/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Texture sampling -- SoA. * * @author Jose Fonseca * @author Brian Paul */ #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_shader_tokens.h" #include "util/u_debug.h" #include "util/u_dump.h" #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_format.h" #include "util/u_cpu_detect.h" #include "util/u_format_rgb9e5.h" #include "lp_bld_debug.h" #include "lp_bld_type.h" #include "lp_bld_const.h" #include "lp_bld_conv.h" #include "lp_bld_arit.h" #include "lp_bld_bitarit.h" #include "lp_bld_logic.h" #include "lp_bld_printf.h" #include "lp_bld_swizzle.h" #include "lp_bld_flow.h" #include "lp_bld_gather.h" #include "lp_bld_format.h" #include "lp_bld_sample.h" #include "lp_bld_sample_aos.h" #include "lp_bld_struct.h" #include "lp_bld_quad.h" #include "lp_bld_pack.h" /** * Generate code to fetch a texel from a texture at int coords (x, y, z). * The computation depends on whether the texture is 1D, 2D or 3D. * The result, texel, will be float vectors: * texel[0] = red values * texel[1] = green values * texel[2] = blue values * texel[3] = alpha values */ static void lp_build_sample_texel_soa(struct lp_build_sample_context *bld, LLVMValueRef width, LLVMValueRef height, LLVMValueRef depth, LLVMValueRef x, LLVMValueRef y, LLVMValueRef z, LLVMValueRef y_stride, LLVMValueRef z_stride, LLVMValueRef data_ptr, LLVMValueRef mipoffsets, LLVMValueRef texel_out[4]) { const struct lp_static_sampler_state *static_state = bld->static_sampler_state; const unsigned dims = bld->dims; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef offset; LLVMValueRef i, j; LLVMValueRef use_border = NULL; /* use_border = x < 0 || x >= width || y < 0 || y >= height */ if (lp_sampler_wrap_mode_uses_border_color(static_state->wrap_s, static_state->min_img_filter, static_state->mag_img_filter)) { LLVMValueRef b1, b2; b1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, x, int_coord_bld->zero); b2 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, x, width); use_border = LLVMBuildOr(builder, b1, b2, "b1_or_b2"); } if (dims >= 2 && lp_sampler_wrap_mode_uses_border_color(static_state->wrap_t, static_state->min_img_filter, static_state->mag_img_filter)) { LLVMValueRef b1, b2; b1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, y, int_coord_bld->zero); b2 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, y, height); if (use_border) { use_border = LLVMBuildOr(builder, use_border, b1, "ub_or_b1"); use_border = LLVMBuildOr(builder, use_border, b2, "ub_or_b2"); } else { use_border = LLVMBuildOr(builder, b1, b2, "b1_or_b2"); } } if (dims == 3 && lp_sampler_wrap_mode_uses_border_color(static_state->wrap_r, static_state->min_img_filter, static_state->mag_img_filter)) { LLVMValueRef b1, b2; b1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, z, int_coord_bld->zero); b2 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, z, depth); if (use_border) { use_border = LLVMBuildOr(builder, use_border, b1, "ub_or_b1"); use_border = LLVMBuildOr(builder, use_border, b2, "ub_or_b2"); } else { use_border = LLVMBuildOr(builder, b1, b2, "b1_or_b2"); } } /* convert x,y,z coords to linear offset from start of texture, in bytes */ lp_build_sample_offset(&bld->int_coord_bld, bld->format_desc, x, y, z, y_stride, z_stride, &offset, &i, &j); if (mipoffsets) { offset = lp_build_add(&bld->int_coord_bld, offset, mipoffsets); } if (use_border) { /* If we can sample the border color, it means that texcoords may * lie outside the bounds of the texture image. We need to do * something to prevent reading out of bounds and causing a segfault. * * Simply AND the texture coords with !use_border. This will cause * coords which are out of bounds to become zero. Zero's guaranteed * to be inside the texture image. */ offset = lp_build_andnot(&bld->int_coord_bld, offset, use_border); } lp_build_fetch_rgba_soa(bld->gallivm, bld->format_desc, bld->texel_type, data_ptr, offset, i, j, bld->cache, texel_out); /* * Note: if we find an app which frequently samples the texture border * we might want to implement a true conditional here to avoid sampling * the texture whenever possible (since that's quite a bit of code). * Ex: * if (use_border) { * texel = border_color; * } * else { * texel = sample_texture(coord); * } * As it is now, we always sample the texture, then selectively replace * the texel color results with the border color. */ if (use_border) { /* select texel color or border color depending on use_border. */ const struct util_format_description *format_desc = bld->format_desc; int chan; struct lp_type border_type = bld->texel_type; border_type.length = 4; /* * Only replace channels which are actually present. The others should * get optimized away eventually by sampler_view swizzle anyway but it's * easier too. */ for (chan = 0; chan < 4; chan++) { unsigned chan_s; /* reverse-map channel... */ for (chan_s = 0; chan_s < 4; chan_s++) { if (chan_s == format_desc->swizzle[chan]) { break; } } if (chan_s <= 3) { /* use the already clamped color */ LLVMValueRef idx = lp_build_const_int32(bld->gallivm, chan); LLVMValueRef border_chan; border_chan = lp_build_extract_broadcast(bld->gallivm, border_type, bld->texel_type, bld->border_color_clamped, idx); texel_out[chan] = lp_build_select(&bld->texel_bld, use_border, border_chan, texel_out[chan]); } } } } /** * Helper to compute the mirror function for the PIPE_WRAP_MIRROR modes. */ static LLVMValueRef lp_build_coord_mirror(struct lp_build_sample_context *bld, LLVMValueRef coord) { struct lp_build_context *coord_bld = &bld->coord_bld; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; LLVMValueRef fract, flr, isOdd; lp_build_ifloor_fract(coord_bld, coord, &flr, &fract); /* isOdd = flr & 1 */ isOdd = LLVMBuildAnd(bld->gallivm->builder, flr, int_coord_bld->one, ""); /* make coord positive or negative depending on isOdd */ coord = lp_build_set_sign(coord_bld, fract, isOdd); /* convert isOdd to float */ isOdd = lp_build_int_to_float(coord_bld, isOdd); /* add isOdd to coord */ coord = lp_build_add(coord_bld, coord, isOdd); return coord; } /** * Helper to compute the first coord and the weight for * linear wrap repeat npot textures */ void lp_build_coord_repeat_npot_linear(struct lp_build_sample_context *bld, LLVMValueRef coord_f, LLVMValueRef length_i, LLVMValueRef length_f, LLVMValueRef *coord0_i, LLVMValueRef *weight_f) { struct lp_build_context *coord_bld = &bld->coord_bld; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; LLVMValueRef half = lp_build_const_vec(bld->gallivm, coord_bld->type, 0.5); LLVMValueRef length_minus_one = lp_build_sub(int_coord_bld, length_i, int_coord_bld->one); LLVMValueRef mask; /* wrap with normalized floats is just fract */ coord_f = lp_build_fract(coord_bld, coord_f); /* mul by size and subtract 0.5 */ coord_f = lp_build_mul(coord_bld, coord_f, length_f); coord_f = lp_build_sub(coord_bld, coord_f, half); /* * we avoided the 0.5/length division before the repeat wrap, * now need to fix up edge cases with selects */ /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord_f, coord0_i, weight_f); mask = lp_build_compare(int_coord_bld->gallivm, int_coord_bld->type, PIPE_FUNC_LESS, *coord0_i, int_coord_bld->zero); *coord0_i = lp_build_select(int_coord_bld, mask, length_minus_one, *coord0_i); } /** * Build LLVM code for texture wrap mode for linear filtering. * \param x0_out returns first integer texcoord * \param x1_out returns second integer texcoord * \param weight_out returns linear interpolation weight */ static void lp_build_sample_wrap_linear(struct lp_build_sample_context *bld, LLVMValueRef coord, LLVMValueRef length, LLVMValueRef length_f, LLVMValueRef offset, boolean is_pot, unsigned wrap_mode, LLVMValueRef *x0_out, LLVMValueRef *x1_out, LLVMValueRef *weight_out) { struct lp_build_context *coord_bld = &bld->coord_bld; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef half = lp_build_const_vec(bld->gallivm, coord_bld->type, 0.5); LLVMValueRef length_minus_one = lp_build_sub(int_coord_bld, length, int_coord_bld->one); LLVMValueRef coord0, coord1, weight; switch(wrap_mode) { case PIPE_TEX_WRAP_REPEAT: if (is_pot) { /* mul by size and subtract 0.5 */ coord = lp_build_mul(coord_bld, coord, length_f); coord = lp_build_sub(coord_bld, coord, half); if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); /* repeat wrap */ coord0 = LLVMBuildAnd(builder, coord0, length_minus_one, ""); coord1 = LLVMBuildAnd(builder, coord1, length_minus_one, ""); } else { LLVMValueRef mask; if (offset) { offset = lp_build_int_to_float(coord_bld, offset); offset = lp_build_div(coord_bld, offset, length_f); coord = lp_build_add(coord_bld, coord, offset); } lp_build_coord_repeat_npot_linear(bld, coord, length, length_f, &coord0, &weight); mask = lp_build_compare(int_coord_bld->gallivm, int_coord_bld->type, PIPE_FUNC_NOTEQUAL, coord0, length_minus_one); coord1 = LLVMBuildAnd(builder, lp_build_add(int_coord_bld, coord0, int_coord_bld->one), mask, ""); } break; case PIPE_TEX_WRAP_CLAMP: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } /* clamp to [0, length] */ coord = lp_build_clamp(coord_bld, coord, coord_bld->zero, length_f); coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); break; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: { struct lp_build_context abs_coord_bld = bld->coord_bld; abs_coord_bld.type.sign = FALSE; if (bld->static_sampler_state->normalized_coords) { /* mul by tex size */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } /* clamp to length max */ coord = lp_build_min(coord_bld, coord, length_f); /* subtract 0.5 */ coord = lp_build_sub(coord_bld, coord, half); /* clamp to [0, length - 0.5] */ coord = lp_build_max(coord_bld, coord, coord_bld->zero); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(&abs_coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); /* coord1 = min(coord1, length-1) */ coord1 = lp_build_min(int_coord_bld, coord1, length_minus_one); break; } case PIPE_TEX_WRAP_CLAMP_TO_BORDER: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } /* was: clamp to [-0.5, length + 0.5], then sub 0.5 */ /* can skip clamp (though might not work for very large coord values */ coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); break; case PIPE_TEX_WRAP_MIRROR_REPEAT: if (offset) { offset = lp_build_int_to_float(coord_bld, offset); offset = lp_build_div(coord_bld, offset, length_f); coord = lp_build_add(coord_bld, coord, offset); } /* compute mirror function */ coord = lp_build_coord_mirror(bld, coord); /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); /* coord0 = max(coord0, 0) */ coord0 = lp_build_max(int_coord_bld, coord0, int_coord_bld->zero); /* coord1 = min(coord1, length-1) */ coord1 = lp_build_min(int_coord_bld, coord1, length_minus_one); break; case PIPE_TEX_WRAP_MIRROR_CLAMP: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } coord = lp_build_abs(coord_bld, coord); /* clamp to [0, length] */ coord = lp_build_min(coord_bld, coord, length_f); coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); break; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: { struct lp_build_context abs_coord_bld = bld->coord_bld; abs_coord_bld.type.sign = FALSE; if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } coord = lp_build_abs(coord_bld, coord); /* clamp to length max */ coord = lp_build_min(coord_bld, coord, length_f); /* subtract 0.5 */ coord = lp_build_sub(coord_bld, coord, half); /* clamp to [0, length - 0.5] */ coord = lp_build_max(coord_bld, coord, coord_bld->zero); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(&abs_coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); /* coord1 = min(coord1, length-1) */ coord1 = lp_build_min(int_coord_bld, coord1, length_minus_one); } break; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: { if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } coord = lp_build_abs(coord_bld, coord); /* was: clamp to [-0.5, length + 0.5] then sub 0.5 */ /* skip clamp - always positive, and other side only potentially matters for very large coords */ coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ lp_build_ifloor_fract(coord_bld, coord, &coord0, &weight); coord1 = lp_build_add(int_coord_bld, coord0, int_coord_bld->one); } break; default: assert(0); coord0 = NULL; coord1 = NULL; weight = NULL; } *x0_out = coord0; *x1_out = coord1; *weight_out = weight; } /** * Build LLVM code for texture wrap mode for nearest filtering. * \param coord the incoming texcoord (nominally in [0,1]) * \param length the texture size along one dimension, as int vector * \param length_f the texture size along one dimension, as float vector * \param offset texel offset along one dimension (as int vector) * \param is_pot if TRUE, length is a power of two * \param wrap_mode one of PIPE_TEX_WRAP_x */ static LLVMValueRef lp_build_sample_wrap_nearest(struct lp_build_sample_context *bld, LLVMValueRef coord, LLVMValueRef length, LLVMValueRef length_f, LLVMValueRef offset, boolean is_pot, unsigned wrap_mode) { struct lp_build_context *coord_bld = &bld->coord_bld; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef length_minus_one = lp_build_sub(int_coord_bld, length, int_coord_bld->one); LLVMValueRef icoord; switch(wrap_mode) { case PIPE_TEX_WRAP_REPEAT: if (is_pot) { coord = lp_build_mul(coord_bld, coord, length_f); icoord = lp_build_ifloor(coord_bld, coord); if (offset) { icoord = lp_build_add(int_coord_bld, icoord, offset); } icoord = LLVMBuildAnd(builder, icoord, length_minus_one, ""); } else { if (offset) { offset = lp_build_int_to_float(coord_bld, offset); offset = lp_build_div(coord_bld, offset, length_f); coord = lp_build_add(coord_bld, coord, offset); } /* take fraction, unnormalize */ coord = lp_build_fract_safe(coord_bld, coord); coord = lp_build_mul(coord_bld, coord, length_f); icoord = lp_build_itrunc(coord_bld, coord); } break; case PIPE_TEX_WRAP_CLAMP: case PIPE_TEX_WRAP_CLAMP_TO_EDGE: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } /* floor */ /* use itrunc instead since we clamp to 0 anyway */ icoord = lp_build_itrunc(coord_bld, coord); /* clamp to [0, length - 1]. */ icoord = lp_build_clamp(int_coord_bld, icoord, int_coord_bld->zero, length_minus_one); break; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } /* no clamp necessary, border masking will handle this */ icoord = lp_build_ifloor(coord_bld, coord); if (offset) { icoord = lp_build_add(int_coord_bld, icoord, offset); } break; case PIPE_TEX_WRAP_MIRROR_REPEAT: if (offset) { offset = lp_build_int_to_float(coord_bld, offset); offset = lp_build_div(coord_bld, offset, length_f); coord = lp_build_add(coord_bld, coord, offset); } /* compute mirror function */ coord = lp_build_coord_mirror(bld, coord); /* scale coord to length */ assert(bld->static_sampler_state->normalized_coords); coord = lp_build_mul(coord_bld, coord, length_f); /* itrunc == ifloor here */ icoord = lp_build_itrunc(coord_bld, coord); /* clamp to [0, length - 1] */ icoord = lp_build_min(int_coord_bld, icoord, length_minus_one); break; case PIPE_TEX_WRAP_MIRROR_CLAMP: case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } coord = lp_build_abs(coord_bld, coord); /* itrunc == ifloor here */ icoord = lp_build_itrunc(coord_bld, coord); /* clamp to [0, length - 1] */ icoord = lp_build_min(int_coord_bld, icoord, length_minus_one); break; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: if (bld->static_sampler_state->normalized_coords) { /* scale coord to length */ coord = lp_build_mul(coord_bld, coord, length_f); } if (offset) { offset = lp_build_int_to_float(coord_bld, offset); coord = lp_build_add(coord_bld, coord, offset); } coord = lp_build_abs(coord_bld, coord); /* itrunc == ifloor here */ icoord = lp_build_itrunc(coord_bld, coord); break; default: assert(0); icoord = NULL; } return icoord; } /** * Do shadow test/comparison. * \param p shadow ref value * \param texel the texel to compare against */ static LLVMValueRef lp_build_sample_comparefunc(struct lp_build_sample_context *bld, LLVMValueRef p, LLVMValueRef texel) { struct lp_build_context *texel_bld = &bld->texel_bld; LLVMValueRef res; if (0) { //lp_build_print_value(bld->gallivm, "shadow cmp coord", p); lp_build_print_value(bld->gallivm, "shadow cmp texel", texel); } /* result = (p FUNC texel) ? 1 : 0 */ /* * honor d3d10 floating point rules here, which state that comparisons * are ordered except NOT_EQUAL which is unordered. */ if (bld->static_sampler_state->compare_func != PIPE_FUNC_NOTEQUAL) { res = lp_build_cmp_ordered(texel_bld, bld->static_sampler_state->compare_func, p, texel); } else { res = lp_build_cmp(texel_bld, bld->static_sampler_state->compare_func, p, texel); } return res; } /** * Generate code to sample a mipmap level with nearest filtering. * If sampling a cube texture, r = cube face in [0,5]. */ static void lp_build_sample_image_nearest(struct lp_build_sample_context *bld, LLVMValueRef size, LLVMValueRef row_stride_vec, LLVMValueRef img_stride_vec, LLVMValueRef data_ptr, LLVMValueRef mipoffsets, LLVMValueRef *coords, const LLVMValueRef *offsets, LLVMValueRef colors_out[4]) { const unsigned dims = bld->dims; LLVMValueRef width_vec; LLVMValueRef height_vec; LLVMValueRef depth_vec; LLVMValueRef flt_size; LLVMValueRef flt_width_vec; LLVMValueRef flt_height_vec; LLVMValueRef flt_depth_vec; LLVMValueRef x, y = NULL, z = NULL; lp_build_extract_image_sizes(bld, &bld->int_size_bld, bld->int_coord_type, size, &width_vec, &height_vec, &depth_vec); flt_size = lp_build_int_to_float(&bld->float_size_bld, size); lp_build_extract_image_sizes(bld, &bld->float_size_bld, bld->coord_type, flt_size, &flt_width_vec, &flt_height_vec, &flt_depth_vec); /* * Compute integer texcoords. */ x = lp_build_sample_wrap_nearest(bld, coords[0], width_vec, flt_width_vec, offsets[0], bld->static_texture_state->pot_width, bld->static_sampler_state->wrap_s); lp_build_name(x, "tex.x.wrapped"); if (dims >= 2) { y = lp_build_sample_wrap_nearest(bld, coords[1], height_vec, flt_height_vec, offsets[1], bld->static_texture_state->pot_height, bld->static_sampler_state->wrap_t); lp_build_name(y, "tex.y.wrapped"); if (dims == 3) { z = lp_build_sample_wrap_nearest(bld, coords[2], depth_vec, flt_depth_vec, offsets[2], bld->static_texture_state->pot_depth, bld->static_sampler_state->wrap_r); lp_build_name(z, "tex.z.wrapped"); } } if (has_layer_coord(bld->static_texture_state->target)) { if (bld->static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { /* add cube layer to face */ z = lp_build_add(&bld->int_coord_bld, coords[2], coords[3]); } else { z = coords[2]; } lp_build_name(z, "tex.z.layer"); } /* * Get texture colors. */ lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x, y, z, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, colors_out); if (bld->static_sampler_state->compare_mode != PIPE_TEX_COMPARE_NONE) { LLVMValueRef cmpval; cmpval = lp_build_sample_comparefunc(bld, coords[4], colors_out[0]); /* this is really just a AND 1.0, cmpval but llvm is clever enough */ colors_out[0] = lp_build_select(&bld->texel_bld, cmpval, bld->texel_bld.one, bld->texel_bld.zero); colors_out[1] = colors_out[2] = colors_out[3] = colors_out[0]; } } /** * Like a lerp, but inputs are 0/~0 masks, so can simplify slightly. */ static LLVMValueRef lp_build_masklerp(struct lp_build_context *bld, LLVMValueRef weight, LLVMValueRef mask0, LLVMValueRef mask1) { struct gallivm_state *gallivm = bld->gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef weight2; weight2 = lp_build_sub(bld, bld->one, weight); weight = LLVMBuildBitCast(builder, weight, lp_build_int_vec_type(gallivm, bld->type), ""); weight2 = LLVMBuildBitCast(builder, weight2, lp_build_int_vec_type(gallivm, bld->type), ""); weight = LLVMBuildAnd(builder, weight, mask1, ""); weight2 = LLVMBuildAnd(builder, weight2, mask0, ""); weight = LLVMBuildBitCast(builder, weight, bld->vec_type, ""); weight2 = LLVMBuildBitCast(builder, weight2, bld->vec_type, ""); return lp_build_add(bld, weight, weight2); } /** * Like a 2d lerp, but inputs are 0/~0 masks, so can simplify slightly. */ static LLVMValueRef lp_build_masklerp2d(struct lp_build_context *bld, LLVMValueRef weight0, LLVMValueRef weight1, LLVMValueRef mask00, LLVMValueRef mask01, LLVMValueRef mask10, LLVMValueRef mask11) { LLVMValueRef val0 = lp_build_masklerp(bld, weight0, mask00, mask01); LLVMValueRef val1 = lp_build_masklerp(bld, weight0, mask10, mask11); return lp_build_lerp(bld, weight1, val0, val1, 0); } /* * this is a bit excessive code for something OpenGL just recommends * but does not require. */ #define ACCURATE_CUBE_CORNERS 1 /** * Generate code to sample a mipmap level with linear filtering. * If sampling a cube texture, r = cube face in [0,5]. * If linear_mask is present, only pixels having their mask set * will receive linear filtering, the rest will use nearest. */ static void lp_build_sample_image_linear(struct lp_build_sample_context *bld, boolean is_gather, LLVMValueRef size, LLVMValueRef linear_mask, LLVMValueRef row_stride_vec, LLVMValueRef img_stride_vec, LLVMValueRef data_ptr, LLVMValueRef mipoffsets, LLVMValueRef *coords, const LLVMValueRef *offsets, LLVMValueRef colors_out[4]) { LLVMBuilderRef builder = bld->gallivm->builder; struct lp_build_context *ivec_bld = &bld->int_coord_bld; struct lp_build_context *coord_bld = &bld->coord_bld; struct lp_build_context *texel_bld = &bld->texel_bld; const unsigned dims = bld->dims; LLVMValueRef width_vec; LLVMValueRef height_vec; LLVMValueRef depth_vec; LLVMValueRef flt_size; LLVMValueRef flt_width_vec; LLVMValueRef flt_height_vec; LLVMValueRef flt_depth_vec; LLVMValueRef fall_off[4], have_corners; LLVMValueRef z1 = NULL; LLVMValueRef z00 = NULL, z01 = NULL, z10 = NULL, z11 = NULL; LLVMValueRef x00 = NULL, x01 = NULL, x10 = NULL, x11 = NULL; LLVMValueRef y00 = NULL, y01 = NULL, y10 = NULL, y11 = NULL; LLVMValueRef s_fpart, t_fpart = NULL, r_fpart = NULL; LLVMValueRef xs[4], ys[4], zs[4]; LLVMValueRef neighbors[2][2][4]; int chan, texel_index; boolean seamless_cube_filter, accurate_cube_corners; seamless_cube_filter = (bld->static_texture_state->target == PIPE_TEXTURE_CUBE || bld->static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) && bld->static_sampler_state->seamless_cube_map; /* * XXX I don't know how this is really supposed to work with gather. From GL * spec wording (not gather specific) it sounds like the 4th missing texel * should be an average of the other 3, hence for gather could return this. * This is however NOT how the code here works, which just fixes up the * weights used for filtering instead. And of course for gather there is * no filter to tweak... */ accurate_cube_corners = ACCURATE_CUBE_CORNERS && seamless_cube_filter && !is_gather; lp_build_extract_image_sizes(bld, &bld->int_size_bld, bld->int_coord_type, size, &width_vec, &height_vec, &depth_vec); flt_size = lp_build_int_to_float(&bld->float_size_bld, size); lp_build_extract_image_sizes(bld, &bld->float_size_bld, bld->coord_type, flt_size, &flt_width_vec, &flt_height_vec, &flt_depth_vec); /* * Compute integer texcoords. */ if (!seamless_cube_filter) { lp_build_sample_wrap_linear(bld, coords[0], width_vec, flt_width_vec, offsets[0], bld->static_texture_state->pot_width, bld->static_sampler_state->wrap_s, &x00, &x01, &s_fpart); lp_build_name(x00, "tex.x0.wrapped"); lp_build_name(x01, "tex.x1.wrapped"); x10 = x00; x11 = x01; if (dims >= 2) { lp_build_sample_wrap_linear(bld, coords[1], height_vec, flt_height_vec, offsets[1], bld->static_texture_state->pot_height, bld->static_sampler_state->wrap_t, &y00, &y10, &t_fpart); lp_build_name(y00, "tex.y0.wrapped"); lp_build_name(y10, "tex.y1.wrapped"); y01 = y00; y11 = y10; if (dims == 3) { lp_build_sample_wrap_linear(bld, coords[2], depth_vec, flt_depth_vec, offsets[2], bld->static_texture_state->pot_depth, bld->static_sampler_state->wrap_r, &z00, &z1, &r_fpart); z01 = z10 = z11 = z00; lp_build_name(z00, "tex.z0.wrapped"); lp_build_name(z1, "tex.z1.wrapped"); } } if (has_layer_coord(bld->static_texture_state->target)) { if (bld->static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { /* add cube layer to face */ z00 = z01 = z10 = z11 = z1 = lp_build_add(&bld->int_coord_bld, coords[2], coords[3]); } else { z00 = z01 = z10 = z11 = z1 = coords[2]; /* cube face or layer */ } lp_build_name(z00, "tex.z0.layer"); lp_build_name(z1, "tex.z1.layer"); } } else { struct lp_build_if_state edge_if; LLVMTypeRef int1t; LLVMValueRef new_faces[4], new_xcoords[4][2], new_ycoords[4][2]; LLVMValueRef coord, have_edge, have_corner; LLVMValueRef fall_off_ym_notxm, fall_off_ym_notxp, fall_off_x, fall_off_y; LLVMValueRef fall_off_yp_notxm, fall_off_yp_notxp; LLVMValueRef x0, x1, y0, y1, y0_clamped, y1_clamped; LLVMValueRef face = coords[2]; LLVMValueRef half = lp_build_const_vec(bld->gallivm, coord_bld->type, 0.5f); LLVMValueRef length_minus_one = lp_build_sub(ivec_bld, width_vec, ivec_bld->one); /* XXX drop height calcs. Could (should) do this without seamless filtering too */ height_vec = width_vec; flt_height_vec = flt_width_vec; /* XXX the overflow logic is actually sort of duplicated with trilinear, * since an overflow in one mip should also have a corresponding overflow * in another. */ /* should always have normalized coords, and offsets are undefined */ assert(bld->static_sampler_state->normalized_coords); coord = lp_build_mul(coord_bld, coords[0], flt_width_vec); /* instead of clamp, build mask if overflowed */ coord = lp_build_sub(coord_bld, coord, half); /* convert to int, compute lerp weight */ /* not ideal with AVX (and no AVX2) */ lp_build_ifloor_fract(coord_bld, coord, &x0, &s_fpart); x1 = lp_build_add(ivec_bld, x0, ivec_bld->one); coord = lp_build_mul(coord_bld, coords[1], flt_height_vec); coord = lp_build_sub(coord_bld, coord, half); lp_build_ifloor_fract(coord_bld, coord, &y0, &t_fpart); y1 = lp_build_add(ivec_bld, y0, ivec_bld->one); fall_off[0] = lp_build_cmp(ivec_bld, PIPE_FUNC_LESS, x0, ivec_bld->zero); fall_off[1] = lp_build_cmp(ivec_bld, PIPE_FUNC_GREATER, x1, length_minus_one); fall_off[2] = lp_build_cmp(ivec_bld, PIPE_FUNC_LESS, y0, ivec_bld->zero); fall_off[3] = lp_build_cmp(ivec_bld, PIPE_FUNC_GREATER, y1, length_minus_one); fall_off_x = lp_build_or(ivec_bld, fall_off[0], fall_off[1]); fall_off_y = lp_build_or(ivec_bld, fall_off[2], fall_off[3]); have_edge = lp_build_or(ivec_bld, fall_off_x, fall_off_y); have_edge = lp_build_any_true_range(ivec_bld, ivec_bld->type.length, have_edge); /* needed for accurate corner filtering branch later, rely on 0 init */ int1t = LLVMInt1TypeInContext(bld->gallivm->context); have_corners = lp_build_alloca(bld->gallivm, int1t, "have_corner"); for (texel_index = 0; texel_index < 4; texel_index++) { xs[texel_index] = lp_build_alloca(bld->gallivm, ivec_bld->vec_type, "xs"); ys[texel_index] = lp_build_alloca(bld->gallivm, ivec_bld->vec_type, "ys"); zs[texel_index] = lp_build_alloca(bld->gallivm, ivec_bld->vec_type, "zs"); } lp_build_if(&edge_if, bld->gallivm, have_edge); have_corner = lp_build_and(ivec_bld, fall_off_x, fall_off_y); have_corner = lp_build_any_true_range(ivec_bld, ivec_bld->type.length, have_corner); LLVMBuildStore(builder, have_corner, have_corners); /* * Need to feed clamped values here for cheap corner handling, * but only for y coord (as when falling off both edges we only * fall off the x one) - this should be sufficient. */ y0_clamped = lp_build_max(ivec_bld, y0, ivec_bld->zero); y1_clamped = lp_build_min(ivec_bld, y1, length_minus_one); /* * Get all possible new coords. */ lp_build_cube_new_coords(ivec_bld, face, x0, x1, y0_clamped, y1_clamped, length_minus_one, new_faces, new_xcoords, new_ycoords); /* handle fall off x-, x+ direction */ /* determine new