/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Helper functions for packing/unpacking. * * Pack/unpacking is necessary for conversion between types of different * bit width. * * They are also commonly used when an computation needs higher * precision for the intermediate values. For example, if one needs the * function: * * c = compute(a, b); * * to use more precision for intermediate results then one should implement it * as: * * LLVMValueRef * compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b) * { * struct lp_type wide_type = lp_wider_type(type); * LLVMValueRef al, ah, bl, bh, cl, ch, c; * * lp_build_unpack2(builder, type, wide_type, a, &al, &ah); * lp_build_unpack2(builder, type, wide_type, b, &bl, &bh); * * cl = compute_half(al, bl); * ch = compute_half(ah, bh); * * c = lp_build_pack2(bld->builder, wide_type, type, cl, ch); * * return c; * } * * where compute_half() would do the computation for half the elements with * twice the precision. * * @author Jose Fonseca */ #include "util/u_debug.h" #include "util/u_math.h" #include "util/u_cpu_detect.h" #include "util/u_memory.h" #include "lp_bld_type.h" #include "lp_bld_const.h" #include "lp_bld_init.h" #include "lp_bld_intr.h" #include "lp_bld_arit.h" #include "lp_bld_pack.h" #include "lp_bld_swizzle.h" /** * Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions. */ static LLVMValueRef lp_build_const_unpack_shuffle(struct gallivm_state *gallivm, unsigned n, unsigned lo_hi) { LLVMValueRef elems[LP_MAX_VECTOR_LENGTH]; unsigned i, j; assert(n <= LP_MAX_VECTOR_LENGTH); assert(lo_hi < 2); /* TODO: cache results in a static table */ for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) { elems[i + 0] = lp_build_const_int32(gallivm, 0 + j); elems[i + 1] = lp_build_const_int32(gallivm, n + j); } return LLVMConstVector(elems, n); } /** * Similar to lp_build_const_unpack_shuffle but for special AVX 256bit unpack. * See comment above lp_build_interleave2_half for more details. */ static LLVMValueRef lp_build_const_unpack_shuffle_half(struct gallivm_state *gallivm, unsigned n, unsigned lo_hi) { LLVMValueRef elems[LP_MAX_VECTOR_LENGTH]; unsigned i, j; assert(n <= LP_MAX_VECTOR_LENGTH); assert(lo_hi < 2); for (i = 0, j = lo_hi*(n/4); i < n; i += 2, ++j) { if (i == (n / 2)) j += n / 4; elems[i + 0] = lp_build_const_int32(gallivm, 0 + j); elems[i + 1] = lp_build_const_int32(gallivm, n + j); } return LLVMConstVector(elems, n); } /** * Build shuffle vectors that match PACKxx (SSE) instructions or * VPERM (Altivec). */ static LLVMValueRef lp_build_const_pack_shuffle(struct gallivm_state *gallivm, unsigned n) { LLVMValueRef elems[LP_MAX_VECTOR_LENGTH]; unsigned i; assert(n <= LP_MAX_VECTOR_LENGTH); for(i = 0; i < n; ++i) #ifdef PIPE_ARCH_LITTLE_ENDIAN elems[i] = lp_build_const_int32(gallivm, 2*i); #else elems[i] = lp_build_const_int32(gallivm, 2*i+1); #endif return LLVMConstVector(elems, n); } /** * Return a vector with elements src[start:start+size] * Most useful for getting half the values out of a 256bit sized vector, * otherwise may cause data rearrangement to happen. */ LLVMValueRef lp_build_extract_range(struct gallivm_state *gallivm, LLVMValueRef src, unsigned start, unsigned size) { LLVMValueRef elems[LP_MAX_VECTOR_LENGTH]; unsigned i; assert(size <= ARRAY_SIZE(elems)); for (i = 0; i < size; ++i) elems[i] = lp_build_const_int32(gallivm, i + start); if (size == 1) { return LLVMBuildExtractElement(gallivm->builder, src, elems[0], ""); } else { return LLVMBuildShuffleVector(gallivm->builder, src, src, LLVMConstVector(elems, size), ""); } } /** * Concatenates several (must be a power of 2) vectors (of same type) * into a larger