/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "draw_gs.h" #include "draw_private.h" #include "draw_context.h" #ifdef HAVE_LLVM #include "draw_llvm.h" #endif #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_exec.h" #include "pipe/p_shader_tokens.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_prim.h" /* fixme: move it from here */ #define MAX_PRIMITIVES 64 static INLINE int draw_gs_get_input_index(int semantic, int index, const struct tgsi_shader_info *input_info) { int i; const ubyte *input_semantic_names = input_info->output_semantic_name; const ubyte *input_semantic_indices = input_info->output_semantic_index; for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { if (input_semantic_names[i] == semantic && input_semantic_indices[i] == index) return i; } return -1; } /** * We execute geometry shaders in the SOA mode, so ideally we want to * flush when the number of currently fetched primitives is equal to * the number of elements in the SOA vector. This ensures that the * throughput is optimized for the given vector instrunction set. */ static INLINE boolean draw_gs_should_flush(struct draw_geometry_shader *shader) { return (shader->fetched_prim_count == shader->vector_length); } /*#define DEBUG_OUTPUTS 1*/ static void tgsi_fetch_gs_outputs(struct draw_geometry_shader *shader, unsigned num_primitives, float (**p_output)[4]) { struct tgsi_exec_machine *machine = shader->machine; unsigned prim_idx, j, slot; unsigned current_idx = 0; float (*output)[4]; output = *p_output; /* Unswizzle all output results. */ for (prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { unsigned num_verts_per_prim = machine->Primitives[prim_idx]; shader->primitive_lengths[prim_idx + shader->emitted_primitives] = machine->Primitives[prim_idx]; shader->emitted_vertices += num_verts_per_prim; for (j = 0; j < num_verts_per_prim; j++, current_idx++) { int idx = current_idx * shader->info.num_outputs; #ifdef DEBUG_OUTPUTS debug_printf("%d) Output vert:\n", idx / shader->info.num_outputs); #endif for (slot = 0; slot < shader->info.num_outputs; slot++) { output[slot][0] = machine->Outputs[idx + slot].xyzw[0].f[0]; output[slot][1] = machine->Outputs[idx + slot].xyzw[1].f[0]; output[slot][2] = machine->Outputs[idx + slot].xyzw[2].f[0]; output[slot][3] = machine->Outputs[idx + slot].xyzw[3].f[0]; #ifdef DEBUG_OUTPUTS debug_printf("\t%d: %f %f %f %f\n", slot, output[slot][0], output[slot][1], output[slot][2], output[slot][3]); #endif debug_assert(!util_is_inf_or_nan(output[slot][0])); } output = (float (*)[4])((char *)output + shader->vertex_size); } } *p_output = output; shader->emitted_primitives += num_primitives; } /*#define DEBUG_INPUTS 1*/ static void tgsi_fetch_gs_input(struct draw_geometry_shader *shader, unsigned *indices, unsigned num_vertices, unsigned prim_idx) { struct tgsi_exec_machine *machine = shader->machine; unsigned slot, vs_slot, i; unsigned input_vertex_stride = shader->input_vertex_stride; const float (*input_ptr)[4]; input_ptr = shader->input; for (i = 0; i < num_vertices; ++i) { const float (*input)[4]; #if DEBUG_INPUTS debug_printf("%d) vertex index = %d (prim idx = %d)\n", i, indices[i], prim_idx); #endif input = (const float (*)[4])( (const char *)input_ptr + (indices[i] * input_vertex_stride)); for (slot = 0, vs_slot = 0; slot < shader->info.num_inputs; ++slot) { unsigned idx = i * TGSI_EXEC_MAX_INPUT_ATTRIBS + slot; if (shader->info.input_semantic_name[slot] == TGSI_SEMANTIC_PRIMID) { machine->Inputs[idx].xyzw[0].f[prim_idx] = (float)shader->in_prim_idx; machine->Inputs[idx].xyzw[1].f[prim_idx] = (float)shader->in_prim_idx; machine->Inputs[idx].xyzw[2].f[prim_idx] = (float)shader->in_prim_idx; machine->Inputs[idx].xyzw[3].f[prim_idx] = (float)shader->in_prim_idx; } else { vs_slot = draw_gs_get_input_index( shader->info.input_semantic_name[slot], shader->info.input_semantic_index[slot], shader->input_info); if (vs_slot < 0) { debug_printf("VS/GS signature mismatch!\n"); machine->Inputs[idx].xyzw[0].f[prim_idx] = 0; machine->Inputs[idx].xyzw[1].f[prim_idx] = 0; machine->Inputs[idx].xyzw[2].f[prim_idx] = 0; machine->Inputs[idx].xyzw[3].f[prim_idx] = 0; } else { #if DEBUG_INPUTS debug_printf("\tSlot = %d, vs_slot = %d, idx = %d:\n", slot, vs_slot, idx); assert(!util_is_inf_or_nan(input[vs_slot][0])); assert(!util_is_inf_or_nan(input[vs_slot][1])); assert(!util_is_inf_or_nan(input[vs_slot][2])); assert(!util_is_inf_or_nan(input[vs_slot][3])); #endif machine->Inputs[idx].xyzw[0].f[prim_idx] = input[vs_slot][0]; machine->Inputs[idx].xyzw[1].f[prim_idx] = input[vs_slot][1]; machine->Inputs[idx].xyzw[2].f[prim_idx] = input[vs_slot][2]; machine->Inputs[idx].xyzw[3].f[prim_idx] = input[vs_slot][3]; #if DEBUG_INPUTS debug_printf("\t\t%f %f %f %f\n", machine->Inputs[idx].xyzw[0].f[prim_idx], machine->Inputs[idx].xyzw[1].f[prim_idx], machine->Inputs[idx].xyzw[2].f[prim_idx], machine->Inputs[idx].xyzw[3].f[prim_idx]); #endif ++vs_slot; } } } } } static void tgsi_gs_prepare(struct draw_geometry_shader *shader, const void *constants[PIPE_MAX_CONSTANT_BUFFERS], const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS]) { struct tgsi_exec_machine *machine = shader->machine; tgsi_exec_set_constant_buffers(machine, PIPE_MAX_CONSTANT_BUFFERS, constants, constants_size); } static unsigned tgsi_gs_run(struct draw_geometry_shader *shader, unsigned input_primitives) { struct tgsi_exec_machine *machine = shader->machine; tgsi_set_exec_mask(machine, 1, input_primitives > 1, input_primitives > 2, input_primitives > 3); /* run interpreter */ tgsi_exec_machine_run(machine); return machine->Temps[TGSI_EXEC_TEMP_PRIMITIVE_I].xyzw[TGSI_EXEC_TEMP_PRIMITIVE_C].u[0]; } #ifdef HAVE_LLVM static void llvm_fetch_gs_input(struct draw_geometry_shader *shader, unsigned *indices, unsigned num_vertices, unsigned prim_idx) { unsigned slot, vs_slot, i; unsigned input_vertex_stride = shader->input_vertex_stride; const float (*input_ptr)[4]; float (*input_data)[6][PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS][TGSI_NUM_CHANNELS] = &shader->gs_input->data; shader->llvm_prim_ids[shader->fetched_prim_count] = shader->in_prim_idx; input_ptr = shader->input; for (i = 0; i < num_vertices; ++i) { const float (*input)[4]; #if DEBUG_INPUTS debug_printf("%d) vertex index = %d (prim idx = %d)\n", i, indices[i], prim_idx); #endif input = (const float (*)[4])( (const char *)input_ptr + (indices[i] * input_vertex_stride)); for (slot = 0, vs_slot = 0; slot < shader->info.num_inputs; ++slot) { if (shader->info.input_semantic_name[slot] == TGSI_SEMANTIC_PRIMID) { /* skip. we handle system values through gallivm */ } else { vs_slot = draw_gs_get_input_index( shader->info.input_semantic_name[slot], shader->info.input_semantic_index[slot], shader->input_info); if (vs_slot < 0) { debug_printf("VS/GS signature mismatch!