coords, face (not both fall_off vars can be true at same time) */ x00 = lp_build_select(ivec_bld, fall_off[0], new_xcoords[0][0], x0); y00 = lp_build_select(ivec_bld, fall_off[0], new_ycoords[0][0], y0_clamped); x10 = lp_build_select(ivec_bld, fall_off[0], new_xcoords[0][1], x0); y10 = lp_build_select(ivec_bld, fall_off[0], new_ycoords[0][1], y1_clamped); x01 = lp_build_select(ivec_bld, fall_off[1], new_xcoords[1][0], x1); y01 = lp_build_select(ivec_bld, fall_off[1], new_ycoords[1][0], y0_clamped); x11 = lp_build_select(ivec_bld, fall_off[1], new_xcoords[1][1], x1); y11 = lp_build_select(ivec_bld, fall_off[1], new_ycoords[1][1], y1_clamped); z00 = z10 = lp_build_select(ivec_bld, fall_off[0], new_faces[0], face); z01 = z11 = lp_build_select(ivec_bld, fall_off[1], new_faces[1], face); /* handle fall off y-, y+ direction */ /* * Cheap corner logic: just hack up things so a texel doesn't fall * off both sides (which means filter weights will be wrong but we'll only * use valid texels in the filter). * This means however (y) coords must additionally be clamped (see above). * This corner handling should be fully OpenGL (but not d3d10) compliant. */ fall_off_ym_notxm = lp_build_andnot(ivec_bld, fall_off[2], fall_off[0]); fall_off_ym_notxp = lp_build_andnot(ivec_bld, fall_off[2], fall_off[1]); fall_off_yp_notxm = lp_build_andnot(ivec_bld, fall_off[3], fall_off[0]); fall_off_yp_notxp = lp_build_andnot(ivec_bld, fall_off[3], fall_off[1]); x00 = lp_build_select(ivec_bld, fall_off_ym_notxm, new_xcoords[2][0], x00); y00 = lp_build_select(ivec_bld, fall_off_ym_notxm, new_ycoords[2][0], y00); x01 = lp_build_select(ivec_bld, fall_off_ym_notxp, new_xcoords[2][1], x01); y01 = lp_build_select(ivec_bld, fall_off_ym_notxp, new_ycoords[2][1], y01); x10 = lp_build_select(ivec_bld, fall_off_yp_notxm, new_xcoords[3][0], x10); y10 = lp_build_select(ivec_bld, fall_off_yp_notxm, new_ycoords[3][0], y10); x11 = lp_build_select(ivec_bld, fall_off_yp_notxp, new_xcoords[3][1], x11); y11 = lp_build_select(ivec_bld, fall_off_yp_notxp, new_ycoords[3][1], y11); z00 = lp_build_select(ivec_bld, fall_off_ym_notxm, new_faces[2], z00); z01 = lp_build_select(ivec_bld, fall_off_ym_notxp, new_faces[2], z01); z10 = lp_build_select(ivec_bld, fall_off_yp_notxm, new_faces[3], z10); z11 = lp_build_select(ivec_bld, fall_off_yp_notxp, new_faces[3], z11); if (bld->static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { /* now can add cube layer to face (per sample) */ z00 = lp_build_add(ivec_bld, z00, coords[3]); z01 = lp_build_add(ivec_bld, z01, coords[3]); z10 = lp_build_add(ivec_bld, z10, coords[3]); z11 = lp_build_add(ivec_bld, z11, coords[3]); } LLVMBuildStore(builder, x00, xs[0]); LLVMBuildStore(builder, x01, xs[1]); LLVMBuildStore(builder, x10, xs[2]); LLVMBuildStore(builder, x11, xs[3]); LLVMBuildStore(builder, y00, ys[0]); LLVMBuildStore(builder, y01, ys[1]); LLVMBuildStore(builder, y10, ys[2]); LLVMBuildStore(builder, y11, ys[3]); LLVMBuildStore(builder, z00, zs[0]); LLVMBuildStore(builder, z01, zs[1]); LLVMBuildStore(builder, z10, zs[2]); LLVMBuildStore(builder, z11, zs[3]); lp_build_else(&edge_if); LLVMBuildStore(builder, x0, xs[0]); LLVMBuildStore(builder, x1, xs[1]); LLVMBuildStore(builder, x0, xs[2]); LLVMBuildStore(builder, x1, xs[3]); LLVMBuildStore(builder, y0, ys[0]); LLVMBuildStore(builder, y0, ys[1]); LLVMBuildStore(builder, y1, ys[2]); LLVMBuildStore(builder, y1, ys[3]); if (bld->static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { LLVMValueRef cube_layer = lp_build_add(ivec_bld, face, coords[3]); LLVMBuildStore(builder, cube_layer, zs[0]); LLVMBuildStore(builder, cube_layer, zs[1]); LLVMBuildStore(builder, cube_layer, zs[2]); LLVMBuildStore(builder, cube_layer, zs[3]); } else { LLVMBuildStore(builder, face, zs[0]); LLVMBuildStore(builder, face, zs[1]); LLVMBuildStore(builder, face, zs[2]); LLVMBuildStore(builder, face, zs[3]); } lp_build_endif(&edge_if); x00 = LLVMBuildLoad(builder, xs[0], ""); x01 = LLVMBuildLoad(builder, xs[1], ""); x10 = LLVMBuildLoad(builder, xs[2], ""); x11 = LLVMBuildLoad(builder, xs[3], ""); y00 = LLVMBuildLoad(builder, ys[0], ""); y01 = LLVMBuildLoad(builder, ys[1], ""); y10 = LLVMBuildLoad(builder, ys[2], ""); y11 = LLVMBuildLoad(builder, ys[3], ""); z00 = LLVMBuildLoad(builder, zs[0], ""); z01 = LLVMBuildLoad(builder, zs[1], ""); z10 = LLVMBuildLoad(builder, zs[2], ""); z11 = LLVMBuildLoad(builder, zs[3], ""); } if (linear_mask) { /* * Whack filter weights into place. Whatever texel had more weight is * the one which should have been selected by nearest filtering hence * just use 100% weight for it. */ struct lp_build_context *c_bld = &bld->coord_bld; LLVMValueRef w1_mask, w1_weight; LLVMValueRef half = lp_build_const_vec(bld->gallivm, c_bld->type, 0.5f); w1_mask = lp_build_cmp(c_bld, PIPE_FUNC_GREATER, s_fpart, half); /* this select is really just a "and" */ w1_weight = lp_build_select(c_bld, w1_mask, c_bld->one, c_bld->zero); s_fpart = lp_build_select(c_bld, linear_mask, s_fpart, w1_weight); if (dims >= 2) { w1_mask = lp_build_cmp(c_bld, PIPE_FUNC_GREATER, t_fpart, half); w1_weight = lp_build_select(c_bld, w1_mask, c_bld->one, c_bld->zero); t_fpart = lp_build_select(c_bld, linear_mask, t_fpart, w1_weight); if (dims == 3) { w1_mask = lp_build_cmp(c_bld, PIPE_FUNC_GREATER, r_fpart, half); w1_weight = lp_build_select(c_bld, w1_mask, c_bld->one, c_bld->zero); r_fpart = lp_build_select(c_bld, linear_mask, r_fpart, w1_weight); } } } /* * Get texture colors. */ /* get x0/x1 texels */ lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x00, y00, z00, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors[0][0]); lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x01, y01, z01, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors[0][1]); if (dims == 1) { assert(!is_gather); if (bld->static_sampler_state->compare_mode == PIPE_TEX_COMPARE_NONE) { /* Interpolate two samples from 1D image to produce one color */ for (chan = 0; chan < 4; chan++) { colors_out[chan] = lp_build_lerp(texel_bld, s_fpart, neighbors[0][0][chan], neighbors[0][1][chan], 0); } } else { LLVMValueRef cmpval0, cmpval1; cmpval0 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][0][0]); cmpval1 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][1][0]); /* simplified lerp, AND mask with weight and add */ colors_out[0] = lp_build_masklerp(texel_bld, s_fpart, cmpval0, cmpval1); colors_out[1] = colors_out[2] = colors_out[3] = colors_out[0]; } } else { /* 2D/3D texture */ struct lp_build_if_state corner_if; LLVMValueRef colors0[4], colorss[4]; /* get x0/x1 texels at y1 */ lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x10, y10, z10, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors[1][0]); lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x11, y11, z11, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors[1][1]); /* * To avoid having to duplicate linear_mask / fetch code use * another branch (with corner condition though edge would work * as well) here. */ if (accurate_cube_corners) { LLVMValueRef w00, w01, w10, w11, wx0, wy0; LLVMValueRef c_weight, c00, c01, c10, c11; LLVMValueRef have_corner, one_third, tmp; colorss[0] = lp_build_alloca(bld->gallivm, coord_bld->vec_type, "cs"); colorss[1] = lp_build_alloca(bld->gallivm, coord_bld->vec_type, "cs"); colorss[2] = lp_build_alloca(bld->gallivm, coord_bld->vec_type, "cs"); colorss[3] = lp_build_alloca(bld->gallivm, coord_bld->vec_type, "cs"); have_corner = LLVMBuildLoad(builder, have_corners, ""); lp_build_if(&corner_if, bld->gallivm, have_corner); /* * we can't use standard 2d lerp as we need per-element weight * in case of corners, so just calculate bilinear result as * w00*s00 + w01*s01 + w10*s10 + w11*s11. * (This is actually less work than using 2d lerp, 7 vs. 9 instructions, * however calculating the weights needs another 6, so actually probably * not slower than 2d lerp only for 4 channels as weights only need * to be calculated once - of course fixing the weights has additional cost.) */ wx0 = lp_build_sub(coord_bld, coord_bld->one, s_fpart); wy0 = lp_build_sub(coord_bld, coord_bld->one, t_fpart); w00 = lp_build_mul(coord_bld, wx0, wy0); w01 = lp_build_mul(coord_bld, s_fpart, wy0); w10 = lp_build_mul(coord_bld, wx0, t_fpart); w11 = lp_build_mul(coord_bld, s_fpart, t_fpart); /* find corner weight */ c00 = lp_build_and(ivec_bld, fall_off[0], fall_off[2]); c_weight = lp_build_select(coord_bld, c00, w00, coord_bld->zero); c01 = lp_build_and(ivec_bld, fall_off[1], fall_off[2]); c_weight = lp_build_select(coord_bld, c01, w01, c_weight); c10 = lp_build_and(ivec_bld, fall_off[0], fall_off[3]); c_weight = lp_build_select(coord_bld, c10, w10, c_weight); c11 = lp_build_and(ivec_bld, fall_off[1], fall_off[3]); c_weight = lp_build_select(coord_bld, c11, w11, c_weight); /* * add 1/3 of the corner weight to each of the 3 other samples * and null out corner weight */ one_third = lp_build_const_vec(bld->gallivm, coord_bld->type, 1.0f/3.0f); c_weight = lp_build_mul(coord_bld, c_weight, one_third); w00 = lp_build_add(coord_bld, w00, c_weight); c00 = LLVMBuildBitCast(builder, c00, coord_bld->vec_type, ""); w00 = lp_build_andnot(coord_bld, w00, c00); w01 = lp_build_add(coord_bld, w01, c_weight); c01 = LLVMBuildBitCast(builder, c01, coord_bld->vec_type, ""); w01 = lp_build_andnot(coord_bld, w01, c01); w10 = lp_build_add(coord_bld, w10, c_weight); c10 = LLVMBuildBitCast(builder, c10, coord_bld->vec_type, ""); w10 = lp_build_andnot(coord_bld, w10, c10); w11 = lp_build_add(coord_bld, w11, c_weight); c11 = LLVMBuildBitCast(builder, c11, coord_bld->vec_type, ""); w11 = lp_build_andnot(coord_bld, w11, c11); if (bld->static_sampler_state->compare_mode == PIPE_TEX_COMPARE_NONE) { for (chan = 0; chan < 4; chan++) { colors0[chan] = lp_build_mul(coord_bld, w00, neighbors[0][0][chan]); tmp = lp_build_mul(coord_bld, w01, neighbors[0][1][chan]); colors0[chan] = lp_build_add(coord_bld, tmp, colors0[chan]); tmp = lp_build_mul(coord_bld, w10, neighbors[1][0][chan]); colors0[chan] = lp_build_add(coord_bld, tmp, colors0[chan]); tmp = lp_build_mul(coord_bld, w11, neighbors[1][1][chan]); colors0[chan] = lp_build_add(coord_bld, tmp, colors0[chan]); } } else { LLVMValueRef cmpval00, cmpval01, cmpval10, cmpval11; cmpval00 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][0][0]); cmpval01 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][1][0]); cmpval10 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][0][0]); cmpval11 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][1][0]); /* inputs to interpolation are just masks so just add masked weights together */ cmpval00 = LLVMBuildBitCast(builder, cmpval00, coord_bld->vec_type, ""); cmpval01 = LLVMBuildBitCast(builder, cmpval01, coord_bld->vec_type, ""); cmpval10 = LLVMBuildBitCast(builder, cmpval10, coord_bld->vec_type, ""); cmpval11 = LLVMBuildBitCast(builder, cmpval11, coord_bld->vec_type, ""); colors0[0] = lp_build_and(coord_bld, w00, cmpval00); tmp = lp_build_and(coord_bld, w01, cmpval01); colors0[0] = lp_build_add(coord_bld, tmp, colors0[0]); tmp = lp_build_and(coord_bld, w10, cmpval10); colors0[0] = lp_build_add(coord_bld, tmp, colors0[0]); tmp = lp_build_and(coord_bld, w11, cmpval11); colors0[0] = lp_build_add(coord_bld, tmp, colors0[0]); colors0[1] = colors0[2] = colors0[3] = colors0[0]; } LLVMBuildStore(builder, colors0[0], colorss[0]); LLVMBuildStore(builder, colors0[1], colorss[1]); LLVMBuildStore(builder, colors0[2], colorss[2]); LLVMBuildStore(builder, colors0[3], colorss[3]); lp_build_else(&corner_if); } if (bld->static_sampler_state->compare_mode == PIPE_TEX_COMPARE_NONE) { if (is_gather) { /* * Just assign the red channel (no component selection yet). * This is a bit hackish, we usually do the swizzle at the * end of sampling (much less values to swizzle), but this * obviously cannot work when using gather. */ unsigned chan_swiz = bld->static_texture_state->swizzle_r; colors0[0] = lp_build_swizzle_soa_channel(texel_bld, neighbors[1][0], chan_swiz); colors0[1] = lp_build_swizzle_soa_channel(texel_bld, neighbors[1][1], chan_swiz); colors0[2] = lp_build_swizzle_soa_channel(texel_bld, neighbors[0][1], chan_swiz); colors0[3] = lp_build_swizzle_soa_channel(texel_bld, neighbors[0][0], chan_swiz); } else { /* Bilinear interpolate the four samples from the 2D image / 3D slice */ for (chan = 0; chan < 4; chan++) { colors0[chan] = lp_build_lerp_2d(texel_bld, s_fpart, t_fpart, neighbors[0][0][chan], neighbors[0][1][chan], neighbors[1][0][chan], neighbors[1][1][chan], 0); } } } else { LLVMValueRef cmpval00, cmpval01, cmpval10, cmpval11; cmpval00 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][0][0]); cmpval01 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][1][0]); cmpval10 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][0][0]); cmpval11 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][1][0]); if (is_gather) { /* more hacks for swizzling, should be X, ONE or ZERO... */ unsigned chan_swiz = bld->static_texture_state->swizzle_r; if (chan_swiz <= PIPE_SWIZZLE_ALPHA) { colors0[0] = lp_build_select(texel_bld, cmpval10, texel_bld->one, texel_bld->zero); colors0[1] = lp_build_select(texel_bld, cmpval11, texel_bld->one, texel_bld->zero); colors0[2] = lp_build_select(texel_bld, cmpval01, texel_bld->one, texel_bld->zero); colors0[3] = lp_build_select(texel_bld, cmpval00, texel_bld->one, texel_bld->zero); } else if (chan_swiz == PIPE_SWIZZLE_ZERO) { colors0[0] = colors0[1] = colors0[2] = colors0[3] = texel_bld->zero; } else { colors0[0] = colors0[1] = colors0[2] = colors0[3] = texel_bld->one; } } else { colors0[0] = lp_build_masklerp2d(texel_bld, s_fpart, t_fpart, cmpval00, cmpval01, cmpval10, cmpval11); colors0[1] = colors0[2] = colors0[3] = colors0[0]; } } if (accurate_cube_corners) { LLVMBuildStore(builder, colors0[0], colorss[0]); LLVMBuildStore(builder, colors0[1], colorss[1]); LLVMBuildStore(builder, colors0[2], colorss[2]); LLVMBuildStore(builder, colors0[3], colorss[3]); lp_build_endif(&corner_if); colors0[0] = LLVMBuildLoad(builder, colorss[0], ""); colors0[1] = LLVMBuildLoad(builder, colorss[1], ""); colors0[2] = LLVMBuildLoad(builder, colorss[2], ""); colors0[3] = LLVMBuildLoad(builder, colorss[3], ""); } if (dims == 3) { LLVMValueRef neighbors1[2][2][4]; LLVMValueRef colors1[4]; assert(!is_gather); /* get x0/x1/y0/y1 texels at z1 */ lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x00, y00, z1, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors1[0][0]); lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x01, y01, z1, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors1[0][1]); lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x10, y10, z1, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors1[1][0]); lp_build_sample_texel_soa(bld, width_vec, height_vec, depth_vec, x11, y11, z1, row_stride_vec, img_stride_vec, data_ptr, mipoffsets, neighbors1[1][1]); if (bld->static_sampler_state->compare_mode == PIPE_TEX_COMPARE_NONE) { /* Bilinear interpolate the four samples from the second Z slice */ for (chan = 0; chan < 4; chan++) { colors1[chan] = lp_build_lerp_2d(texel_bld, s_fpart, t_fpart, neighbors1[0][0][chan], neighbors1[0][1][chan], neighbors1[1][0][chan], neighbors1[1][1][chan], 0); } /* Linearly interpolate the two samples from the two 3D slices */ for (chan = 0; chan < 4; chan++) { colors_out[chan] = lp_build_lerp(texel_bld, r_fpart, colors0[chan], colors1[chan], 0); } } else { LLVMValueRef cmpval00, cmpval01, cmpval10, cmpval11; cmpval00 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][0][0]); cmpval01 = lp_build_sample_comparefunc(bld, coords[4], neighbors[0][1][0]); cmpval10 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][0][0]); cmpval11 = lp_build_sample_comparefunc(bld, coords[4], neighbors[1][1][0]); colors1[0] = lp_build_masklerp2d(texel_bld, s_fpart, t_fpart, cmpval00, cmpval01, cmpval10, cmpval11); /* Linearly interpolate the two samples from the two 3D slices */ colors_out[0] = lp_build_lerp(texel_bld, r_fpart, colors0[0], colors1[0], 0); colors_out[1] = colors_out[2] = colors_out[3] = colors_out[0]; } } else { /* 2D tex */ for (chan = 0; chan < 4; chan++) { colors_out[chan] = colors0[chan]; } } } } /** * Sample the texture/mipmap using given image filter and mip filter. * ilevel0 and ilevel1 indicate the two mipmap levels to sample * from (vectors or scalars). * If we're using nearest miplevel sampling the '1' values will be null/unused. */ static void lp_build_sample_mipmap(struct lp_build_sample_context *bld, unsigned img_filter, unsigned mip_filter, boolean is_gather, LLVMValueRef *coords, const LLVMValueRef *offsets, LLVMValueRef ilevel0, LLVMValueRef ilevel1, LLVMValueRef lod_fpart, LLVMValueRef *colors_out) { LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef size0 = NULL; LLVMValueRef size1 = NULL; LLVMValueRef row_stride0_vec = NULL; LLVMValueRef row_stride1_vec = NULL; LLVMValueRef img_stride0_vec = NULL; LLVMValueRef img_stride1_vec = NULL; LLVMValueRef data_ptr0 = NULL; LLVMValueRef data_ptr1 = NULL; LLVMValueRef mipoff0 = NULL; LLVMValueRef mipoff1 = NULL; LLVMValueRef colors0[4], colors1[4]; unsigned chan; /* sample the first mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel0, &size0, &row_stride0_vec, &img_stride0_vec); if (bld->num_mips == 1) { data_ptr0 = lp_build_get_mipmap_level(bld, ilevel0); } else { /* This path should work for num_lods 1 too but slightly less efficient */ data_ptr0 = bld->base_ptr; mipoff0 = lp_build_get_mip_offsets(bld, ilevel0); } if (img_filter == PIPE_TEX_FILTER_NEAREST) { lp_build_sample_image_nearest(bld, size0, row_stride0_vec, img_stride0_vec, data_ptr0, mipoff0, coords, offsets, colors0); } else { assert(img_filter == PIPE_TEX_FILTER_LINEAR); lp_build_sample_image_linear(bld, is_gather, size0, NULL, row_stride0_vec, img_stride0_vec, data_ptr0, mipoff0, coords, offsets, colors0); } /* Store the first level's colors in the output variables */ for (chan = 0; chan < 4; chan++) { LLVMBuildStore(builder, colors0[chan], colors_out[chan]); } if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) { struct lp_build_if_state if_ctx; LLVMValueRef need_lerp; /* need_lerp = lod_fpart > 0 */ if (bld->num_lods == 1) { need_lerp = LLVMBuildFCmp(builder, LLVMRealUGT, lod_fpart, bld->lodf_bld.zero, "need_lerp"); } else { /* * We'll do mip filtering if any of the quads (or individual * pixel in case of per-pixel lod) need it. * It might be better to split the vectors here and only fetch/filter * quads which need it (if there's one lod per quad). */ need_lerp = lp_build_compare(bld->gallivm, bld->lodf_bld.type, PIPE_FUNC_GREATER, lod_fpart, bld->lodf_bld.zero); need_lerp = lp_build_any_true_range(&bld->lodi_bld, bld->num_lods, need_lerp); } lp_build_if(&if_ctx, bld->gallivm, need_lerp); { /* * We unfortunately need to clamp lod_fpart here since we can get * negative values which would screw up filtering if not all * lod_fpart values have same sign. */ lod_fpart = lp_build_max(&bld->lodf_bld, lod_fpart, bld->lodf_bld.zero); /* sample the second mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel1, &size1, &row_stride1_vec, &img_stride1_vec); if (bld->num_mips == 1) { data_ptr1 = lp_build_get_mipmap_level(bld, ilevel1); } else { data_ptr1 = bld->base_ptr; mipoff1 = lp_build_get_mip_offsets(bld, ilevel1); } if (img_filter == PIPE_TEX_FILTER_NEAREST) { lp_build_sample_image_nearest(bld, size1, row_stride1_vec, img_stride1_vec, data_ptr1, mipoff1, coords, offsets, colors1); } else { lp_build_sample_image_linear(bld, FALSE, size1, NULL, row_stride1_vec, img_stride1_vec, data_ptr1, mipoff1, coords, offsets, colors1); } /* interpolate samples from the two mipmap levels */ if (bld->num_lods != bld->coord_type.length) lod_fpart = lp_build_unpack_broadcast_aos_scalars(bld->gallivm, bld->lodf_bld.type, bld->texel_bld.type, lod_fpart); for (chan = 0; chan < 4; chan++) { colors0[chan] = lp_build_lerp(&bld->texel_bld, lod_fpart, colors0[chan], colors1[chan], 0); LLVMBuildStore(builder, colors0[chan], colors_out[chan]); } } lp_build_endif(&if_ctx); } } /** * Sample the texture/mipmap using given mip filter, and using * both nearest and linear filtering at the same time depending * on linear_mask. * lod can be per quad but linear_mask is always per pixel. * ilevel0 and ilevel1 indicate the two mipmap levels to sample * from (vectors or scalars). * If we're using nearest miplevel sampling the '1' values will be null/unused. */ static void lp_build_sample_mipmap_both(struct lp_build_sample_context *bld, LLVMValueRef linear_mask, unsigned mip_filter, LLVMValueRef *coords, const LLVMValueRef *offsets, LLVMValueRef ilevel0, LLVMValueRef ilevel1, LLVMValueRef lod_fpart, LLVMValueRef lod_positive, LLVMValueRef *colors_out) { LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef size0 = NULL; LLVMValueRef size1 = NULL; LLVMValueRef row_stride0_vec = NULL; LLVMValueRef row_stride1_vec = NULL; LLVMValueRef img_stride0_vec = NULL; LLVMValueRef img_stride1_vec = NULL; LLVMValueRef data_ptr0 = NULL; LLVMValueRef data_ptr1 = NULL; LLVMValueRef mipoff0 = NULL; LLVMValueRef mipoff1 = NULL; LLVMValueRef colors0[4], colors1[4]; unsigned chan; /* sample the first mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel0, &size0, &row_stride0_vec, &img_stride0_vec); if (bld->num_mips == 1) { data_ptr0 = lp_build_get_mipmap_level(bld, ilevel0); } else { /* This path should work for num_lods 1 too but slightly less efficient */ data_ptr0 = bld->base_ptr; mipoff0 = lp_build_get_mip_offsets(bld, ilevel0); } lp_build_sample_image_linear(bld, FALSE, size0, linear_mask, row_stride0_vec, img_stride0_vec, data_ptr0, mipoff0, coords, offsets, colors0); /* Store the first level's colors in the output variables */ for (chan = 0; chan < 4; chan++) { LLVMBuildStore(builder, colors0[chan], colors_out[chan]); } if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) { struct lp_build_if_state if_ctx; LLVMValueRef need_lerp; /* * We'll do mip filtering if any of the quads (or individual * pixel in case of per-pixel lod) need it. * Note using lod_positive here not lod_fpart since it may be the same * condition as that used in the outer "if" in the caller hence llvm * should be able to merge the branches in this case. */ need_lerp = lp_build_any_true_range(&bld->lodi_bld, bld->num_lods, lod_positive); lp_build_if(&if_ctx, bld->gallivm, need_lerp); { /* * We unfortunately need to clamp lod_fpart here since we can get * negative values which would screw up filtering if not all * lod_fpart values have same sign. */ lod_fpart = lp_build_max(&bld->lodf_bld, lod_fpart, bld->lodf_bld.zero); /* sample the second mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel1, &size1, &row_stride1_vec, &img_stride1_vec); if (bld->num_mips == 1) { data_ptr1 = lp_build_get_mipmap_level(bld, ilevel1); } else { data_ptr1 = bld->base_ptr; mipoff1 = lp_build_get_mip_offsets(bld, ilevel1); } lp_build_sample_image_linear(bld, FALSE, size1, linear_mask, row_stride1_vec, img_stride1_vec, data_ptr1, mipoff1, coords, offsets, colors1); /* interpolate samples from the two mipmap levels */ if (bld->num_lods != bld->coord_type.length) lod_fpart = lp_build_unpack_broadcast_aos_scalars(bld->gallivm, bld->lodf_bld.type, bld->texel_bld.type, lod_fpart); for (chan = 0; chan < 4; chan++) { colors0[chan] = lp_build_lerp(&bld->texel_bld, lod_fpart, colors0[chan], colors1[chan], 0); LLVMBuildStore(builder, colors0[chan], colors_out[chan]); } } lp_build_endif(&if_ctx); } } /** * Build (per-coord) layer value. * Either clamp layer to valid values or fill in optional out_of_bounds * value and just return value unclamped. */ static LLVMValueRef lp_build_layer_coord(struct lp_build_sample_context *bld, unsigned texture_unit, boolean is_cube_array, LLVMValueRef layer, LLVMValueRef *out_of_bounds) { LLVMValueRef num_layers; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; num_layers = bld->dynamic_state->depth(bld->dynamic_state, bld->gallivm, bld->context_ptr, texture_unit); if (out_of_bounds) { LLVMValueRef out1, out; assert(!is_cube_array); num_layers = lp_build_broadcast_scalar(int_coord_bld, num_layers); out = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, layer, int_coord_bld->zero); out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, layer, num_layers); *out_of_bounds = lp_build_or(int_coord_bld, out, out1); return layer; } else { LLVMValueRef maxlayer; LLVMValueRef s = is_cube_array ? lp_build_const_int32(bld->gallivm, 6) : bld->int_bld.one; maxlayer = lp_build_sub(&bld->int_bld, num_layers, s); maxlayer = lp_build_broadcast_scalar(int_coord_bld, maxlayer); return lp_build_clamp(int_coord_bld, layer, int_coord_bld->zero, maxlayer); } } /** * Calculate cube face, lod, mip levels. */ static void lp_build_sample_common(struct lp_build_sample_context *bld, unsigned texture_index, unsigned sampler_index, LLVMValueRef *coords, const struct lp_derivatives *derivs, /* optional */ LLVMValueRef lod_bias, /* optional */ LLVMValueRef explicit_lod, /* optional */ LLVMValueRef *lod_pos_or_zero, LLVMValueRef *lod_fpart, LLVMValueRef *ilevel0, LLVMValueRef *ilevel1) { const unsigned mip_filter = bld->static_sampler_state->min_mip_filter; const unsigned min_filter = bld->static_sampler_state->min_img_filter; const unsigned mag_filter = bld->static_sampler_state->mag_img_filter; const unsigned target = bld->static_texture_state->target; LLVMValueRef first_level, cube_rho = NULL; LLVMValueRef lod_ipart = NULL; struct lp_derivatives cube_derivs; /* printf("%s mip %d min %d mag %d\n", __FUNCTION__, mip_filter, min_filter, mag_filter); */ /* * Choose cube face, recompute texcoords for the chosen face and * compute rho here too (as it requires transform of derivatives). */ if (target == PIPE_TEXTURE_CUBE || target == PIPE_TEXTURE_CUBE_ARRAY) { boolean need_derivs; need_derivs = ((min_filter != mag_filter || mip_filter != PIPE_TEX_MIPFILTER_NONE) && !bld->static_sampler_state->min_max_lod_equal && !explicit_lod); lp_build_cube_lookup(bld, coords, derivs, &cube_rho, &cube_derivs, need_derivs); derivs = &cube_derivs; if (target == PIPE_TEXTURE_CUBE_ARRAY) { /* calculate cube layer coord now */ LLVMValueRef layer = lp_build_iround(&bld->coord_bld, coords[3]); LLVMValueRef six = lp_build_const_int_vec(bld->gallivm, bld->int_coord_type, 6); layer = lp_build_mul(&bld->int_coord_bld, layer, six); coords[3] = lp_build_layer_coord(bld, texture_index, TRUE, layer, NULL); /* because of seamless filtering can't add it to face (coords[2]) here. */ } } else if (target == PIPE_TEXTURE_1D_ARRAY || target == PIPE_TEXTURE_2D_ARRAY) { coords[2] = lp_build_iround(&bld->coord_bld, coords[2]); coords[2] = lp_build_layer_coord(bld, texture_index, FALSE, coords[2], NULL); } if (bld->static_sampler_state->compare_mode != PIPE_TEX_COMPARE_NONE) { /* * Clamp p coords to [0,1] for fixed function depth texture format here. * Technically this is not entirely correct for unorm depth as the ref value * should be converted to the depth format (quantization!) and comparison * then done in texture format. This would actually help performance (since * only need to do it once and could save the per-sample conversion of texels * to floats instead), but it would need more messy code (would need to push * at least some bits down to actual fetch so conversion could be skipped, * and would have ugly interaction with border color, would need to convert * border color to that format too or do some other tricks to make it work). */ const struct util_format_description *format_desc = bld->format_desc; unsigned chan_type; /* not entirely sure we couldn't end up with non-valid swizzle here */ chan_type = format_desc->swizzle[0] <= UTIL_FORMAT_SWIZZLE_W ? format_desc->channel[format_desc->swizzle[0]].type : UTIL_FORMAT_TYPE_FLOAT; if (chan_type != UTIL_FORMAT_TYPE_FLOAT) { coords[4] = lp_build_clamp(&bld->coord_bld, coords[4], bld->coord_bld.zero, bld->coord_bld.one); } } /* * Compute the level of detail (float). */ if (min_filter != mag_filter || mip_filter != PIPE_TEX_MIPFILTER_NONE) { /* Need to compute lod either to choose mipmap levels or to * distinguish between minification/magnification with one mipmap level. */ lp_build_lod_selector(bld, texture_index, sampler_index, coords[0], coords[1], coords[2], cube_rho, derivs, lod_bias, explicit_lod, mip_filter, &lod_ipart, lod_fpart, lod_pos_or_zero); } else { lod_ipart = bld->lodi_bld.zero; *lod_pos_or_zero = bld->lodi_bld.zero; } if (bld->num_lods != bld->num_mips) { /* only makes sense if there's just a single mip level */ assert(bld->num_mips == 1); lod_ipart = lp_build_extract_range(bld->gallivm, lod_ipart, 0, 1); } /* * Compute integer mipmap level(s) to fetch texels from: ilevel0, ilevel1 */ switch (mip_filter) { default: assert(0 && "bad mip_filter value in lp_build_sample_soa()"); /* fall-through */ case PIPE_TEX_MIPFILTER_NONE: /* always use mip level 0 */ first_level = bld->dynamic_state->first_level(bld->dynamic_state, bld->gallivm, bld->context_ptr, texture_index); first_level = lp_build_broadcast_scalar(&bld->leveli_bld, first_level); *ilevel0 = first_level; break; case PIPE_TEX_MIPFILTER_NEAREST: assert(lod_ipart); lp_build_nearest_mip_level(bld, texture_index, lod_ipart, ilevel0, NULL); break; case PIPE_TEX_MIPFILTER_LINEAR: assert(lod_ipart); assert(*lod_fpart); lp_build_linear_mip_levels(bld, texture_index, lod_ipart, lod_fpart, ilevel0, ilevel1); break; } } static void lp_build_clamp_border_color(struct lp_build_sample_context *bld, unsigned sampler_unit) { struct gallivm_state *gallivm = bld->gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef border_color_ptr = bld->dynamic_state->border_color(bld->dynamic_state, gallivm, bld->context_ptr, sampler_unit); LLVMValueRef border_color; const struct util_format_description *format_desc = bld->format_desc; struct lp_type vec4_type = bld->texel_type; struct lp_build_context vec4_bld; LLVMValueRef min_clamp = NULL; LLVMValueRef max_clamp = NULL; /* * For normalized format need to clamp border color (technically * probably should also quantize the data). Really sucks doing this * here but can't avoid at least for now since this is part of * sampler state and texture format is part of sampler_view state. * GL expects also expects clamping for uint/sint formats too so * do that as well (d3d10 can't end up here with uint/sint since it * only supports them with ld). */ vec4_type.length = 4; lp_build_context_init(&vec4_bld, gallivm, vec4_type); /* * Vectorized clamping of border color. Loading is a bit of a hack since * we just cast the pointer to float array to pointer to vec4 * (int or float). */ border_color_ptr = lp_build_array_get_ptr(gallivm, border_color_ptr, lp_build_const_int32(gallivm, 0)); border_color_ptr = LLVMBuildBitCast(builder, border_color_ptr, LLVMPointerType(vec4_bld.vec_type, 0), ""); border_color = LLVMBuildLoad(builder, border_color_ptr, ""); /* we don't have aligned type in the dynamic state unfortunately */ LLVMSetAlignment(border_color, 4); /* * Instead of having some incredibly complex logic which will try to figure out * clamping necessary for each channel, simply use the first channel, and treat * mixed signed/unsigned normalized formats specially. * (Mixed non-normalized, which wouldn't work at all here, do not exist for a * good reason.) */ if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) { int chan; /* d/s needs special handling because both present means just sampling depth */ if (util_format_is_depth_and_stencil(format_desc->format)) { chan = format_desc->swizzle[0]; } else { chan = util_format_get_first_non_void_channel(format_desc->format); } if (chan >= 0 && chan <= UTIL_FORMAT_SWIZZLE_W) { unsigned chan_type = format_desc->channel[chan].type; unsigned chan_norm = format_desc->channel[chan].normalized; unsigned chan_pure = format_desc->channel[chan].pure_integer; if (chan_type == UTIL_FORMAT_TYPE_SIGNED) { if (chan_norm) { min_clamp = lp_build_const_vec(gallivm, vec4_type, -1.0F); max_clamp = vec4_bld.one; } else if (chan_pure) { /* * Border color was stored as int, hence need min/max clamp * only if chan has less than 32 bits.. */ unsigned chan_size = format_desc->channel[chan].size; if (chan_size < 32) { min_clamp = lp_build_const_int_vec(gallivm, vec4_type, 0 - (1 << (chan_size - 1))); max_clamp = lp_build_const_int_vec(gallivm, vec4_type, (1 << (chan_size - 1)) - 1); } } /* TODO: no idea about non-pure, non-normalized! */ } else if (chan_type == UTIL_FORMAT_TYPE_UNSIGNED) { if (chan_norm) { min_clamp = vec4_bld.zero; max_clamp = vec4_bld.one; } /* * Need a ugly hack here, because we don't have Z32_FLOAT_X8X24 * we use Z32_FLOAT_S8X24 to imply sampling depth component * and ignoring stencil, which will blow up here if we try to * do a uint clamp in a float texel build... * And even if we had that format, mesa st also thinks using z24s8 * means depth sampling ignoring stencil. */ else if (chan_pure) { /* * Border color was stored as uint, hence never need min * clamp, and only need max clamp if chan has less than 32 bits. */ unsigned chan_size = format_desc->channel[chan].size; if (chan_size < 32) { max_clamp = lp_build_const_int_vec(gallivm, vec4_type, (1 << chan_size) - 1); } /* TODO: no idea about non-pure, non-normalized! */ } } else if (chan_type == UTIL_FORMAT_TYPE_FIXED) { /* TODO: I have no idea what clamp this would need if any! */ } } /* mixed plain formats (or different pure size) */ switch (format_desc->format) { case PIPE_FORMAT_B10G10R10A2_UINT: case PIPE_FORMAT_R10G10B10A2_UINT: { unsigned max10 = (1 << 10) - 1; max_clamp = lp_build_const_aos(gallivm, vec4_type, max10, max10, max10, (1 << 2) - 1, NULL); } break; case PIPE_FORMAT_R10SG10SB10SA2U_NORM: min_clamp = lp_build_const_aos(gallivm, vec4_type, -1.0F, -1.0F, -1.0F, 0.0F, NULL); max_clamp = vec4_bld.one; break; case PIPE_FORMAT_R8SG8SB8UX8U_NORM: case PIPE_FORMAT_R5SG5SB6U_NORM: min_clamp = lp_build_const_aos(gallivm, vec4_type, -1.0F, -1.0F, 0.0F, 0.0F, NULL); max_clamp = vec4_bld.one; break; default: break; } } else { /* cannot figure this out from format description */ if (format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) { /* s3tc formats are always unorm */ min_clamp = vec4_bld.zero; max_clamp = vec4_bld.one; } else if (format_desc->layout == UTIL_FORMAT_LAYOUT_RGTC || format_desc->layout == UTIL_FORMAT_LAYOUT_ETC) { switch (format_desc->format) { case PIPE_FORMAT_RGTC1_UNORM: case PIPE_FORMAT_RGTC2_UNORM: case PIPE_FORMAT_LATC1_UNORM: case PIPE_FORMAT_LATC2_UNORM: case PIPE_FORMAT_ETC1_RGB8: min_clamp = vec4_bld.zero; max_clamp = vec4_bld.one; break; case PIPE_FORMAT_RGTC1_SNORM: case PIPE_FORMAT_RGTC2_SNORM: case PIPE_FORMAT_LATC1_SNORM: case PIPE_FORMAT_LATC2_SNORM: min_clamp = lp_build_const_vec(gallivm, vec4_type, -1.0F); max_clamp = vec4_bld.one; break; default: assert(0); break; } } /* * all others from subsampled/other group, though we don't care * about yuv (and should not have any from zs here) */ else if (format_desc->colorspace != UTIL_FORMAT_COLORSPACE_YUV){ switch (format_desc->format) { case PIPE_FORMAT_R8G8_B8G8_UNORM: case PIPE_FORMAT_G8R8_G8B8_UNORM: case PIPE_FORMAT_G8R8_B8R8_UNORM: case PIPE_FORMAT_R8G8_R8B8_UNORM: case PIPE_FORMAT_R1_UNORM: /* doesn't make sense but ah well */ min_clamp = vec4_bld.zero; max_clamp = vec4_bld.one; break; case PIPE_FORMAT_R8G8Bx_SNORM: min_clamp = lp_build_const_vec(gallivm, vec4_type, -1.0F); max_clamp = vec4_bld.one; break; /* * Note smallfloat formats usually don't need clamping * (they still have infinite range) however this is not * true for r11g11b10 and r9g9b9e5, which can't represent * negative numbers (and additionally r9g9b9e5 can't represent * very large numbers). d3d10 seems happy without clamping in * this case, but gl spec is pretty clear: "for floating * point and integer formats, border values are clamped to * the representable range of the format" so do that here. */ case PIPE_FORMAT_R11G11B10_FLOAT: min_clamp = vec4_bld.zero; break; case PIPE_FORMAT_R9G9B9E5_FLOAT: min_clamp = vec4_bld.zero; max_clamp = lp_build_const_vec(gallivm, vec4_type, MAX_RGB9E5); break; default: assert(0); break; } } } if (min_clamp) { border_color = lp_build_max(&vec4_bld, border_color, min_clamp); } if (max_clamp) { border_color = lp_build_min(&vec4_bld, border_color, max_clamp); } bld->border_color_clamped = border_color; } /** * General texture sampling codegen. * This function handles texture sampling for all texture targets (1D, * 2D, 3D, cube) and all filtering modes. */ static void lp_build_sample_general(struct lp_build_sample_context *bld, unsigned sampler_unit, boolean is_gather, LLVMValueRef *coords, const LLVMValueRef *offsets, LLVMValueRef lod_positive, LLVMValueRef lod_fpart, LLVMValueRef ilevel0, LLVMValueRef ilevel1, LLVMValueRef *colors_out) { LLVMBuilderRef builder = bld->gallivm->builder; const struct lp_static_sampler_state *sampler_state = bld->static_sampler_state; const unsigned mip_filter = sampler_state->min_mip_filter; const unsigned min_filter = sampler_state->min_img_filter; const unsigned mag_filter = sampler_state->mag_img_filter; LLVMValueRef texels[4]; unsigned chan; /* if we need border color, (potentially) clamp it now */ if (lp_sampler_wrap_mode_uses_border_color(sampler_state->wrap_s, min_filter, mag_filter) || (bld->dims > 1 && lp_sampler_wrap_mode_uses_border_color(sampler_state->wrap_t, min_filter, mag_filter)) || (bld->dims > 2 && lp_sampler_wrap_mode_uses_border_color(sampler_state->wrap_r, min_filter, mag_filter))) { lp_build_clamp_border_color(bld, sampler_unit); } /* * Get/interpolate texture colors. */ for (chan = 0; chan < 4; ++chan) { texels[chan] = lp_build_alloca(bld->gallivm, bld->texel_bld.vec_type, ""); lp_build_name(texels[chan], "sampler%u_texel_%c_var", sampler_unit, "xyzw"[chan]); } if (min_filter == mag_filter) { /* no need to distinguish between minification and magnification */ lp_build_sample_mipmap(bld, min_filter, mip_filter, is_gather, coords, offsets, ilevel0, ilevel1, lod_fpart, texels); } else { /* * Could also get rid of the if-logic and always use mipmap_both, both * for the single lod and multi-lod case if nothing really uses this. */ if (bld->num_lods == 1) { /* Emit conditional to choose min image filter or mag image filter * depending on the lod being > 0 or <= 0, respectively. */ struct lp_build_if_state if_ctx; lod_positive = LLVMBuildTrunc(builder, lod_positive, LLVMInt1TypeInContext(bld->gallivm->context), ""); lp_build_if(&if_ctx, bld->gallivm, lod_positive); { /* Use the minification filter */ lp_build_sample_mipmap(bld, min_filter, mip_filter, FALSE, coords, offsets, ilevel0, ilevel1, lod_fpart, texels); } lp_build_else(&if_ctx); { /* Use the magnification filter */ lp_build_sample_mipmap(bld, mag_filter, PIPE_TEX_MIPFILTER_NONE, FALSE, coords, offsets, ilevel0, NULL, NULL, texels); } lp_build_endif(&if_ctx); } else { LLVMValueRef need_linear, linear_mask; unsigned mip_filter_for_nearest; struct lp_build_if_state if_ctx; if (min_filter == PIPE_TEX_FILTER_LINEAR) { linear_mask = lod_positive; mip_filter_for_nearest = PIPE_TEX_MIPFILTER_NONE; } else { linear_mask = lp_build_not(&bld->lodi_bld, lod_positive); mip_filter_for_nearest = mip_filter; } need_linear = lp_build_any_true_range(&bld->lodi_bld, bld->num_lods, linear_mask); if (bld->num_lods != bld->coord_type.length) { linear_mask = lp_build_unpack_broadcast_aos_scalars(bld->gallivm, bld->lodi_type, bld->int_coord_type, linear_mask); } lp_build_if(&if_ctx, bld->gallivm, need_linear); { /* * Do sampling with both filters simultaneously. This means using * a linear filter and doing some tricks (with weights) for the pixels * which need nearest filter. * Note that it's probably rare some pixels need nearest and some * linear filter but the fixups required for the nearest pixels * aren't all that complicated so just always run a combined path * if at least some pixels require linear. */ lp_build_sample_mipmap_both(bld, linear_mask, mip_filter, coords, offsets, ilevel0, ilevel1, lod_fpart, lod_positive, texels); } lp_build_else(&if_ctx); { /* * All pixels require just nearest filtering, which is way * cheaper than linear, hence do a separate path for that. */ lp_build_sample_mipmap(bld, PIPE_TEX_FILTER_NEAREST, FALSE, mip_filter_for_nearest, coords, offsets, ilevel0, ilevel1, lod_fpart, texels); } lp_build_endif(&if_ctx); } } for (chan = 0; chan < 4; ++chan) { colors_out[chan] = LLVMBuildLoad(builder, texels[chan], ""); lp_build_name(colors_out[chan], "sampler%u_texel_%c", sampler_unit, "xyzw"[chan]); } } /** * Texel fetch function. * In contrast to general sampling there is no filtering, no coord minification, * lod (if any) is always explicit uint, coords are uints (in terms of texel units) * directly to be applied to the selected mip level (after adding texel offsets). * This function handles texel fetch for all targets where texel fetch is supported * (no cube maps, but 1d, 2d, 3d are supported, arrays and buffers should be too). */ static void lp_build_fetch_texel(struct lp_build_sample_context *bld, unsigned texture_unit, const LLVMValueRef *coords, LLVMValueRef explicit_lod, const LLVMValueRef *offsets, LLVMValueRef *colors_out) { struct lp_build_context *perquadi_bld = &bld->lodi_bld; struct lp_build_context *int_coord_bld = &bld->int_coord_bld; unsigned dims = bld->dims, chan; unsigned target = bld->static_texture_state->target; boolean out_of_bound_ret_zero = TRUE; LLVMValueRef size, ilevel; LLVMValueRef row_stride_vec = NULL, img_stride_vec = NULL; LLVMValueRef x = coords[0], y = coords[1], z = coords[2]; LLVMValueRef width, height, depth, i, j; LLVMValueRef offset, out_of_bounds, out1; out_of_bounds = int_coord_bld->zero; if (explicit_lod && bld->static_texture_state->target != PIPE_BUFFER) { if (bld->num_mips != int_coord_bld->type.length) { ilevel = lp_build_pack_aos_scalars(bld->gallivm, int_coord_bld->type, perquadi_bld->type, explicit_lod, 0); } else { ilevel = explicit_lod; } lp_build_nearest_mip_level(bld, texture_unit, ilevel, &ilevel, out_of_bound_ret_zero ? &out_of_bounds : NULL); } else { assert(bld->num_mips == 1); if (bld->static_texture_state->target != PIPE_BUFFER) { ilevel = bld->dynamic_state->first_level(bld->dynamic_state, bld->gallivm, bld->context_ptr, texture_unit); } else { ilevel = lp_build_const_int32(bld->gallivm, 0); } } lp_build_mipmap_level_sizes(bld, ilevel, &size, &row_stride_vec, &img_stride_vec); lp_build_extract_image_sizes(bld, &bld->int_size_bld, int_coord_bld->type, size, &width, &height, &depth); if (target == PIPE_TEXTURE_1D_ARRAY || target == PIPE_TEXTURE_2D_ARRAY) { if (out_of_bound_ret_zero) { z = lp_build_layer_coord(bld, texture_unit, FALSE, z, &out1); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); } else { z = lp_build_layer_coord(bld, texture_unit, FALSE, z, NULL); } } /* This is a lot like border sampling */ if (offsets[0]) { /* * coords are really unsigned, offsets are signed, but I don't think * exceeding 31 bits is possible */ x = lp_build_add(int_coord_bld, x, offsets[0]); } out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, x, int_coord_bld->zero); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, x, width); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); if (dims >= 2) { if (offsets[1]) { y = lp_build_add(int_coord_bld, y, offsets[1]); } out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, y, int_coord_bld->zero); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, y, height); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); if (dims >= 3) { if (offsets[2]) { z = lp_build_add(int_coord_bld, z, offsets[2]); } out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_LESS, z, int_coord_bld->zero); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); out1 = lp_build_cmp(int_coord_bld, PIPE_FUNC_GEQUAL, z, depth); out_of_bounds = lp_build_or(int_coord_bld, out_of_bounds, out1); } } lp_build_sample_offset(int_coord_bld, bld->format_desc, x, y, z, row_stride_vec, img_stride_vec, &offset, &i, &j); if (bld->static_texture_state->target != PIPE_BUFFER) { offset = lp_build_add(int_coord_bld, offset, lp_build_get_mip_offsets(bld, ilevel)); } offset = lp_build_andnot(int_coord_bld, offset, out_of_bounds); lp_build_fetch_rgba_soa(bld->gallivm, bld->format_desc, bld->texel_type, bld->base_ptr, offset, i, j, bld->cache, colors_out); if (out_of_bound_ret_zero) { /* * Only needed for ARB_robust_buffer_access_behavior and d3d10. * Could use min/max above instead of out-of-bounds comparisons * if we don't care about the result returned for out-of-bounds. */ for (chan = 0; chan < 4; chan++) { colors_out[chan] = lp_build_select(&bld->texel_bld, out_of_bounds, bld->texel_bld.zero, colors_out[chan]); } } } /** * Just set texels to white instead of actually sampling the texture. * For debugging. */ void lp_build_sample_nop(struct gallivm_state *gallivm, struct lp_type type, const LLVMValueRef *coords, LLVMValueRef texel_out[4]) { LLVMValueRef one = lp_build_one(gallivm, type); unsigned chan; for (chan = 0; chan < 4; chan++) { texel_out[chan] = one; } } /** * Build the actual texture sampling code. * 'texel' will return a vector of four LLVMValueRefs corresponding to * R, G, B, A. * \param type vector float type to use for coords, etc. * \param sample_key * \param derivs partial derivatives of (s,t,r,q) with respect to x and y */ static void lp_build_sample_soa_code(struct gallivm_state *gallivm, const struct lp_static_texture_state *static_texture_state, const struct lp_static_sampler_state *static_sampler_state, struct lp_sampler_dynamic_state *dynamic_state, struct lp_type type, unsigned sample_key, unsigned texture_index, unsigned sampler_index, LLVMValueRef context_ptr, LLVMValueRef thread_data_ptr, const LLVMValueRef *coords, const LLVMValueRef *offsets, const struct lp_derivatives *derivs, /* optional */ LLVMValueRef lod, /* optional */ LLVMValueRef texel_out[4]) { unsigned target = static_texture_state->target; unsigned dims = texture_dims(target); unsigned num_quads = type.length / 4; unsigned mip_filter, min_img_filter, mag_img_filter, i; struct lp_build_sample_context bld; struct lp_static_sampler_state derived_sampler_state = *static_sampler_state; LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context); LLVMBuilderRef builder = gallivm->builder; LLVMValueRef tex_width, newcoords[5]; enum lp_sampler_lod_property lod_property; enum lp_sampler_lod_control lod_control; enum lp_sampler_op_type op_type; LLVMValueRef lod_bias = NULL; LLVMValueRef explicit_lod = NULL; boolean op_is_tex; if (0) { enum pipe_format fmt = static_texture_state->format; debug_printf("Sample from %s\n", util_format_name(fmt)); } lod_property = (sample_key & LP_SAMPLER_LOD_PROPERTY_MASK) >> LP_SAMPLER_LOD_PROPERTY_SHIFT; lod_control = (sample_key & LP_SAMPLER_LOD_CONTROL_MASK) >> LP_SAMPLER_LOD_CONTROL_SHIFT; op_type = (sample_key & LP_SAMPLER_OP_TYPE_MASK) >> LP_SAMPLER_OP_TYPE_SHIFT; op_is_tex = op_type == LP_SAMPLER_OP_TEXTURE; if (lod_control == LP_SAMPLER_LOD_BIAS) { lod_bias = lod; assert(lod); assert(derivs == NULL); } else if (lod_control == LP_SAMPLER_LOD_EXPLICIT) { explicit_lod = lod; assert(lod); assert(derivs == NULL); } else if (lod_control == LP_SAMPLER_LOD_DERIVATIVES) { assert(derivs); assert(lod == NULL); } else { assert(derivs == NULL); assert(lod == NULL); } if (static_texture_state->format == PIPE_FORMAT_NONE) { /* * If there's nothing bound, format is NONE, and we must return * all zero as mandated by d3d10 in this case. */ unsigned chan; LLVMValueRef zero = lp_build_zero(gallivm, type); for (chan = 0; chan < 4; chan++) { texel_out[chan] = zero; } return; } assert(type.floating); /* Setup our build context */ memset(&bld, 0, sizeof bld); bld.gallivm = gallivm; bld.context_ptr = context_ptr; bld.static_sampler_state = &derived_sampler_state; bld.static_texture_state = static_texture_state; bld.dynamic_state = dynamic_state; bld.format_desc = util_format_description(static_texture_state->format); bld.dims = dims; bld.vector_width = lp_type_width(type); bld.float_type = lp_type_float(32); bld.int_type = lp_type_int(32); bld.coord_type = type; bld.int_coord_type = lp_int_type(type); bld.float_size_in_type = lp_type_float(32); bld.float_size_in_type.length = dims > 1 ? 4 : 1; bld.int_size_in_type = lp_int_type(bld.float_size_in_type); bld.texel_type = type; /* always using the first channel hopefully should be safe, * if not things WILL break in other places anyway. */ if (bld.format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB && bld.format_desc->channel[0].pure_integer) { if (bld.format_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { bld.texel_type = lp_type_int_vec(type.width, type.width * type.length); } else if (bld.format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) { bld.texel_type = lp_type_uint_vec(type.width, type.width * type.length); } } else if (util_format_has_stencil(bld.format_desc) && !util_format_has_depth(bld.format_desc)) { /* for stencil only formats, sample stencil (uint) */ bld.texel_type = lp_type_int_vec(type.width, type.width * type.length); } if (!static_texture_state->level_zero_only) { derived_sampler_state.min_mip_filter = static_sampler_state->min_mip_filter; } else { derived_sampler_state.min_mip_filter = PIPE_TEX_MIPFILTER_NONE; } if (op_type == LP_SAMPLER_OP_GATHER) { /* * gather4 is exactly like GL_LINEAR filtering but in the end skipping * the actual filtering. Using mostly the same paths, so cube face * selection, coord wrapping etc. all naturally uses the same code. */ derived_sampler_state.min_mip_filter = PIPE_TEX_MIPFILTER_NONE; derived_sampler_state.min_img_filter = PIPE_TEX_FILTER_LINEAR; derived_sampler_state.mag_img_filter = PIPE_TEX_FILTER_LINEAR; } mip_filter = derived_sampler_state.min_mip_filter; if (0) { debug_printf(" .min_mip_filter = %u\n", derived_sampler_state.min_mip_filter); } if (static_texture_state->target == PIPE_TEXTURE_CUBE || static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { /* * Seamless filtering ignores wrap modes. * Setting to CLAMP_TO_EDGE is correct for nearest filtering, for * bilinear it's not correct but way better than using for instance repeat. * Note we even set this for non-seamless. Technically GL allows any wrap * mode, which made sense when supporting true borders (can get seamless * effect with border and CLAMP_TO_BORDER), but gallium doesn't support * borders and d3d9 requires wrap modes to be ignored and it's a pain to fix * up the sampler state (as it makes it texture dependent). */ derived_sampler_state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; derived_sampler_state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; } /* * We could force CLAMP to CLAMP_TO_EDGE here if min/mag filter is nearest, * so AoS path could be used. Not sure it's worth the trouble... */ min_img_filter = derived_sampler_state.min_img_filter; mag_img_filter = derived_sampler_state.mag_img_filter; /* * This is all a bit complicated different paths are chosen for performance * reasons. * Essentially, there can be 1 lod per element, 1 lod per quad or 1 lod for * everything (the last two options are equivalent for 4-wide case). * If there's per-quad lod but we split to 4-wide so we can use AoS, per-quad * lod is calculated then the lod value extracted afterwards so making this * case basically the same as far as lod handling is concerned for the * further sample/filter code as the 1 lod for everything case. * Different lod handling mostly shows up when building mipmap sizes * (lp_build_mipmap_level_sizes() and friends) and also in filtering * (getting the fractional part of the lod to the right texels). */ /* * There are other situations where at least the multiple int lods could be * avoided like min and max lod being equal. */ bld.num_mips = bld.num_lods = 1; if ((gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) && (gallivm_debug & GALLIVM_DEBUG_NO_RHO_APPROX) && (static_texture_state->target == PIPE_TEXTURE_CUBE || static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) && (op_is_tex && mip_filter != PIPE_TEX_MIPFILTER_NONE)) { /* * special case for using per-pixel lod even for implicit lod, * which is generally never required (ok by APIs) except to please * some (somewhat broken imho) tests (because per-pixel face selection * can cause derivatives to be different for pixels outside the primitive * due to the major axis division even if pre-project derivatives are * looking normal). */ bld.num_mips = type.length; bld.num_lods = type.length; } else if (lod_property == LP_SAMPLER_LOD_PER_ELEMENT || (explicit_lod || lod_bias || derivs)) { if ((!op_is_tex && target != PIPE_BUFFER) || (op_is_tex && mip_filter != PIPE_TEX_MIPFILTER_NONE)) { bld.num_mips = type.length; bld.num_lods = type.length; } else if (op_is_tex && min_img_filter != mag_img_filter) { bld.num_mips = 1; bld.num_lods = type.length; } } /* TODO: for true scalar_lod should only use 1 lod value */ else if ((!op_is_tex && explicit_lod && target != PIPE_BUFFER) || (op_is_tex && mip_filter != PIPE_TEX_MIPFILTER_NONE)) { bld.num_mips = num_quads; bld.num_lods = num_quads; } else if (op_is_tex && min_img_filter != mag_img_filter) { bld.num_mips = 1; bld.num_lods = num_quads; } bld.lodf_type = type; /* we want native vector size to be able to use our intrinsics */ if (bld.num_lods != type.length) { /* TODO: this currently always has to be per-quad or per-element */ bld.lodf_type.length = type.length > 4 ? ((type.length + 15) / 16) * 4 : 1; } bld.lodi_type = lp_int_type(bld.lodf_type); bld.levelf_type = bld.lodf_type; if (bld.num_mips == 1) { bld.levelf_type.length = 1; } bld.leveli_type = lp_int_type(bld.levelf_type); bld.float_size_type = bld.float_size_in_type; /* Note: size vectors may not be native. They contain minified w/h/d/_ values, * with per-element lod that is w0/h0/d0/_/w1/h1/d1_/... so up to 8x4f32 */ if (bld.num_mips > 1) { bld.float_size_type.length = bld.num_mips == type.length ? bld.num_mips * bld.float_size_in_type.length : type.length; } bld.int_size_type = lp_int_type(bld.float_size_type); lp_build_context_init(&bld.float_bld, gallivm, bld.float_type); lp_build_context_init(&bld.float_vec_bld, gallivm, type); lp_build_context_init(&bld.int_bld, gallivm, bld.int_type); lp_build_context_init(&bld.coord_bld, gallivm, bld.coord_type); lp_build_context_init(&bld.int_coord_bld, gallivm, bld.int_coord_type); lp_build_context_init(&bld.int_size_in_bld, gallivm, bld.int_size_in_type); lp_build_context_init(&bld.float_size_in_bld, gallivm, bld.float_size_in_type); lp_build_context_init(&bld.int_size_bld, gallivm, bld.int_size_type); lp_build_context_init(&bld.float_size_bld, gallivm, bld.float_size_type); lp_build_context_init(&bld.texel_bld, gallivm, bld.texel_type); lp_build_context_init(&bld.levelf_bld, gallivm, bld.levelf_type); lp_build_context_init(&bld.leveli_bld, gallivm, bld.leveli_type); lp_build_context_init(&bld.lodf_bld, gallivm, bld.lodf_type); lp_build_context_init(&bld.lodi_bld, gallivm, bld.lodi_type); /* Get the dynamic state */ tex_width = dynamic_state->width(dynamic_state, gallivm, context_ptr, texture_index); bld.row_stride_array = dynamic_state->row_stride(dynamic_state, gallivm, context_ptr, texture_index); bld.img_stride_array = dynamic_state->img_stride(dynamic_state, gallivm, context_ptr, texture_index); bld.base_ptr = dynamic_state->base_ptr(dynamic_state, gallivm, context_ptr, texture_index); bld.mip_offsets = dynamic_state->mip_offsets(dynamic_state, gallivm, context_ptr, texture_index); /* Note that mip_offsets is an array[level] of offsets to texture images */ if (dynamic_state->cache_ptr && thread_data_ptr) { bld.cache = dynamic_state->cache_ptr(dynamic_state, gallivm, thread_data_ptr, texture_index); } /* width, height, depth as single int vector */ if (dims <= 1) { bld.int_size = tex_width; } else { bld.int_size = LLVMBuildInsertElement(builder, bld.int_size_in_bld.undef, tex_width, LLVMConstInt(i32t, 0, 0), ""); if (dims >= 2) { LLVMValueRef tex_height = dynamic_state->height(dynamic_state, gallivm, context_ptr, texture_index); bld.int_size = LLVMBuildInsertElement(builder, bld.int_size, tex_height, LLVMConstInt(i32t, 1, 0), ""); if (dims >= 3) { LLVMValueRef tex_depth = dynamic_state->depth(dynamic_state, gallivm, context_ptr, texture_index); bld.int_size = LLVMBuildInsertElement(builder, bld.int_size, tex_depth, LLVMConstInt(i32t, 2, 0), ""); } } } for (i = 0; i < 5; i++) { newcoords[i] = coords[i]; } if (0) { /* For debug: no-op texture sampling */ lp_build_sample_nop(gallivm, bld.texel_type, newcoords, texel_out); } else if (op_type == LP_SAMPLER_OP_FETCH) { lp_build_fetch_texel(&bld, texture_index, newcoords, lod, offsets, texel_out); } else { LLVMValueRef lod_fpart = NULL, lod_positive = NULL; LLVMValueRef ilevel0 = NULL, ilevel1 = NULL; boolean use_aos; if (util_format_is_pure_integer(static_texture_state->format) && !util_format_has_depth(bld.format_desc) && (static_sampler_state->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR || static_sampler_state->min_img_filter == PIPE_TEX_FILTER_LINEAR || static_sampler_state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)) { /* * Bail if impossible filtering is specified (the awkard additional * depth check is because it is legal in gallium to have things like S8Z24 * here which would say it's pure int despite such formats should sample * the depth component). * In GL such filters make the texture incomplete, this makes it robust * against state trackers which set this up regardless (we'd crash in the * lerp later (except for gather)). * Must do this after fetch_texel code since with GL state tracker we'll * get some junk sampler for buffer textures. */ unsigned chan; LLVMValueRef zero = lp_build_zero(gallivm, type); for (chan = 0; chan < 4; chan++) { texel_out[chan] = zero; } return; } use_aos = util_format_fits_8unorm(bld.format_desc) && op_is_tex && /* not sure this is strictly needed or simply impossible */ derived_sampler_state.compare_mode == PIPE_TEX_COMPARE_NONE && lp_is_simple_wrap_mode(derived_sampler_state.wrap_s); use_aos &= bld.num_lods <= num_quads || derived_sampler_state.min_img_filter == derived_sampler_state.mag_img_filter; if (dims > 1) { use_aos &= lp_is_simple_wrap_mode(derived_sampler_state.wrap_t); if (dims > 2) { use_aos &= lp_is_simple_wrap_mode(derived_sampler_state.wrap_r); } } if ((static_texture_state->target == PIPE_TEXTURE_CUBE || static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) && derived_sampler_state.seamless_cube_map && (derived_sampler_state.min_img_filter == PIPE_TEX_FILTER_LINEAR || derived_sampler_state.mag_img_filter == PIPE_TEX_FILTER_LINEAR)) { /* theoretically possible with AoS filtering but not implemented (complex!) */ use_aos = 0; } if ((gallivm_debug & GALLIVM_DEBUG_PERF) && !use_aos && util_format_fits_8unorm(bld.format_desc)) { debug_printf("%s: using floating point linear filtering for %s\n", __FUNCTION__, bld.format_desc->short_name); debug_printf(" min_img %d mag_img %d mip %d target %d seamless %d" " wraps %d wrapt %d wrapr %d\n", derived_sampler_state.min_img_filter, derived_sampler_state.mag_img_filter, derived_sampler_state.min_mip_filter, static_texture_state->target, derived_sampler_state.seamless_cube_map, derived_sampler_state.wrap_s, derived_sampler_state.wrap_t, derived_sampler_state.wrap_r); } lp_build_sample_common(&bld, texture_index, sampler_index, newcoords, derivs, lod_bias, explicit_lod, &lod_positive, &lod_fpart, &ilevel0, &ilevel1); if (use_aos && static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) { /* The aos path doesn't do seamless filtering so simply add cube layer * to face now. */ newcoords[2] = lp_build_add(&bld.int_coord_bld, newcoords[2], newcoords[3]); } /* * we only try 8-wide sampling with soa as it appears to * be a loss with aos with AVX (but it should work, except * for conformance if min_filter != mag_filter if num_lods > 1). * (It should be faster if we'd support avx2) */ if (num_quads == 1 || !use_aos) { if (use_aos) { /* do sampling/filtering with fixed pt arithmetic */ lp_build_sample_aos(&bld, sampler_index, newcoords[0], newcoords[1], newcoords[2], offsets, lod_positive, lod_fpart, ilevel0, ilevel1, texel_out); } else { lp_build_sample_general(&bld, sampler_index, op_type == LP_SAMPLER_OP_GATHER, newcoords, offsets, lod_positive, lod_fpart, ilevel0, ilevel1, texel_out); } } else { unsigned j; struct lp_build_sample_context bld4; struct lp_type type4 = type; unsigned i; LLVMValueRef texelout4[4]; LLVMValueRef texelouttmp[4][LP_MAX_VECTOR_LENGTH/16]; type4.length = 4; /* Setup our build context */ memset(&bld4, 0, sizeof bld4); bld4.gallivm = bld.gallivm; bld4.context_ptr = bld.context_ptr; bld4.static_texture_state = bld.static_texture_state; bld4.static_sampler_state = bld.static_sampler_state; bld4.dynamic_state = bld.dynamic_state; bld4.format_desc = bld.format_desc; bld4.dims = bld.dims; bld4.row_stride_array = bld.row_stride_array; bld4.img_stride_array = bld.img_stride_array; bld4.base_ptr = bld.base_ptr; bld4.mip_offsets = bld.mip_offsets; bld4.int_size = bld.int_size; bld4.cache = bld.cache; bld4.vector_width = lp_type_width(type4); bld4.float_type = lp_type_float(32); bld4.int_type = lp_type_int(32); bld4.coord_type = type4; bld4.int_coord_type = lp_int_type(type4); bld4.float_size_in_type = lp_type_float(32); bld4.float_size_in_type.length = dims > 1 ? 4 : 1; bld4.int_size_in_type = lp_int_type(bld4.float_size_in_type); bld4.texel_type = bld.texel_type; bld4.texel_type.length = 4; bld4.num_mips = bld4.num_lods = 1; if ((gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) && (gallivm_debug & GALLIVM_DEBUG_NO_RHO_APPROX) && (static_texture_state->target == PIPE_TEXTURE_CUBE || static_texture_state->target == PIPE_TEXTURE_CUBE_ARRAY) && (op_is_tex && mip_filter != PIPE_TEX_MIPFILTER_NONE)) { bld4.num_mips = type4.length; bld4.num_lods = type4.length; } if (lod_property == LP_SAMPLER_LOD_PER_ELEMENT && (explicit_lod || lod_bias || derivs)) { if ((!op_is_tex && target != PIPE_BUFFER) || (op_is_tex && mip_filter != PIPE_TEX_MIPFILTER_NONE)) { bld4.num_mips = type4.length; bld4.num_lods = type4.length; } else if (op_is_tex && min_img_filter != mag_img_filter) { bld4.num_mips = 1; bld4.num_lods = type4.length; } } /* we want native vector size to be able to use our intrinsics */ bld4.lodf_type = type4; if (bld4.num_lods != type4.length) { bld4.lodf_type.length = 1; } bld4.lodi_type = lp_int_type(bld4.lodf_type); bld4.levelf_type = type4; if (bld4.num_mips != type4.length) { bld4.levelf_type.length = 1; } bld4.leveli_type = lp_int_type(bld4.levelf_type); bld4.float_size_type = bld4.float_size_in_type; if (bld4.num_mips > 1) { bld4.float_size_type.length = bld4.num_mips == type4.length ? bld4.num_mips * bld4.float_size_in_type.length : type4.length; } bld4.int_size_type = lp_int_type(bld4.float_size_type); lp_build_context_init(&bld4.float_bld, gallivm, bld4.float_type); lp_build_context_init(&bld4.float_vec_bld, gallivm, type4); lp_build_context_init(&bld4.int_bld, gallivm, bld4.int_type); lp_build_context_init(&bld4.coord_bld, gallivm, bld4.coord_type); lp_build_context_init(&bld4.int_coord_bld, gallivm, bld4.int_coord_type); lp_build_context_init(&bld4.int_size_in_bld, gallivm, bld4.int_size_in_type); lp_build_context_init(&bld4.float_size_in_bld, gallivm, bld4.float_size_in_type); lp_build_context_init(&bld4.int_size_bld, gallivm, bld4.int_size_type); lp_build_context_init(&bld4.float_size_bld, gallivm, bld4.float_size_type); lp_build_context_init(&bld4.texel_bld, gallivm, bld4.texel_type); lp_build_context_init(&bld4.levelf_bld, gallivm, bld4.levelf_type); lp_build_context_init(&bld4.leveli_bld, gallivm, bld4.leveli_type); lp_build_context_init(&bld4.lodf_bld, gallivm, bld4.lodf_type); lp_build_context_init(&bld4.lodi_bld, gallivm, bld4.lodi_type); for (i = 0; i < num_quads; i++) { LLVMValueRef s4, t4, r4; LLVMValueRef lod_positive4, lod_fpart4 = NULL; LLVMValueRef ilevel04, ilevel14 = NULL; LLVMValueRef offsets4[4] = { NULL }; unsigned num_lods = bld4.num_lods; s4 = lp_build_extract_range(gallivm, newcoords[0], 4*i, 4); t4 = lp_build_extract_range(gallivm, newcoords[1], 4*i, 4); r4 = lp_build_extract_range(gallivm, newcoords[2], 4*i, 4); if (offsets[0]) { offsets4[0] = lp_build_extract_range(gallivm, offsets[0], 4*i, 4); if (dims > 1) { offsets4[1] = lp_build_extract_range(gallivm, offsets[1], 4*i, 4); if (dims > 2) { offsets4[2] = lp_build_extract_range(gallivm, offsets[2], 4*i, 4); } } } lod_positive4 = lp_build_extract_range(gallivm, lod_positive, num_lods * i, num_lods); ilevel04 = bld.num_mips == 1 ? ilevel0 : lp_build_extract_range(gallivm, ilevel0, num_lods * i, num_lods); if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) { ilevel14 = lp_build_extract_range(gallivm, ilevel1, num_lods * i, num_lods); lod_fpart4 = lp_build_extract_range(gallivm, lod_fpart, num_lods * i, num_lods); } if (use_aos) { /* do sampling/filtering with fixed pt arithmetic */ lp_build_sample_aos(&bld4, sampler_index, s4, t4, r4, offsets4, lod_positive4, lod_fpart4, ilevel04, ilevel14, texelout4); } else { /* this path is currently unreachable and hence might break easily... */ LLVMValueRef newcoords4[5]; newcoords4[0] = s4; newcoords4[1] = t4; newcoords4[2] = r4; newcoords4[3] = lp_build_extract_range(gallivm, newcoords[3], 4*i, 4); newcoords4[4] = lp_build_extract_range(gallivm, newcoords[4], 4*i, 4); lp_build_sample_general(&bld4, sampler_index, op_type == LP_SAMPLER_OP_GATHER, newcoords4, offsets4, lod_positive4, lod_fpart4, ilevel04, ilevel14, texelout4); } for (j = 0; j < 4; j++) { texelouttmp[j][i] = texelout4[j]; } } for (j = 0; j < 4; j++) { texel_out[j] = lp_build_concat(gallivm, texelouttmp[j], type4, num_quads); } } } if (target != PIPE_BUFFER && op_type != LP_SAMPLER_OP_GATHER) { apply_sampler_swizzle(&bld, texel_out); } /* * texel type can be a (32bit) int/uint (for pure int formats only), * however we are expected to always return floats (storage is untyped). */ if (!bld.texel_type.floating) { unsigned chan; for (chan = 0; chan < 4; chan++) { texel_out[chan] = LLVMBuildBitCast(builder, texel_out[chan], lp_build_vec_type(gallivm, type), ""); } } } #define USE_TEX_FUNC_CALL 1 #define LP_MAX_TEX_FUNC_ARGS 32 static inline void get_target_info(enum pipe_texture_target target, unsigned *num_coords, unsigned *num_derivs, unsigned *num_offsets, unsigned *layer) { unsigned dims = texture_dims(target); *num_coords = dims; *num_offsets = dims; *num_derivs = (target == PIPE_TEXTURE_CUBE || target == PIPE_TEXTURE_CUBE_ARRAY) ? 3 : dims; *layer = has_layer_coord(target) ? 2: 0; if (target == PIPE_TEXTURE_CUBE_ARRAY) { /* * dims doesn't include r coord for cubes - this is handled * by layer instead, but need to fix up for cube arrays... */ *layer = 3; *num_coords = 3; } } /** * Generate the function body for a texture sampling function. */ static void lp_build_sample_gen_func(struct gallivm_state *gallivm, const struct lp_static_texture_state *static_texture_state, const struct lp_static_sampler_state *static_sampler_state, struct lp_sampler_dynamic_state *dynamic_state, struct lp_type type, unsigned texture_index, unsigned sampler_index, LLVMValueRef function, unsigned num_args, unsigned sample_key) { LLVMBuilderRef old_builder; LLVMBasicBlockRef block; LLVMValueRef coords[5]; LLVMValueRef offsets[3] = { NULL }; LLVMValueRef lod = NULL; LLVMValueRef context_ptr; LLVMValueRef thread_data_ptr = NULL; LLVMValueRef texel_out[4]; struct lp_derivatives derivs; struct lp_derivatives *deriv_ptr = NULL; unsigned num_param = 0; unsigned i, num_coords, num_derivs, num_offsets, layer; enum lp_sampler_lod_control lod_control; boolean need_cache = FALSE; lod_control = (sample_key & LP_SAMPLER_LOD_CONTROL_MASK) >> LP_SAMPLER_LOD_CONTROL_SHIFT; get_target_info(static_texture_state->target, &num_coords, &num_derivs, &num_offsets, &layer); if (dynamic_state->cache_ptr) { const struct util_format_description *format_desc; format_desc = util_format_description(static_texture_state->format); if (format_desc && format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) { need_cache = TRUE; } } /* "unpack" arguments */ context_ptr = LLVMGetParam(function, num_param++); if (need_cache) { thread_data_ptr = LLVMGetParam(function, num_param++); } for (i = 0; i < num_coords; i++) { coords[i] = LLVMGetParam(function, num_param++); } for (i = num_coords; i < 5; i++) { /* This is rather unfortunate... */ coords[i] = lp_build_undef(gallivm, type); } if (layer) { coords[layer] = LLVMGetParam(function, num_param++); } if (sample_key & LP_SAMPLER_SHADOW) { coords[4] = LLVMGetParam(function, num_param++); } if (sample_key & LP_SAMPLER_OFFSETS) { for (i = 0; i < num_offsets; i++) { offsets[i] = LLVMGetParam(function, num_param++); } } if (lod_control == LP_SAMPLER_LOD_BIAS || lod_control == LP_SAMPLER_LOD_EXPLICIT) { lod = LLVMGetParam(function, num_param++); } else if (lod_control == LP_SAMPLER_LOD_DERIVATIVES) { for (i = 0; i < num_derivs; i++) { derivs.ddx[i] = LLVMGetParam(function, num_param++); derivs.ddy[i] = LLVMGetParam(function, num_param++); } deriv_ptr = &derivs; } assert(num_args == num_param); /* * Function body */ old_builder = gallivm->builder; block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry"); gallivm->builder = LLVMCreateBuilderInContext(gallivm->context); LLVMPositionBuilderAtEnd(gallivm->builder, block); lp_build_sample_soa_code(gallivm, static_texture_state, static_sampler_state, dynamic_state, type, sample_key, texture_index, sampler_index, context_ptr, thread_data_ptr, coords, offsets, deriv_ptr, lod, texel_out); LLVMBuildAggregateRet(gallivm->builder, texel_out, 4); LLVMDisposeBuilder(gallivm->builder); gallivm->builder = old_builder; gallivm_verify_function(gallivm, function); } /** * Call the matching function for texture sampling. * If there's no match, generate a new one. */ static void lp_build_sample_soa_func(struct gallivm_state *gallivm, const struct lp_static_texture_state *static_texture_state, const struct lp_static_sampler_state *static_sampler_state, struct lp_sampler_dynamic_state *dynamic_state, const struct lp_sampler_params *params) { LLVMBuilderRef builder = gallivm->builder; LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent( LLVMGetInsertBlock(builder))); LLVMValueRef function, inst; LLVMValueRef args[LP_MAX_TEX_FUNC_ARGS]; LLVMBasicBlockRef bb; LLVMValueRef tex_ret; unsigned num_args = 0; char func_name[64]; unsigned i, num_coords, num_derivs, num_offsets, layer; unsigned texture_index = params->texture_index; unsigned sampler_index = params->sampler_index; unsigned sample_key = params->sample_key; const LLVMValueRef *coords = params->coords; const LLVMValueRef *offsets = params->offsets; const struct lp_derivatives *derivs = params->derivs; enum lp_sampler_lod_control lod_control; boolean need_cache = FALSE; lod_control = (sample_key & LP_SAMPLER_LOD_CONTROL_MASK) >> LP_SAMPLER_LOD_CONTROL_SHIFT; get_target_info(static_texture_state->target, &num_coords, &num_derivs, &num_offsets, &layer); if (dynamic_state->cache_ptr) { const struct util_format_description *format_desc; format_desc = util_format_description(static_texture_state->format); if (format_desc && format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) { /* * This is not 100% correct, if we have cache but the * util_format_s3tc_prefer is true the cache won't get used * regardless (could hook up the block decode there...) */ need_cache = TRUE; } } /* * texture function matches are found by name. * Thus the name has to include both the texture and sampler unit * (which covers all static state) plus the actual texture function * (including things like offsets, shadow coord, lod control). * Additionally lod_property has to be included too. */ util_snprintf(func_name, sizeof(func_name), "texfunc_res_%d_sam_%d_%x", texture_index, sampler_index, sample_key); function = LLVMGetNamedFunction(module, func_name); if(!function) { LLVMTypeRef arg_types[LP_MAX_TEX_FUNC_ARGS]; LLVMTypeRef ret_type; LLVMTypeRef function_type; LLVMTypeRef val_type[4]; unsigned num_param = 0; /* * Generate the function prototype. */ arg_types[num_param++] = LLVMTypeOf(params->context_ptr); if (need_cache) { arg_types[num_param++] = LLVMTypeOf(params->thread_data_ptr); } for (i = 0; i < num_coords; i++) { arg_types[num_param++] = LLVMTypeOf(coords[0]); assert(LLVMTypeOf(coords[0]) == LLVMTypeOf(coords[i])); } if (layer) { arg_types[num_param++] = LLVMTypeOf(coords[layer]); assert(LLVMTypeOf(coords[0]) == LLVMTypeOf(coords[layer])); } if (sample_key & LP_SAMPLER_SHADOW) { arg_types[num_param++] = LLVMTypeOf(coords[0]); } if (sample_key & LP_SAMPLER_OFFSETS) { for (i = 0; i < num_offsets; i++) { arg_types[num_param++] = LLVMTypeOf(offsets[0]); assert(LLVMTypeOf(offsets[0]) == LLVMTypeOf(offsets[i])); } } if (lod_control == LP_SAMPLER_LOD_BIAS || lod_control == LP_SAMPLER_LOD_EXPLICIT) { arg_types[num_param++] = LLVMTypeOf(params->lod); } else if (lod_control == LP_SAMPLER_LOD_DERIVATIVES) { for (i = 0; i < num_derivs; i++) { arg_types[num_param++] = LLVMTypeOf(derivs->ddx[i]); arg_types[num_param++] = LLVMTypeOf(derivs->ddy[i]); assert(LLVMTypeOf(derivs->ddx[0]) == LLVMTypeOf(derivs->ddx[i])); assert(LLVMTypeOf(derivs->ddy[0]) == LLVMTypeOf(derivs->ddy[i])); } } val_type[0] = val_type[1] = val_type[2] = val_type[3] = lp_build_vec_type(gallivm, params->type); ret_type = LLVMStructTypeInContext(gallivm->context, val_type, 4, 0); function_type = LLVMFunctionType(ret_type, arg_types, num_param, 0); function = LLVMAddFunction(module, func_name, function_type); for (i = 0; i < num_param; ++i) { if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) { LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); } } LLVMSetFunctionCallConv(function, LLVMFastCallConv); LLVMSetLinkage(function, LLVMPrivateLinkage); lp_build_sample_gen_func(gallivm, static_texture_state, static_sampler_state, dynamic_state, params->type, texture_index, sampler_index, function, num_param, sample_key); } num_args = 0; args[num_args++] = params->context_ptr; if (need_cache) { args[num_args++] = params->thread_data_ptr; } for (i = 0; i < num_coords; i++) { args[num_args++] = coords[i]; } if (layer) { args[num_args++] = coords[layer]; } if (sample_key & LP_SAMPLER_SHADOW) { args[num_args++] = coords[4]; } if (sample_key & LP_SAMPLER_OFFSETS) { for (i = 0; i < num_offsets; i++) { args[num_args++] = offsets[i]; } } if (lod_control == LP_SAMPLER_LOD_BIAS || lod_control == LP_SAMPLER_LOD_EXPLICIT) { args[num_args++] = params->lod; } else if (lod_control == LP_SAMPLER_LOD_DERIVATIVES) { for (i = 0; i < num_derivs; i++) { args[num_args++] = derivs->ddx[i]; args[num_args++] = derivs->ddy[i]; } } assert(num_args <= LP_MAX_TEX_FUNC_ARGS); tex_ret = LLVMBuildCall(builder, function, args, num_args, ""); bb = LLVMGetInsertBlock(builder); inst = LLVMGetLastInstruction(bb); LLVMSetInstructionCallConv(inst, LLVMFastCallConv); for (i = 0; i < 4; i++) { params->texel[i] = LLVMBuildExtractValue(gallivm->builder, tex_ret, i, ""); } } /** * Build texture sampling code. * Either via a function call or inline it directly. */ void lp_build_sample_soa(const struct lp_static_texture_state *static_texture_state, const struct lp_static_sampler_state *static_sampler_state, struct lp_sampler_dynamic_state *dynamic_state, struct gallivm_state *gallivm, const struct lp_sampler_params *params) { boolean use_tex_func = FALSE; /* * Do not use a function call if the sampling is "simple enough". * We define this by * a) format * b) no mips (either one level only or no mip filter) * No mips will definitely make the code smaller, though * the format requirement is a bit iffy - there's some (SoA) formats * which definitely generate less code. This does happen to catch * some important cases though which are hurt quite a bit by using * a call (though not really because of the call overhead but because * they are reusing the same texture unit with some of the same * parameters). * Ideally we'd let llvm recognize this stuff by doing IPO passes. */ if (USE_TEX_FUNC_CALL) { const struct util_format_description *format_desc; boolean simple_format; boolean simple_tex; enum lp_sampler_op_type op_type; format_desc = util_format_description(static_texture_state->format); simple_format = !format_desc || (util_format_is_rgba8_variant(format_desc) && format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB); op_type = (params->sample_key & LP_SAMPLER_OP_TYPE_MASK) >> LP_SAMPLER_OP_TYPE_SHIFT; simple_tex = op_type != LP_SAMPLER_OP_TEXTURE || ((static_sampler_state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE || static_texture_state->level_zero_only == TRUE) && static_sampler_state->min_img_filter == static_sampler_state->mag_img_filter); use_tex_func = format_desc && !(simple_format && simple_tex); } if (use_tex_func) { lp_build_sample_soa_func(gallivm, static_texture_state, static_sampler_state, dynamic_state, params); } else { lp_build_sample_soa_code(gallivm, static_texture_state, static_sampler_state, dynamic_state, params->type, params->sample_key, params->texture_index, params->sampler_index, params->context_ptr, params->thread_data_ptr, params->coords, params->offsets, params->derivs, params->lod, params->texel); } } void lp_build_size_query_soa(struct gallivm_state *gallivm, const struct lp_static_texture_state *static_state, struct lp_sampler_dynamic_state *dynamic_state, const struct lp_sampler_size_query_params *params) { LLVMValueRef lod, level, size; LLVMValueRef first_level = NULL; int dims, i; boolean has_array; unsigned num_lods = 1; struct lp_build_context bld_int_vec4; LLVMValueRef context_ptr = params->context_ptr; unsigned texture_unit = params->texture_unit; unsigned target = params->target; if (static_state->format == PIPE_FORMAT_NONE) { /* * If there's nothing bound, format is NONE, and we must return * all zero as mandated by d3d10 in this case. */ unsigned chan; LLVMValueRef zero = lp_build_const_vec(gallivm, params->int_type, 0.0F); for (chan = 0; chan < 4; chan++) { params->sizes_out[chan] = zero; } return; } /* * Do some sanity verification about bound texture and shader dcl target. * Not entirely sure what's possible but assume array/non-array * always compatible (probably not ok for OpenGL but d3d10 has no * distinction of arrays at the resource level). * Everything else looks bogus (though not entirely sure about rect/2d). * Currently disabled because it causes assertion failures if there's * nothing bound (or rather a dummy texture, not that this case would * return the right values). */ if (0 && static_state->target != target) { if (static_state->target == PIPE_TEXTURE_1D) assert(target == PIPE_TEXTURE_1D_ARRAY); else if (static_state->target == PIPE_TEXTURE_1D_ARRAY) assert(target == PIPE_TEXTURE_1D); else if (static_state->target == PIPE_TEXTURE_2D) assert(target == PIPE_TEXTURE_2D_ARRAY); else if (static_state->target == PIPE_TEXTURE_2D_ARRAY) assert(target == PIPE_TEXTURE_2D); else if (static_state->target == PIPE_TEXTURE_CUBE) assert(target == PIPE_TEXTURE_CUBE_ARRAY); else if (static_state->target == PIPE_TEXTURE_CUBE_ARRAY) assert(target == PIPE_TEXTURE_CUBE); else assert(0); } dims = texture_dims(target); switch (target) { case PIPE_TEXTURE_1D_ARRAY: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_CUBE_ARRAY: has_array = TRUE; break; default: has_array = FALSE; break; } assert(!params->int_type.floating); lp_build_context_init(&bld_int_vec4, gallivm, lp_type_int_vec(32, 128)); if (params->explicit_lod) { /* FIXME: this needs to honor per-element lod */ lod = LLVMBuildExtractElement(gallivm->builder, params->explicit_lod, lp_build_const_int32(gallivm, 0), ""); first_level = dynamic_state->first_level(dynamic_state, gallivm, context_ptr, texture_unit); level = LLVMBuildAdd(gallivm->builder, lod, first_level, "level"); lod = lp_build_broadcast_scalar(&bld_int_vec4, level); } else { lod = bld_int_vec4.zero; } size = bld_int_vec4.undef; size = LLVMBuildInsertElement(gallivm->builder, size, dynamic_state->width(dynamic_state, gallivm, context_ptr, texture_unit), lp_build_const_int32(gallivm, 0), ""); if (dims >= 2) { size = LLVMBuildInsertElement(gallivm->builder, size, dynamic_state->height(dynamic_state, gallivm, context_ptr, texture_unit), lp_build_const_int32(gallivm, 1), ""); } if (dims >= 3) { size = LLVMBuildInsertElement(gallivm->builder, size, dynamic_state->depth(dynamic_state, gallivm, context_ptr, texture_unit), lp_build_const_int32(gallivm, 2), ""); } size = lp_build_minify(&bld_int_vec4, size, lod, TRUE); if (has_array) { LLVMValueRef layers = dynamic_state->depth(dynamic_state, gallivm, context_ptr, texture_unit); if (target == PIPE_TEXTURE_CUBE_ARRAY) { /* * It looks like GL wants number of cubes, d3d10.1 has it undefined? * Could avoid this by passing in number of cubes instead of total * number of layers (might make things easier elsewhere too). */ LLVMValueRef six = lp_build_const_int32(gallivm, 6); layers = LLVMBuildSDiv(gallivm->builder, layers, six, ""); } size = LLVMBuildInsertElement(gallivm->builder, size, layers, lp_build_const_int32(gallivm, dims), ""); } /* * d3d10 requires zero for x/y/z values (but not w, i.e. mip levels) * if level is out of bounds (note this can't cover unbound texture * here, which also requires returning zero). */ if (params->explicit_lod && params->is_sviewinfo) { LLVMValueRef last_level, out, out1; struct lp_build_context leveli_bld; /* everything is scalar for now */ lp_build_context_init(&leveli_bld, gallivm, lp_type_int_vec(32, 32)); last_level = dynamic_state->last_level(dynamic_state, gallivm, context_ptr, texture_unit); out = lp_build_cmp(&leveli_bld, PIPE_FUNC_LESS, level, first_level); out1 = lp_build_cmp(&leveli_bld, PIPE_FUNC_GREATER, level, last_level); out = lp_build_or(&leveli_bld, out, out1); if (num_lods == 1) { out = lp_build_broadcast_scalar(&bld_int_vec4, out); } else { /* TODO */ assert(0); } size = lp_build_andnot(&bld_int_vec4, size, out); } for (i = 0; i < dims + (has_array ? 1 : 0); i++) { params->sizes_out[i] = lp_build_extract_broadcast(gallivm, bld_int_vec4.type, params->int_type, size, lp_build_const_int32(gallivm, i)); } if (params->is_sviewinfo) { for (; i < 4; i++) { params->sizes_out[i] = lp_build_const_vec(gallivm, params->int_type, 0.0); } } /* * if there's no explicit_lod (buffers, rects) queries requiring nr of * mips would be illegal. */ if (params->is_sviewinfo && params->explicit_lod) { struct lp_build_context bld_int_scalar; LLVMValueRef num_levels; lp_build_context_init(&bld_int_scalar, gallivm, lp_type_int(32)); if (static_state->level_zero_only) { num_levels = bld_int_scalar.one; } else { LLVMValueRef last_level; last_level = dynamic_state->last_level(dynamic_state, gallivm, context_ptr, texture_unit); num_levels = lp_build_sub(&bld_int_scalar, last_level, first_level); num_levels = lp_build_add(&bld_int_scalar, num_levels, bld_int_scalar.one); } params->sizes_out[3] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, params->int_type), num_levels); } }