one. * Most useful for building up a 256bit sized vector out of two 128bit ones. */ LLVMValueRef lp_build_concat(struct gallivm_state *gallivm, LLVMValueRef src[], struct lp_type src_type, unsigned num_vectors) { unsigned new_length, i; LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH/2]; LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH]; assert(src_type.length * num_vectors <= ARRAY_SIZE(shuffles)); assert(util_is_power_of_two(num_vectors)); new_length = src_type.length; for (i = 0; i < num_vectors; i++) tmp[i] = src[i]; while (num_vectors > 1) { num_vectors >>= 1; new_length <<= 1; for (i = 0; i < new_length; i++) { shuffles[i] = lp_build_const_int32(gallivm, i); } for (i = 0; i < num_vectors; i++) { tmp[i] = LLVMBuildShuffleVector(gallivm->builder, tmp[i*2], tmp[i*2 + 1], LLVMConstVector(shuffles, new_length), ""); } } return tmp[0]; } /** * Combines vectors to reduce from num_srcs to num_dsts. * Returns the number of src vectors concatenated in a single dst. * * num_srcs must be exactly divisible by num_dsts. * * e.g. For num_srcs = 4 and src = [x, y, z, w] * num_dsts = 1 dst = [xyzw] return = 4 * num_dsts = 2 dst = [xy, zw] return = 2 */ int lp_build_concat_n(struct gallivm_state *gallivm, struct lp_type src_type, LLVMValueRef *src, unsigned num_srcs, LLVMValueRef *dst, unsigned num_dsts) { int size = num_srcs / num_dsts; unsigned i; assert(num_srcs >= num_dsts); assert((num_srcs % size) == 0); if (num_srcs == num_dsts) { for (i = 0; i < num_dsts; ++i) { dst[i] = src[i]; } return 1; } for (i = 0; i < num_dsts; ++i) { dst[i] = lp_build_concat(gallivm, &src[i * size], src_type, size); } return size; } /** * Un-interleave vector. * This will return a vector consisting of every second element * (depending on lo_hi, beginning at 0 or 1). * The returned vector size (elems and width) will only be half * that of the source vector. */ LLVMValueRef lp_build_uninterleave1(struct gallivm_state *gallivm, unsigned num_elems, LLVMValueRef a, unsigned lo_hi) { LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH]; unsigned i; assert(num_elems <= LP_MAX_VECTOR_LENGTH); for (i = 0; i < num_elems / 2; ++i) elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi); shuffle = LLVMConstVector(elems, num_elems / 2); return LLVMBuildShuffleVector(gallivm->builder, a, a, shuffle, ""); } /** * Interleave vector elements. * * Matches the PUNPCKLxx and PUNPCKHxx SSE instructions * (but not for 256bit AVX vectors). */ LLVMValueRef lp_build_interleave2(struct gallivm_state *gallivm, struct lp_type type, LLVMValueRef a, LLVMValueRef b, unsigned lo_hi) { LLVMValueRef shuffle; if (type.length == 2 && type.width == 128 && util_cpu_caps.has_avx) { /* * XXX: This is a workaround for llvm code generation deficiency. Strangely * enough, while this needs vinsertf128/vextractf128 instructions (hence * a natural match when using 2x128bit vectors) the "normal" unpack shuffle * generates code ranging from atrocious (llvm 3.1) to terrible (llvm 3.2, 3.3). * So use some different shuffles instead (the exact shuffles don't seem to * matter, as long as not using 128bit wide vectors, works with 8x32 or 4x64). */ struct lp_type tmp_type = type; LLVMValueRef srchalf[2], tmpdst; tmp_type.length = 4; tmp_type.width = 64; a = LLVMBuildBitCast(gallivm->builder, a, lp_build_vec_type(gallivm, tmp_type), ""); b = LLVMBuildBitCast(gallivm->builder, b, lp_build_vec_type(gallivm, tmp_type), ""); srchalf[0] = lp_build_extract_range(gallivm, a, lo_hi * 2, 2); srchalf[1] = lp_build_extract_range(gallivm, b, lo_hi * 2, 2); tmp_type.length = 2; tmpdst = lp_build_concat(gallivm, srchalf, tmp_type, 2); return