\n"); (*input_data)[i][slot][0][prim_idx] = 0; (*input_data)[i][slot][1][prim_idx] = 0; (*input_data)[i][slot][2][prim_idx] = 0; (*input_data)[i][slot][3][prim_idx] = 0; } else { #if DEBUG_INPUTS debug_printf("\tSlot = %d, vs_slot = %d, i = %d:\n", slot, vs_slot, i); assert(!util_is_inf_or_nan(input[vs_slot][0])); assert(!util_is_inf_or_nan(input[vs_slot][1])); assert(!util_is_inf_or_nan(input[vs_slot][2])); assert(!util_is_inf_or_nan(input[vs_slot][3])); #endif (*input_data)[i][slot][0][prim_idx] = input[vs_slot][0]; (*input_data)[i][slot][1][prim_idx] = input[vs_slot][1]; (*input_data)[i][slot][2][prim_idx] = input[vs_slot][2]; (*input_data)[i][slot][3][prim_idx] = input[vs_slot][3]; #if DEBUG_INPUTS debug_printf("\t\t%f %f %f %f\n", (*input_data)[i][slot][0][prim_idx], (*input_data)[i][slot][1][prim_idx], (*input_data)[i][slot][2][prim_idx], (*input_data)[i][slot][3][prim_idx]); #endif ++vs_slot; } } } } } static void llvm_fetch_gs_outputs(struct draw_geometry_shader *shader, unsigned num_primitives, float (**p_output)[4]) { int total_verts = 0; int vertex_count = 0; int total_prims = 0; int max_prims_per_invocation = 0; char *output_ptr = (char*)shader->gs_output; int i, j, prim_idx; unsigned next_prim_boundary = shader->primitive_boundary; for (i = 0; i < shader->vector_length; ++i) { int prims = shader->llvm_emitted_primitives[i]; total_prims += prims; max_prims_per_invocation = MAX2(max_prims_per_invocation, prims); } for (i = 0; i < shader->vector_length; ++i) { total_verts += shader->llvm_emitted_vertices[i]; } output_ptr += shader->emitted_vertices * shader->vertex_size; for (i = 0; i < shader->vector_length - 1; ++i) { int current_verts = shader->llvm_emitted_vertices[i]; int next_verts = shader->llvm_emitted_vertices[i + 1]; #if 0 int j; for (j = 0; j < current_verts; ++j) { struct vertex_header *vh = (struct vertex_header *) (output_ptr + shader->vertex_size * (i * next_prim_boundary + j)); debug_printf("--- %d) [%f, %f, %f, %f]\n", j + vertex_count, vh->data[0][0], vh->data[0][1], vh->data[0][2], vh->data[0][3]); } #endif debug_assert(current_verts <= shader->max_output_vertices); debug_assert(next_verts <= shader->max_output_vertices); if (next_verts) { memmove(output_ptr + (vertex_count + current_verts) * shader->vertex_size, output_ptr + ((i + 1) * next_prim_boundary) * shader->vertex_size, shader->vertex_size * next_verts); } vertex_count += current_verts; } #if 0 { int i; for (i = 0; i < total_verts; ++i) { struct vertex_header *vh = (struct vertex_header *)(output_ptr + shader->vertex_size * i); debug_printf("%d) [%f, %f, %f, %f]\n", i, vh->data[0][0], vh->data[0][1], vh->data[0][2], vh->data[0][3]); } } #endif prim_idx = 0; for (i = 0; i < shader->vector_length; ++i) { int num_prims = shader->llvm_emitted_primitives[i]; for (j = 0; j < num_prims; ++j) { int prim_length = shader->llvm_prim_lengths[j][i]; shader->primitive_lengths[shader->emitted_primitives + prim_idx] = prim_length; ++prim_idx; } } shader->emitted_primitives += total_prims; shader->emitted_vertices += total_verts; } static void llvm_gs_prepare(struct draw_geometry_shader *shader, const void *constants[PIPE_MAX_CONSTANT_BUFFERS], const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS]) { } static unsigned llvm_gs_run(struct draw_geometry_shader *shader, unsigned input_primitives) { unsigned ret; char *input = (char*)shader->gs_output; input += (shader->emitted_vertices * shader->vertex_size); ret = shader->current_variant->jit_func( shader->jit_context, shader->gs_input->data, (struct vertex_header*)input, input_primitives, shader->draw->instance_id, shader->llvm_prim_ids); return ret; } #endif static void gs_flush(struct draw_geometry_shader *shader) { unsigned out_prim_count; unsigned input_primitives = shader->fetched_prim_count; if (shader->draw->collect_statistics) { shader->draw->statistics.gs_invocations += input_primitives; } debug_assert(input_primitives > 0 && input_primitives <= 4); out_prim_count = shader->run(shader, input_primitives); shader->fetch_outputs(shader, out_prim_count, &shader->tmp_output); #if 0 debug_printf("PRIM emitted prims = %d (verts=%d), cur prim count = %d\n", shader->emitted_primitives, shader->emitted_vertices, out_prim_count); #endif shader->fetched_prim_count = 0; } static void gs_point(struct draw_geometry_shader *shader, int idx) { unsigned indices[1]; indices[0] = idx; shader->fetch_inputs(shader, indices, 1, shader->fetched_prim_count); ++shader->in_prim_idx; ++shader->fetched_prim_count; if (draw_gs_should_flush(shader)) gs_flush(shader); } static void gs_line(struct draw_geometry_shader *shader, int i0, int i1) { unsigned indices[2]; indices[0] = i0; indices[1] = i1; shader->fetch_inputs(shader, indices, 2, shader->fetched_prim_count); ++shader->in_prim_idx; ++shader->fetched_prim_count; if (draw_gs_should_flush(shader)) gs_flush(shader); } static void gs_line_adj(struct draw_geometry_shader *shader, int i0, int i1, int i2, int i3) { unsigned indices[4]; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; shader->fetch_inputs(shader, indices, 4, shader->fetched_prim_count); ++shader->in_prim_idx; ++shader->fetched_prim_count; if (draw_gs_should_flush(shader)) gs_flush(shader); } static void gs_tri(struct draw_geometry_shader *shader, int i0, int i1, int i2) { unsigned indices[3]; indices[0] = i0; indices[1] = i1; indices[2] = i2; shader->fetch_inputs(shader, indices, 3, shader->fetched_prim_count); ++shader->in_prim_idx; ++shader->fetched_prim_count; if (draw_gs_should_flush(shader)) gs_flush(shader); } static void gs_tri_adj(struct draw_geometry_shader *shader, int i0, int i1, int i2, int i3, int i4, int i5) { unsigned indices[6]; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; indices[4] = i4; indices[5] = i5; shader->fetch_inputs(shader, indices, 6, shader->fetched_prim_count); ++shader->in_prim_idx; ++shader->fetched_prim_count; if (draw_gs_should_flush(shader)) gs_flush(shader); } #define FUNC gs_run #define GET_ELT(idx) (idx) #include "draw_gs_tmp.h" #define FUNC gs_run_elts #define LOCAL_VARS const ushort *elts = input_prims->elts; #define GET_ELT(idx) (elts[idx]) #include "draw_gs_tmp.h" /** * Execute geometry shader. */ int draw_geometry_shader_run(struct draw_geometry_shader *shader, const void *constants[PIPE_MAX_CONSTANT_BUFFERS], const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS], const struct draw_vertex_info *input_verts, const struct draw_prim_info *input_prim, const struct