/************************************************************************** * * Copyright 2009-2011 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include #include #include #include #include #if HAVE_LLVM >= 0x0306 #include #else #include #endif #include #include #include #include #include #include #include #include #include #if HAVE_LLVM >= 0x0305 #define OwningPtr std::unique_ptr #else #include #endif #if HAVE_LLVM >= 0x0305 #include #endif #include "util/u_math.h" #include "util/u_debug.h" #include "lp_bld_debug.h" #ifdef __linux__ #include #include #endif /** * Check alignment. * * It is important that this check is not implemented as a macro or inlined * function, as the compiler assumptions in respect to alignment of global * and stack variables would often make the check a no op, defeating the * whole purpose of the exercise. */ extern "C" boolean lp_check_alignment(const void *ptr, unsigned alignment) { assert(util_is_power_of_two(alignment)); return ((uintptr_t)ptr & (alignment - 1)) == 0; } class raw_debug_ostream : public llvm::raw_ostream { private: uint64_t pos; public: raw_debug_ostream() : pos(0) { } void write_impl(const char *Ptr, size_t Size); uint64_t current_pos() const { return pos; } size_t preferred_buffer_size() const { return 512; } }; void raw_debug_ostream::write_impl(const char *Ptr, size_t Size) { if (Size > 0) { char *lastPtr = (char *)&Ptr[Size]; char last = *lastPtr; *lastPtr = 0; _debug_printf("%*s", Size, Ptr); *lastPtr = last; pos += Size; } } extern "C" const char * lp_get_module_id(LLVMModuleRef module) { return llvm::unwrap(module)->getModuleIdentifier().c_str(); } /** * Same as LLVMDumpValue, but through our debugging channels. */ extern "C" void lp_debug_dump_value(LLVMValueRef value) { #if (defined(PIPE_OS_WINDOWS) && !defined(PIPE_CC_MSVC)) || defined(PIPE_OS_EMBDDED) raw_debug_ostream os; llvm::unwrap(value)->print(os); os.flush(); #else LLVMDumpValue(value); #endif } #if HAVE_LLVM < 0x0306 /* * MemoryObject wrapper around a buffer of memory, to be used by MC * disassembler. */ class BufferMemoryObject: public llvm::MemoryObject { private: const uint8_t *Bytes; uint64_t Length; public: BufferMemoryObject(const uint8_t *bytes, uint64_t length) : Bytes(bytes), Length(length) { } uint64_t getBase() const { return 0; } uint64_t getExtent() const { return Length; } int readByte(uint64_t addr, uint8_t *byte) const { if (addr > getExtent()) return -1; *byte = Bytes[addr]; return 0; } }; #endif /* HAVE_LLVM < 0x0306 */ /* * Disassemble a function, using the LLVM MC disassembler. * * See also: * - http://blog.llvm.org/2010/01/x86-disassembler.html * - http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html */ static size_t disassemble(const void* func, llvm::raw_ostream & Out) { using namespace llvm; const uint8_t *bytes = (const uint8_t *)func; /* * Limit disassembly to this extent */ const uint64_t extent = 96 * 1024; uint64_t max_pc = 0; /* * Initialize all used objects. */ std::string Triple = sys::getDefaultTargetTriple(); std::string Error; const Target *T = TargetRegistry::lookupTarget(Triple, Error); #if HAVE_LLVM >= 0x0304 OwningPtr AsmInfo(T->createMCAsmInfo(*T->createMCRegInfo(Triple), Triple)); #else OwningPtr AsmInfo(T->createMCAsmInfo(Triple)); #endif if (!AsmInfo) { Out << "error: no assembly info for target " << Triple << "\n"; Out.flush(); return 0; } unsigned int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); OwningPtr MRI(T->createMCRegInfo(Triple)); if (!MRI) { Out << "error: no register info for target " << Triple.c_str() << "\n"; Out.flush(); return 0; } OwningPtr MII(T->createMCInstrInfo()); if (!MII) { Out << "error: no instruction info for target " << Triple.c_str() << "\n"; Out.flush(); return 0; } #if HAVE_LLVM >= 0x0305 OwningPtr STI(T->createMCSubtargetInfo(Triple, sys::getHostCPUName(), "")); OwningPtr MCCtx(new MCContext(AsmInfo.get(), MRI.get(), 0)); OwningPtr DisAsm(T->createMCDisassembler(*STI, *MCCtx)); #else OwningPtr STI(T->createMCSubtargetInfo(Triple, sys::getHostCPUName(), "")); OwningPtr DisAsm(T->createMCDisassembler(*STI)); #endif if (!DisAsm) { Out << "error: no disassembler for target " << Triple << "\n"; Out.flush(); return 0; } OwningPtr Printer( T->createMCInstPrinter(AsmPrinterVariant, *AsmInfo, *MII, *MRI, *STI)); if (!Printer) { Out << "error: no instruction printer