LLVMBuildBitCast(gallivm->builder, tmpdst, lp_build_vec_type(gallivm, type), ""); } shuffle = lp_build_const_unpack_shuffle(gallivm, type.length, lo_hi); return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, ""); } /** * Interleave vector elements but with 256 bit, * treats it as interleave with 2 concatenated 128 bit vectors. * * This differs to lp_build_interleave2 as that function would do the following (for lo): * a0 b0 a1 b1 a2 b2 a3 b3, and this does not compile into an AVX unpack instruction. * * * An example interleave 8x float with 8x float on AVX 256bit unpack: * a0 a1 a2 a3 a4 a5 a6 a7 <-> b0 b1 b2 b3 b4 b5 b6 b7 * * Equivalent to interleaving 2x 128 bit vectors * a0 a1 a2 a3 <-> b0 b1 b2 b3 concatenated with a4 a5 a6 a7 <-> b4 b5 b6 b7 * * So interleave-lo would result in: * a0 b0 a1 b1 a4 b4 a5 b5 * * And interleave-hi would result in: * a2 b2 a3 b3 a6 b6 a7 b7 */ LLVMValueRef lp_build_interleave2_half(struct gallivm_state *gallivm, struct lp_type type, LLVMValueRef a, LLVMValueRef b, unsigned lo_hi) { if (type.length * type.width == 256) { LLVMValueRef shuffle = lp_build_const_unpack_shuffle_half(gallivm, type.length, lo_hi); return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, ""); } else { return lp_build_interleave2(gallivm, type, a, b, lo_hi); } } /** * Double the bit width. * * This will only change the number of bits the values are represented, not the * values themselves. * */ void lp_build_unpack2(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef src, LLVMValueRef *dst_lo, LLVMValueRef *dst_hi) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef msb; LLVMTypeRef dst_vec_type; assert(!src_type.floating); assert(!dst_type.floating); assert(dst_type.width == src_type.width * 2); assert(dst_type.length * 2 == src_type.length); if(dst_type.sign && src_type.sign) { /* Replicate the sign bit in the most significant bits */ msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), ""); } else /* Most significant bits always zero */ msb = lp_build_zero(gallivm, src_type); /* Interleave bits */ #ifdef PIPE_ARCH_LITTLE_ENDIAN *dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0); *dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1); #else *dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0); *dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1); #endif /* Cast the result into the new type (twice as wide) */ dst_vec_type = lp_build_vec_type(gallivm, dst_type); *dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, ""); *dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, ""); } /** * Double the bit width, with an order which fits the cpu nicely. * * This will only change the number of bits the values are represented, not the * values themselves. * * The order of the results is not guaranteed, other than it will match * the corresponding lp_build_pack2_native call. */ void lp_build_unpack2_native(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef src, LLVMValueRef *dst_lo, LLVMValueRef *dst_hi) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef msb; LLVMTypeRef dst_vec_type; assert(!src_type.floating); assert(!dst_type.floating); assert(dst_type.width == src_type.width * 2); assert(dst_type.length * 2 == src_type.length); if(dst_type.sign && src_type.sign) { /* Replicate the sign bit in the most significant bits */ msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), ""); } else /* Most significant bits always zero */ msb = lp_build_zero(gallivm, src_type); /* Interleave bits */ #ifdef PIPE_ARCH_LITTLE_ENDIAN if (src_type.length * src_type.width == 256 && util_cpu_caps.has_avx2) { *dst_lo = lp_build_interleave2_half(gallivm, src_type, src, msb, 