break; case TGSI_OPCODE_BRK: exec_break(mach); break; case TGSI_OPCODE_CONT: /* turn off cont channels for each enabled exec channel */ mach->ContMask &= ~mach->ExecMask; /* Todo: if mach->LoopMask == 0, jump to end of loop */ UPDATE_EXEC_MASK(mach); break; case TGSI_OPCODE_BGNSUB: /* no-op */ break; case TGSI_OPCODE_ENDSUB: /* * XXX: This really should be a no-op. We should never reach this opcode. */ assert(mach->CallStackTop > 0); mach->CallStackTop--; mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop; mach->CondMask = mach->CondStack[mach->CondStackTop]; mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop; mach->LoopMask = mach->LoopStack[mach->LoopStackTop]; mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop; mach->ContMask = mach->ContStack[mach->ContStackTop]; mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop; mach->Switch = mach->SwitchStack[mach->SwitchStackTop]; mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop; mach->BreakType = mach->BreakStack[mach->BreakStackTop]; assert(mach->FuncStackTop > 0); mach->FuncMask = mach->FuncStack[--mach->FuncStackTop]; *pc = mach->CallStack[mach->CallStackTop].ReturnAddr; UPDATE_EXEC_MASK(mach); break; case TGSI_OPCODE_NOP: break; case TGSI_OPCODE_BREAKC: FETCH(&r[0], 0, TGSI_CHAN_X); /* update CondMask */ if (r[0].u[0] && (mach->ExecMask & 0x1)) { mach->LoopMask &= ~0x1; } if (r[0].u[1] && (mach->ExecMask & 0x2)) { mach->LoopMask &= ~0x2; } if (r[0].u[2] && (mach->ExecMask & 0x4)) { mach->LoopMask &= ~0x4; } if (r[0].u[3] && (mach->ExecMask & 0x8)) { mach->LoopMask &= ~0x8; } /* Todo: if mach->LoopMask == 0, jump to end of loop */ UPDATE_EXEC_MASK(mach); break; case TGSI_OPCODE_F2I: exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_IDIV: exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_IMAX: exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_IMIN: exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_INEG: exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_ISGE: exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_ISHR: exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_ISLT: exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_F2U: exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT); break; case TGSI_OPCODE_U2F: exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UADD: exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_UDIV: exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UMAD: exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UMAX: exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UMIN: exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UMOD: exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UMUL: exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_USEQ: exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_USGE: exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_USHR: exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_USLT: exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_USNE: exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_SWITCH: exec_switch(mach, inst); break; case TGSI_OPCODE_CASE: exec_case(mach, inst); break; case TGSI_OPCODE_DEFAULT: exec_default(mach); break; case TGSI_OPCODE_ENDSWITCH: exec_endswitch(mach); break; case TGSI_OPCODE_SAMPLE_I: exec_txf(mach, inst); break; case TGSI_OPCODE_SAMPLE_I_MS: assert(0); break; case TGSI_OPCODE_SAMPLE: exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE); break; case TGSI_OPCODE_SAMPLE_B: exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE); break; case TGSI_OPCODE_SAMPLE_C: exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE); break; case TGSI_OPCODE_SAMPLE_C_LZ: exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE); break; case TGSI_OPCODE_SAMPLE_D: exec_sample_d(mach, inst); break; case TGSI_OPCODE_SAMPLE_L: exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE); break; case TGSI_OPCODE_GATHER4: assert(0); break; case TGSI_OPCODE_SVIEWINFO: exec_txq(mach, inst); break; case TGSI_OPCODE_SAMPLE_POS: assert(0); break; case TGSI_OPCODE_SAMPLE_INFO: assert(0); break; case TGSI_OPCODE_UARL: exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_UCMP: exec_vector_trinary(mach, inst, micro_ucmp, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT); break; case TGSI_OPCODE_IABS: exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_ISSG: exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT); break; case TGSI_OPCODE_TEX2: /* simple texture lookup */ /* src[0] = texcoord */ /* src[1] = compare */ /* src[2] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_NONE, 2); break; case TGSI_OPCODE_TXB2: /* simple texture lookup */ /* src[0] = texcoord */ /* src[1] = bias */ /* src[2] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2); break; case TGSI_OPCODE_TXL2: /* simple texture lookup */ /* src[0] = texcoord */ /* src[1] = lod */ /* src[2] = sampler unit */ exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2); break; default: assert( 0 ); } } /** * Run TGSI interpreter. * \return bitmask of "alive" quad components */ uint tgsi_exec_machine_run( struct tgsi_exec_machine *mach ) { uint i; int pc = 0; mach->CondMask = 0xf; mach->LoopMask = 0xf; mach->ContMask = 0xf; mach->FuncMask = 0xf; mach->ExecMask = 0xf; mach->Switch.mask = 0xf; assert(mach->CondStackTop == 0); assert(mach->LoopStackTop == 0); assert(mach->ContStackTop == 0); assert(mach->SwitchStackTop == 0); assert(mach->BreakStackTop == 0); assert(mach->CallStackTop == 0); mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0; mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0; if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) { mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0; mach->Primitives[0] = 0; } /* execute declarations (interpolants) */ for (i = 0; i < mach->NumDeclarations; i++) { exec_declaration( mach, mach->Declarations+i ); } { #if DEBUG_EXECUTION struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS]; struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS]; uint inst = 1; memset(mach->Temps, 0, sizeof(temps)); memset(mach->Outputs, 0, sizeof(outputs)); memset(temps, 0, sizeof(temps)); memset(outputs, 0, sizeof(outputs)); #endif /* execute instructions, until pc is set to -1 */ while (pc != -1) { #if DEBUG_EXECUTION uint i; tgsi_dump_instruction(&mach->Instructions[pc], inst++); #endif assert(pc < (int) mach->NumInstructions); exec_instruction(mach, mach->Instructions + pc, &pc); #if DEBUG_EXECUTION for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) { if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) { uint j; memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i])); debug_printf("TEMP[%2u] = ", i); for (j = 0; j < 4; j++) { if (j > 0) { debug_printf(" "); } debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n", temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j], temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j], temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j], temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]); } } } for (i = 0; i < PIPE_MAX_ATTRIBS; i++) { if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) { uint j; memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i])); debug_printf("OUT[%2u] = ", i); for (j = 0; j < 4; j++) { if (j > 0) { debug_printf(" "); } debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n", outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j], outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j], outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j], outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]); } } } #endif } } #if 0 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */ if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) { /* * Scale back depth component. */ for (i = 0; i < 4; i++) mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF; } #endif /* Strictly speaking, these assertions aren't really needed but they * can potentially catch some bugs in the control flow code. */ assert(mach->CondStackTop == 0); assert(mach->LoopStackTop == 0); assert(mach->ContStackTop == 0); assert(mach->SwitchStackTop == 0); assert(mach->BreakStackTop == 0); assert(mach->CallStackTop == 0); return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0]; }