tgsi_shader_info *input_info, struct draw_vertex_info *output_verts, struct draw_prim_info *output_prims ) { const float (*input)[4] = (const float (*)[4])input_verts->verts->data; unsigned input_stride = input_verts->vertex_size; unsigned num_outputs = shader->info.num_outputs; unsigned vertex_size = sizeof(struct vertex_header) + num_outputs * 4 * sizeof(float); unsigned num_input_verts = input_prim->linear ? input_verts->count : input_prim->count; unsigned num_in_primitives = align( MAX2(u_decomposed_prims_for_vertices(input_prim->prim, num_input_verts), u_decomposed_prims_for_vertices(shader->input_primitive, num_input_verts)), shader->vector_length); unsigned max_out_prims = u_decomposed_prims_for_vertices(shader->output_primitive, shader->max_output_vertices) * num_in_primitives; //Assume at least one primitive max_out_prims = MAX2(max_out_prims, 1); output_verts->vertex_size = vertex_size; output_verts->stride = output_verts->vertex_size; /* we allocate exactly one extra vertex per primitive to allow the GS to emit * overflown vertices into some area where they won't harm anyone */ output_verts->verts = (struct vertex_header *)MALLOC(output_verts->vertex_size * max_out_prims * shader->primitive_boundary); #if 0 debug_printf("%s count = %d (in prims # = %d)\n", __FUNCTION__, num_input_verts, num_in_primitives); debug_printf("\tlinear = %d, prim_info->count = %d\n", input_prim->linear, input_prim->count); debug_printf("\tprim pipe = %s, shader in = %s, shader out = %s, max out = %d\n", u_prim_name(input_prim->prim), u_prim_name(shader->input_primitive), u_prim_name(shader->output_primitive), shader->max_output_vertices); #endif shader->emitted_vertices = 0; shader->emitted_primitives = 0; shader->vertex_size = vertex_size; shader->tmp_output = (float (*)[4])output_verts->verts->data; shader->fetched_prim_count = 0; shader->input_vertex_stride = input_stride; shader->input = input; shader->input_info = input_info; FREE(shader->primitive_lengths); shader->primitive_lengths = MALLOC(max_out_prims * sizeof(unsigned)); #ifdef HAVE_LLVM if (draw_get_option_use_llvm()) { shader->gs_output = output_verts->verts; if (max_out_prims > shader->max_out_prims) { unsigned i; if (shader->llvm_prim_lengths) { for (i = 0; i < shader->max_out_prims; ++i) { align_free(shader->llvm_prim_lengths[i]); } FREE(shader->llvm_prim_lengths); } shader->llvm_prim_lengths = MALLOC(max_out_prims * sizeof(unsigned*)); for (i = 0; i < max_out_prims; ++i) { int vector_size = shader->vector_length * sizeof(unsigned); shader->llvm_prim_lengths[i] = align_malloc(vector_size, vector_size); } shader->max_out_prims = max_out_prims; } shader->jit_context->prim_lengths = shader->llvm_prim_lengths; shader->jit_context->emitted_vertices = shader->llvm_emitted_vertices; shader->jit_context->emitted_prims = shader->llvm_emitted_primitives; } #endif shader->prepare(shader, constants, constants_size); if (input_prim->linear) gs_run(shader, input_prim, input_verts, output_prims, output_verts); else gs_run_elts(shader, input_prim, input_verts, output_prims, output_verts); /* Flush the remaining primitives. Will happen if * num_input_primitives % 4 != 0 */ if (shader->fetched_prim_count > 0) { gs_flush(shader); } debug_assert(shader->fetched_prim_count == 0); /* Update prim_info: */ output_prims->linear = TRUE; output_prims->elts = NULL; output_prims->start = 0; output_prims->count = shader->emitted_vertices; output_prims->prim = shader->output_primitive; output_prims->flags = 0x0; output_prims->primitive_lengths = shader->primitive_lengths; output_prims->primitive_count = shader->emitted_primitives; output_verts->count = shader->emitted_vertices; if (shader->draw->collect_statistics) { unsigned i; for (i = 0; i < shader->emitted_primitives; ++i) { shader->draw->statistics.gs_primitives += u_decomposed_prims_for_vertices(shader->output_primitive, shader->primitive_lengths[i]); } } #if 0 debug_printf("GS finished, prims = %d, verts = %d\n", output_prims->primitive_count, output_verts->count); #endif return shader->emitted_vertices; } void draw_geometry_shader_prepare(struct draw_geometry_shader *shader, struct draw_context *draw) { if (shader && shader->machine->Tokens != shader->state.tokens) { tgsi_exec_machine_bind_shader(shader->machine, shader->state.tokens, draw->gs.tgsi.sampler); } } boolean draw_gs_init( struct draw_context *draw ) { draw->gs.tgsi.machine = tgsi_exec_machine_create(); if (!draw->gs.tgsi.machine) return FALSE; draw->gs.tgsi.machine->Primitives = align_malloc( MAX_PRIMITIVES * sizeof(struct tgsi_exec_vector), 16); if (!draw->gs.tgsi.machine->Primitives) return FALSE; memset(draw->gs.tgsi.machine->Primitives, 0, MAX_PRIMITIVES * sizeof(struct tgsi_exec_vector)); return TRUE; } void draw_gs_destroy( struct draw_context *draw ) { if (draw->gs.tgsi.machine) { align_free(draw->gs.tgsi.machine->Primitives); tgsi_exec_machine_destroy(draw->gs.tgsi.machine); } } struct draw_geometry_shader * draw_create_geometry_shader(struct draw_context *draw, const struct pipe_shader_state *state) { #ifdef HAVE_LLVM boolean use_llvm = draw_get_option_use_llvm(); struct llvm_geometry_shader *llvm_gs; #endif struct draw_geometry_shader *gs; unsigned i; #ifdef HAVE_LLVM if (use_llvm) { llvm_gs = CALLOC_STRUCT(llvm_geometry_shader); if (llvm_gs == NULL) return NULL; gs = &llvm_gs->base; make_empty_list(&llvm_gs->variants); } else #endif { gs = CALLOC_STRUCT(draw_geometry_shader); } if (!gs) return NULL; gs->draw = draw; gs->state = *state; gs->state.tokens = tgsi_dup_tokens(state->tokens); if (!gs->state.tokens) { FREE(gs); return NULL; } tgsi_scan_shader(state->tokens, &gs->info); /* setup the defaults */ gs->input_primitive = PIPE_PRIM_TRIANGLES; gs->output_primitive = PIPE_PRIM_TRIANGLE_STRIP; gs->max_output_vertices = 32; gs->max_out_prims = 0; #ifdef HAVE_LLVM if (use_llvm) { /* TODO: change the input array to handle the following vector length, instead of the currently hardcoded TGSI_NUM_CHANNELS gs->vector_length = lp_native_vector_width / 32;*/ gs->vector_length = TGSI_NUM_CHANNELS; } else #endif { gs->vector_length = 1; } for (i = 0; i < gs->info.num_properties; ++i) { if (gs->info.properties[i].name == TGSI_PROPERTY_GS_INPUT_PRIM) gs->input_primitive = gs->info.properties[i].data[0]; else if (gs->info.properties[i].name == TGSI_PROPERTY_GS_OUTPUT_PRIM) gs->output_primitive = gs->info.properties[i].data[0]; else if (gs->info.properties[i].name == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) gs->max_output_vertices = gs->info.properties[i].data[0]; } /* Primitive boundary is bigger than max_output_vertices by one, because * the specification says that