0); *dst_hi = lp_build_interleave2_half(gallivm, src_type, src, msb, 1); } else { *dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0); *dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1); } #else *dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0); *dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1); #endif /* Cast the result into the new type (twice as wide) */ dst_vec_type = lp_build_vec_type(gallivm, dst_type); *dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, ""); *dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, ""); } /** * Expand the bit width. * * This will only change the number of bits the values are represented, not the * values themselves. */ void lp_build_unpack(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef src, LLVMValueRef *dst, unsigned num_dsts) { unsigned num_tmps; unsigned i; /* Register width must remain constant */ assert(src_type.width * src_type.length == dst_type.width * dst_type.length); /* We must not loose or gain channels. Only precision */ assert(src_type.length == dst_type.length * num_dsts); num_tmps = 1; dst[0] = src; while(src_type.width < dst_type.width) { struct lp_type tmp_type = src_type; tmp_type.width *= 2; tmp_type.length /= 2; for(i = num_tmps; i--; ) { lp_build_unpack2(gallivm, src_type, tmp_type, dst[i], &dst[2*i + 0], &dst[2*i + 1]); } src_type = tmp_type; num_tmps *= 2; } assert(num_tmps == num_dsts); } /** * Non-interleaved pack. * * This will move values as * (LSB) (MSB) * lo = l0 __ l1 __ l2 __.. __ ln __ * hi = h0 __ h1 __ h2 __.. __ hn __ * res = l0 l1 l2 .. ln h0 h1 h2 .. hn * * This will only change the number of bits the values are represented, not the * values themselves. * * It is assumed the values are already clamped into the destination type range. * Values outside that range will produce undefined results. Use * lp_build_packs2 instead. */ LLVMValueRef lp_build_pack2(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef lo, LLVMValueRef hi) { LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type); LLVMValueRef shuffle; LLVMValueRef res = NULL; struct lp_type intr_type = dst_type; assert(!src_type.floating); assert(!dst_type.floating); assert(src_type.width == dst_type.width * 2); assert(src_type.length * 2 == dst_type.length); /* Check for special cases first */ if ((util_cpu_caps.has_sse2 || util_cpu_caps.has_altivec) && src_type.width * src_type.length >= 128) { const char *intrinsic = NULL; boolean swap_intrinsic_operands = FALSE; switch(src_type.width) { case 32: if (util_cpu_caps.has_sse2) { if (dst_type.sign) { intrinsic = "llvm.x86.sse2.packssdw.128"; } else { if (util_cpu_caps.has_sse4_1) { intrinsic = "llvm.x86.sse41.packusdw"; } } } else if (util_cpu_caps.has_altivec) { if (dst_type.sign) { intrinsic = "llvm.ppc.altivec.vpkswss"; } else { intrinsic = "llvm.ppc.altivec.vpkuwus"; } #ifdef PIPE_ARCH_LITTLE_ENDIAN swap_intrinsic_operands = TRUE; #endif } break; case 16: if (dst_type.sign) { if (util_cpu_caps.has_sse2) { intrinsic = "llvm.x86.sse2.packsswb.128"; } else if (util_cpu_caps.has_altivec) { intrinsic = "llvm.ppc.altivec.vpkshss"; #ifdef PIPE_ARCH_LITTLE_ENDIAN swap_intrinsic_operands = TRUE; #endif } } else { if (util_cpu_caps.has_sse2) { intrinsic = "llvm.x86.sse2.packuswb.128"; } else if (util_cpu_caps.has_altivec) { intrinsic = "llvm.ppc.altivec.vpkshus"; #ifdef PIPE_ARCH_LITTLE_ENDIAN swap_intrinsic_operands = TRUE; #endif } } break; /* default uses generic shuffle below */ } if (intrinsic) { if (src_type.width * src_type.length == 128) { LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type); if (swap_intrinsic_operands) { res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, hi, lo); } else { res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi); } if (dst_vec_type != intr_vec_type) { res = LLVMBuildBitCast(builder, res, dst_vec_type, ""); } } else { int num_split = src_type.width * src_type.length / 128; int i; int nlen = 128 / src_type.width; int lo_off = swap_intrinsic_operands ? nlen : 0; int hi_off = swap_intrinsic_operands ? 