/* * Copyright © 2019 Google LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "tu_private.h" #include "spirv/nir_spirv.h" #include "util/mesa-sha1.h" #include "nir/nir_xfb_info.h" #include "nir/nir_vulkan.h" #include "vk_util.h" #include "ir3/ir3_nir.h" static nir_shader * tu_spirv_to_nir(struct ir3_compiler *compiler, const uint32_t *words, size_t word_count, gl_shader_stage stage, const char *entry_point_name, const VkSpecializationInfo *spec_info) { /* TODO these are made-up */ const struct spirv_to_nir_options spirv_options = { .frag_coord_is_sysval = true, .lower_ubo_ssbo_access_to_offsets = true, .caps = { .transform_feedback = compiler->gpu_id >= 600, }, }; const nir_shader_compiler_options *nir_options = ir3_get_compiler_options(compiler); /* convert VkSpecializationInfo */ struct nir_spirv_specialization *spec = NULL; uint32_t num_spec = 0; if (spec_info && spec_info->mapEntryCount) { spec = calloc(spec_info->mapEntryCount, sizeof(*spec)); if (!spec) return NULL; for (uint32_t i = 0; i < spec_info->mapEntryCount; i++) { const VkSpecializationMapEntry *entry = &spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry->offset; assert(data + entry->size <= spec_info->pData + spec_info->dataSize); spec[i].id = entry->constantID; switch (entry->size) { case 8: spec[i].value.u64 = *(const uint64_t *)data; break; case 4: spec[i].value.u32 = *(const uint32_t *)data; break; case 2: spec[i].value.u16 = *(const uint16_t *)data; break; case 1: spec[i].value.u8 = *(const uint8_t *)data; break; default: assert(!"Invalid spec constant size"); break; } spec[i].defined_on_module = false; } num_spec = spec_info->mapEntryCount; } nir_shader *nir = spirv_to_nir(words, word_count, spec, num_spec, stage, entry_point_name, &spirv_options, nir_options); free(spec); assert(nir->info.stage == stage); nir_validate_shader(nir, "after spirv_to_nir"); return nir; } static void lower_load_push_constant(nir_builder *b, nir_intrinsic_instr *instr, struct tu_shader *shader) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform); load->num_components = instr->num_components; uint32_t base = nir_intrinsic_base(instr); assert(base % 4 == 0); assert(base >= shader->push_consts.lo * 16); base -= shader->push_consts.lo * 16; nir_intrinsic_set_base(load, base / 4); load->src[0] = nir_src_for_ssa(nir_ushr(b, instr->src[0].ssa, nir_imm_int(b, 2))); nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, instr->dest.ssa.bit_size, instr->dest.ssa.name); nir_builder_instr_insert(b, &load->instr); nir_ssa_def_rewrite_uses(&instr->dest.ssa, nir_src_for_ssa(&load->dest.ssa)); nir_instr_remove(&instr->instr); } static void lower_vulkan_resource_index(nir_builder *b, nir_intrinsic_instr *instr, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { nir_ssa_def *vulkan_idx = instr->src[0].ssa; unsigned set = nir_intrinsic_desc_set(instr); unsigned binding = nir_intrinsic_binding(instr); struct tu_descriptor_set_layout *set_layout = layout->set[set].layout; struct tu_descriptor_set_binding_layout *binding_layout = &set_layout->binding[binding]; uint32_t base; shader->active_desc_sets |= 1u << set; switch (binding_layout->type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: base = layout->set[set].dynamic_offset_start + binding_layout->dynamic_offset_offset + layout->input_attachment_count; set = MAX_SETS; break; default: base = binding_layout->offset / (4 * A6XX_TEX_CONST_DWORDS); break; } nir_intrinsic_instr *bindless = nir_intrinsic_instr_create(b->shader, nir_intrinsic_bindless_resource_ir3); bindless->num_components = 1; nir_ssa_dest_init(&bindless->instr, &bindless->dest, 1, 32, NULL); nir_intrinsic_set_desc_set(bindless, set); bindless->src[0] = nir_src_for_ssa(nir_iadd(b, nir_imm_int(b, base), vulkan_idx)); nir_builder_instr_insert(b, &bindless->instr); nir_ssa_def_rewrite_uses(&instr->dest.ssa, nir_src_for_ssa(&bindless->dest.ssa)); nir_instr_remove(&instr->instr); } static