for target " << Triple.c_str() << "\n"; Out.flush(); return 0; } TargetOptions options; #if defined(DEBUG) options.JITEmitDebugInfo = true; #endif #if defined(PIPE_ARCH_X86) options.StackAlignmentOverride = 4; #endif #if defined(DEBUG) || defined(PROFILE) options.NoFramePointerElim = true; #endif OwningPtr TM(T->createTargetMachine(Triple, sys::getHostCPUName(), "", options)); #if HAVE_LLVM >= 0x0306 const TargetInstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); #else const TargetInstrInfo *TII = TM->getInstrInfo(); #endif /* * Wrap the data in a MemoryObject */ #if HAVE_LLVM >= 0x0306 ArrayRef memoryObject((const uint8_t *)bytes, extent); #else BufferMemoryObject memoryObject((const uint8_t *)bytes, extent); #endif uint64_t pc; pc = 0; while (true) { MCInst Inst; uint64_t Size; /* * Print address. We use addresses relative to the start of the function, * so that between runs. */ Out << llvm::format("%6lu:\t", (unsigned long)pc); if (!DisAsm->getInstruction(Inst, Size, memoryObject, pc, nulls(), nulls())) { Out << "invalid"; pc += 1; } /* * Output the bytes in hexidecimal format. */ if (0) { unsigned i; for (i = 0; i < Size; ++i) { Out << llvm::format("%02x ", ((const uint8_t*)bytes)[pc + i]); } for (; i < 16; ++i) { Out << " "; } } /* * Print the instruction. */ Printer->printInst(&Inst, Out, ""); /* * Advance. */ pc += Size; const MCInstrDesc &TID = TII->get(Inst.getOpcode()); /* * Keep track of forward jumps to a nearby address. */ if (TID.isBranch()) { for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { const MCOperand &operand = Inst.getOperand(i); if (operand.isImm()) { uint64_t jump; /* * FIXME: Handle both relative and absolute addresses correctly. * EDInstInfo actually has this info, but operandTypes and * operandFlags enums are not exposed in the public interface. */ if (1) { /* * PC relative addr. */ jump = pc + operand.getImm(); } else { /* * Absolute addr. */ jump = (uint64_t)operand.getImm(); } /* * Output the address relative to the function start, given * that MC will print the addresses relative the current pc. */ Out << "\t\t; " << jump; /* * Ignore far jumps given it could be actually a tail return to * a random address. */ if (jump > max_pc && jump < extent) { max_pc = jump; } } } } Out << "\n"; /* * Stop disassembling on return statements, if there is no record of a * jump to a successive address. */ if (TID.isReturn()) { if (pc > max_pc) { break; } } } /* * Print GDB command, useful to verify output. */ if (0) { _debug_printf("disassemble %p %p\n", bytes, bytes + pc); } Out << "\n"; Out.flush(); return pc; } extern "C" void lp_disassemble(LLVMValueRef func, const void *code) { raw_debug_ostream Out; Out << LLVMGetValueName(func) << ":\n"; disassemble(code, Out); } /* * Linux perf profiler integration. * * See also: * - http://penberg.blogspot.co.uk/2009/06/jato-has-profiler.html * - https://github.com/penberg/jato/commit/73ad86847329d99d51b386f5aba692580d1f8fdc * - http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=commitdiff;h=80d496be89ed7dede5abee5c057634e80a31c82d */ extern "C" void lp_profile(LLVMValueRef func, const void *code) { #if defined(__linux__) && (defined(DEBUG) || defined(PROFILE)) static boolean first_time = TRUE; static FILE *perf_map_file = NULL; static int perf_asm_fd = -1; if (first_time) { /* * We rely on the disassembler for determining a function's size, but * the disassembly is a leaky and slow operation, so avoid running * this except when running inside linux perf, which can be inferred * by the PERF_BUILDID_DIR environment variable. */ if (getenv("PERF_BUILDID_DIR")) { pid_t pid = getpid(); char filename[256]; util_snprintf(filename, sizeof filename, "/tmp/perf-%llu.map", (unsigned long long)pid); perf_map_file = fopen(filename, "wt"); util_snprintf(filename, sizeof filename, "/tmp/perf-%llu.map.asm", (unsigned long long)pid); mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; perf_asm_fd = open(filename, O_WRONLY | O_CREAT, mode); } first_time = FALSE; } if (perf_map_file) { const char *symbol = LLVMGetValueName(func); unsigned long addr = (uintptr_t)code; llvm::raw_fd_ostream Out(perf_asm_fd, false); Out << symbol << ":\n"; unsigned long size = disassemble(code, Out); fprintf(perf_map_file, "%lx %lx %s\n", addr, size, symbol); fflush(perf_map_file); } #else (void)func; (void)code; #endif }