0 : nlen; struct lp_type ndst_type = lp_type_unorm(dst_type.width, 128); struct lp_type nintr_type = lp_type_unorm(intr_type.width, 128); LLVMValueRef tmpres[LP_MAX_VECTOR_WIDTH / 128]; LLVMValueRef tmplo, tmphi; LLVMTypeRef ndst_vec_type = lp_build_vec_type(gallivm, ndst_type); LLVMTypeRef nintr_vec_type = lp_build_vec_type(gallivm, nintr_type); assert(num_split <= LP_MAX_VECTOR_WIDTH / 128); for (i = 0; i < num_split / 2; i++) { tmplo = lp_build_extract_range(gallivm, lo, i*nlen*2 + lo_off, nlen); tmphi = lp_build_extract_range(gallivm, lo, i*nlen*2 + hi_off, nlen); tmpres[i] = lp_build_intrinsic_binary(builder, intrinsic, nintr_vec_type, tmplo, tmphi); if (ndst_vec_type != nintr_vec_type) { tmpres[i] = LLVMBuildBitCast(builder, tmpres[i], ndst_vec_type, ""); } } for (i = 0; i < num_split / 2; i++) { tmplo = lp_build_extract_range(gallivm, hi, i*nlen*2 + lo_off, nlen); tmphi = lp_build_extract_range(gallivm, hi, i*nlen*2 + hi_off, nlen); tmpres[i+num_split/2] = lp_build_intrinsic_binary(builder, intrinsic, nintr_vec_type, tmplo, tmphi); if (ndst_vec_type != nintr_vec_type) { tmpres[i+num_split/2] = LLVMBuildBitCast(builder, tmpres[i+num_split/2], ndst_vec_type, ""); } } res = lp_build_concat(gallivm, tmpres, ndst_type, num_split); } return res; } } /* generic shuffle */ lo = LLVMBuildBitCast(builder, lo, dst_vec_type, ""); hi = LLVMBuildBitCast(builder, hi, dst_vec_type, ""); shuffle = lp_build_const_pack_shuffle(gallivm, dst_type.length); res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, ""); return res; } /** * Non-interleaved native pack. * * Similar to lp_build_pack2, but the ordering of values is not * guaranteed, other than it will match lp_build_unpack2_native. * * In particular, with avx2, the lower and upper 128bits of the vectors will * be packed independently, so that (with 32bit->16bit values) * (LSB) (MSB) * lo = l0 __ l1 __ l2 __ l3 __ l4 __ l5 __ l6 __ l7 __ * hi = h0 __ h1 __ h2 __ h3 __ h4 __ h5 __ h6 __ h7 __ * res = l0 l1 l2 l3 h0 h1 h2 h3 l4 l5 l6 l7 h4 h5 h6 h7 * * This will only change the number of bits the values are represented, not the * values themselves. * * It is assumed the values are already clamped into the destination type range. * Values outside that range will produce undefined results. */ LLVMValueRef lp_build_pack2_native(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef lo, LLVMValueRef hi) { LLVMBuilderRef builder = gallivm->builder; struct lp_type intr_type = dst_type; const char *intrinsic = NULL; assert(!src_type.floating); assert(!dst_type.floating); assert(src_type.width == dst_type.width * 2); assert(src_type.length * 2 == dst_type.length); /* At this point only have special case for avx2 */ if (src_type.length * src_type.width == 256 && util_cpu_caps.has_avx2) { switch(src_type.width) { case 32: if (dst_type.sign) { intrinsic = "llvm.x86.avx2.packssdw"; } else { intrinsic = "llvm.x86.avx2.packusdw"; } break; case 16: if (dst_type.sign) { intrinsic = "llvm.x86.avx2.packsswb"; } else { intrinsic = "llvm.x86.avx2.packuswb"; } break; } } if (intrinsic) { LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type); return lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi); } else { return