the geometry shader should exit if the * number of emitted vertices is bigger or equal to max_output_vertices and * we can't do that because we're running in the SoA mode, which means that * our storing routines will keep getting called on channels that have * overflown. * So we need some scratch area where we can keep writing the overflown * vertices without overwriting anything important or crashing. */ gs->primitive_boundary = gs->max_output_vertices + 1; for (i = 0; i < gs->info.num_outputs; i++) { if (gs->info.output_semantic_name[i] == TGSI_SEMANTIC_POSITION && gs->info.output_semantic_index[i] == 0) gs->position_output = i; } gs->machine = draw->gs.tgsi.machine; #ifdef HAVE_LLVM if (use_llvm) { int vector_size = gs->vector_length * sizeof(float); gs->gs_input = align_malloc(sizeof(struct draw_gs_inputs), 16); memset(gs->gs_input, 0, sizeof(struct draw_gs_inputs)); gs->llvm_prim_lengths = 0; gs->llvm_emitted_primitives = align_malloc(vector_size, vector_size); gs->llvm_emitted_vertices = align_malloc(vector_size, vector_size); gs->llvm_prim_ids = align_malloc(vector_size, vector_size); gs->fetch_outputs = llvm_fetch_gs_outputs; gs->fetch_inputs = llvm_fetch_gs_input; gs->prepare = llvm_gs_prepare; gs->run = llvm_gs_run; gs->jit_context = &draw->llvm->gs_jit_context; llvm_gs->variant_key_size = draw_gs_llvm_variant_key_size( MAX2(gs->info.file_max[TGSI_FILE_SAMPLER]+1, gs->info.file_max[TGSI_FILE_SAMPLER_VIEW]+1)); } else #endif { gs->fetch_outputs = tgsi_fetch_gs_outputs; gs->fetch_inputs = tgsi_fetch_gs_input; gs->prepare = tgsi_gs_prepare; gs->run = tgsi_gs_run; } return gs; } void draw_bind_geometry_shader(struct draw_context *draw, struct draw_geometry_shader *dgs) { draw_do_flush(draw, DRAW_FLUSH_STATE_CHANGE); if (dgs) { draw->gs.geometry_shader = dgs; draw->gs.num_gs_outputs = dgs->info.num_outputs; draw->gs.position_output = dgs->position_output; draw_geometry_shader_prepare(dgs, draw); } else { draw->gs.geometry_shader = NULL; draw->gs.num_gs_outputs = 0; } } void draw_delete_geometry_shader(struct draw_context *draw, struct draw_geometry_shader *dgs) { if (!dgs) { return; } #ifdef HAVE_LLVM if (draw_get_option_use_llvm()) { struct llvm_geometry_shader *shader = llvm_geometry_shader(dgs); struct draw_gs_llvm_variant_list_item *li; li = first_elem(&shader->variants); while(!at_end(&shader->variants, li)) { struct draw_gs_llvm_variant_list_item *next = next_elem(li); draw_gs_llvm_destroy_variant(li->base); li = next; } assert(shader->variants_cached == 0); if (dgs->llvm_prim_lengths) { unsigned i; for (i = 0; i < dgs->max_out_prims; ++i) { align_free(dgs->llvm_prim_lengths[i]); } FREE(dgs->llvm_prim_lengths); } align_free(dgs->llvm_emitted_primitives); align_free(dgs->llvm_emitted_vertices); align_free(dgs->llvm_prim_ids); align_free(dgs->gs_input); } #endif FREE(dgs->primitive_lengths); FREE((void*) dgs->state.tokens); FREE(dgs); } #ifdef HAVE_LLVM void draw_gs_set_current_variant(struct draw_geometry_shader *shader, struct draw_gs_llvm_variant *variant) { shader->current_variant = variant; } #endif /* * Called at the very begin of the draw call with a new instance * Used to reset state that should persist between primitive restart. */ void draw_geometry_shader_new_instance(struct draw_geometry_shader *gs) { if (!gs) return; gs->in_prim_idx = 0; }