lp_build_pack2(gallivm, src_type, dst_type, lo, hi); } } /** * Non-interleaved pack and saturate. * * Same as lp_build_pack2 but will saturate values so that they fit into the * destination type. */ LLVMValueRef lp_build_packs2(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef lo, LLVMValueRef hi) { boolean clamp; assert(!src_type.floating); assert(!dst_type.floating); assert(src_type.sign == dst_type.sign); assert(src_type.width == dst_type.width * 2); assert(src_type.length * 2 == dst_type.length); clamp = TRUE; /* All X86 SSE non-interleaved pack instructions take signed inputs and * saturate them, so no need to clamp for those cases. */ if(util_cpu_caps.has_sse2 && src_type.width * src_type.length >= 128 && src_type.sign && (src_type.width == 32 || src_type.width == 16)) clamp = FALSE; if(clamp) { struct lp_build_context bld; unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width; LLVMValueRef dst_max = lp_build_const_int_vec(gallivm, src_type, ((unsigned long long)1 << dst_bits) - 1); lp_build_context_init(&bld, gallivm, src_type); lo = lp_build_min(&bld, lo, dst_max); hi = lp_build_min(&bld, hi, dst_max); /* FIXME: What about lower bound? */ } return lp_build_pack2(gallivm, src_type, dst_type, lo, hi); } /** * Truncate the bit width. * * TODO: Handle saturation consistently. */ LLVMValueRef lp_build_pack(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, boolean clamped, const LLVMValueRef *src, unsigned num_srcs) { LLVMValueRef (*pack2)(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef lo, LLVMValueRef hi); LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH]; unsigned i; /* Register width must remain constant */ assert(src_type.width * src_type.length == dst_type.width * dst_type.length); /* We must not loose or gain channels. Only precision */ assert(src_type.length * num_srcs == dst_type.length); if(clamped) pack2 = &lp_build_pack2; else pack2 = &lp_build_packs2; for(i = 0; i < num_srcs; ++i) tmp[i] = src[i]; while(src_type.width > dst_type.width) { struct lp_type tmp_type = src_type; tmp_type.width /= 2; tmp_type.length *= 2; /* Take in consideration the sign changes only in the last step */ if(tmp_type.width == dst_type.width) tmp_type.sign = dst_type.sign; num_srcs /= 2; for(i = 0; i < num_srcs; ++i) tmp[i] = pack2(gallivm, src_type, tmp_type, tmp[2*i + 0], tmp[2*i + 1]); src_type = tmp_type; } assert(num_srcs == 1); return tmp[0]; } /** * Truncate or expand the bitwidth. * * NOTE: Getting the right sign flags is crucial here, as we employ some * intrinsics that do saturation. */ void lp_build_resize(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type dst_type, const LLVMValueRef *src, unsigned num_srcs, LLVMValueRef *dst, unsigned num_dsts) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH]; unsigned i; /* * We don't support float <-> int conversion here. That must be done * before/after calling this function. */ assert(src_type.floating == dst_type.floating); /* * We don't support double <-> float conversion yet, although it could be * added with little effort. */ assert((!src_type.floating && !dst_type.floating) || src_type.width == dst_type.width); /* We must not loose or gain channels. Only precision */ assert(src_type.length * num_srcs == dst_type.length * num_dsts); assert(src_type.length <= LP_MAX_VECTOR_LENGTH); assert(dst_type.length <= LP_MAX_VECTOR_LENGTH); assert(num_srcs <= LP_MAX_VECTOR_LENGTH); assert(num_dsts <= LP_MAX_VECTOR_LENGTH); if (src_type.width > dst_type.width) { /* * Truncate bit width. */ /* Conversion must be M:1 */ assert(num_dsts == 1); if (src_type.width * src_type.length == dst_type.width * dst_type.length) { /* * Register width remains constant -- use vector packing intrinsics */ tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs); } else { if (src_type.width / dst_type.width > num_srcs) { /* * First change src vectors size (with shuffle) so they have the * same size as the destination vector, then pack normally. * Note: cannot use cast/extract because llvm generates atrocious code. */ unsigned size_ratio = (src_type.width * src_type.length) / (dst_type.length * dst_type.width); unsigned new_length = src_type.length / size_ratio; for (i = 0; i < size_ratio * num_srcs; i++) { unsigned start_index = (i % size_ratio) * new_length; tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio], start_index, new_length); } num_srcs *= size_ratio; src_type.length = new_length; tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs); } else { /* * Truncate bit width but expand vector size - first pack * then expand simply because this should be more AVX-friendly * for the cases we probably hit. */ unsigned size_ratio = (dst_type.width * dst_type.length) / (src_type.length * src_type.width); unsigned num_pack_srcs = num_srcs / size_ratio; dst_type.length = dst_type.length / size_ratio; for (i = 0; i < size_ratio; i++) { tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE, &src[i*num_pack_srcs], num_pack_srcs); } tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio); } } } else if (src_type.width < dst_type.width) { /* * Expand bit width. */ /* Conversion must be 1:N */ assert(num_srcs == 1); if (src_type.width * src_type.length == dst_type.width * dst_type.length) { /* * Register width remains constant -- use vector unpack intrinsics */ lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts); } else { /* * Do it element-wise. */ assert(src_type.length * num_srcs == dst_type.length * num_dsts); for (i = 0; i < num_dsts; i++) { tmp[i] = lp_build_undef(gallivm, dst_type); } for (i = 0; i < src_type.length; ++i) { unsigned j = i / dst_type.length; LLVMValueRef srcindex = lp_build_const_int32(gallivm, i); LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length); LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, ""); if (src_type.sign && dst_type.sign) { val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), ""); } else { val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), ""); } tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, ""); } } } else { /* * No-op */ /* "Conversion" must be N:N */ assert(num_srcs == num_dsts); for(i = 0; i < num_dsts; ++i) tmp[i] = src[i]; } for(i = 0; i < num_dsts; ++i) dst[i] = tmp[i]; } /** * Expands src vector from src.length to dst_length */ LLVMValueRef lp_build_pad_vector(struct gallivm_state *gallivm, LLVMValueRef src, unsigned dst_length) { LLVMValueRef elems[LP_MAX_VECTOR_LENGTH]; LLVMValueRef undef; LLVMTypeRef type; unsigned i, src_length; type = LLVMTypeOf(src); if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) { /* Can't use ShuffleVector on non-vector type */ undef = LLVMGetUndef(LLVMVectorType(type, dst_length)); return LLVMBuildInsertElement(gallivm->builder, undef, src, lp_build_const_int32(gallivm, 0), ""); } undef = LLVMGetUndef(type); src_length = LLVMGetVectorSize(type); assert(dst_length <= ARRAY_SIZE(elems)); assert(dst_length >= src_length); if (src_length == dst_length) return src; /* All elements from src vector */ for (i = 0; i < src_length; ++i) elems[i] = lp_build_const_int32(gallivm, i); /* Undef fill remaining space */ for (i = src_length; i < dst_length; ++i) elems[i] = lp_build_const_int32(gallivm, src_length); /* Combine the two vectors */ return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), ""); }