nir_ssa_def * build_bindless(nir_builder *b, nir_deref_instr *deref, bool is_sampler, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { nir_variable *var = nir_deref_instr_get_variable(deref); unsigned set = var->data.descriptor_set; unsigned binding = var->data.binding; const struct tu_descriptor_set_binding_layout *bind_layout = &layout->set[set].layout->binding[binding]; shader->active_desc_sets |= 1u << set; nir_ssa_def *desc_offset; unsigned descriptor_stride; if (bind_layout->type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) { unsigned offset = layout->set[set].input_attachment_start + bind_layout->input_attachment_offset; desc_offset = nir_imm_int(b, offset); set = MAX_SETS; descriptor_stride = 1; } else { unsigned offset = 0; /* Samplers come second in combined image/sampler descriptors, see * write_combined_image_sampler_descriptor(). */ if (is_sampler && bind_layout->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) { offset = 1; } desc_offset = nir_imm_int(b, (bind_layout->offset / (4 * A6XX_TEX_CONST_DWORDS)) + offset); descriptor_stride = bind_layout->size / (4 * A6XX_TEX_CONST_DWORDS); } if (deref->deref_type != nir_deref_type_var) { assert(deref->deref_type == nir_deref_type_array); nir_ssa_def *arr_index = nir_ssa_for_src(b, deref->arr.index, 1); desc_offset = nir_iadd(b, desc_offset, nir_imul_imm(b, arr_index, descriptor_stride)); } nir_intrinsic_instr *bindless = nir_intrinsic_instr_create(b->shader, nir_intrinsic_bindless_resource_ir3); bindless->num_components = 1; nir_ssa_dest_init(&bindless->instr, &bindless->dest, 1, 32, NULL); nir_intrinsic_set_desc_set(bindless, set); bindless->src[0] = nir_src_for_ssa(desc_offset); nir_builder_instr_insert(b, &bindless->instr); return &bindless->dest.ssa; } static void lower_image_deref(nir_builder *b, nir_intrinsic_instr *instr, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { nir_deref_instr *deref = nir_src_as_deref(instr->src[0]); nir_ssa_def *bindless = build_bindless(b, deref, false, shader, layout); nir_rewrite_image_intrinsic(instr, bindless, true); } static bool lower_intrinsic(nir_builder *b, nir_intrinsic_instr *instr, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { switch (instr->intrinsic) { case nir_intrinsic_load_layer_id: /* TODO: remove this when layered rendering is implemented */ nir_ssa_def_rewrite_uses(&instr->dest.ssa, nir_src_for_ssa(nir_imm_int(b, 0))); nir_instr_remove(&instr->instr); return true; case nir_intrinsic_load_push_constant: lower_load_push_constant(b, instr, shader); return true; case nir_intrinsic_vulkan_resource_index: lower_vulkan_resource_index(b, instr, shader, layout); return true; case nir_intrinsic_image_deref_load: case nir_intrinsic_image_deref_store: case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: case nir_intrinsic_image_deref_size: case nir_intrinsic_image_deref_samples: lower_image_deref(b, instr, shader, layout); return true; default: return false; } } static void lower_tex_ycbcr(const struct tu_pipeline_layout *layout, nir_builder *builder, nir_tex_instr *tex) { int deref_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref); assert(deref_src_idx >= 0); nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src); nir_variable *var = nir_deref_instr_get_variable(deref); const struct tu_descriptor_set_layout *set_layout = layout->set[var->data.descriptor_set].layout; const struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[var->data.binding]; const struct tu_sampler_ycbcr_conversion *ycbcr_samplers = tu_immutable_ycbcr_samplers(set_layout, binding); if (!ycbcr_samplers) return; /* For the following instructions, we don't apply any change */ if (tex->op == nir_texop_txs || tex->op == nir_texop_query_levels || tex->op == nir_texop_lod) return; assert(tex->texture_index == 0); unsigned array_index = 0; if (deref->deref_type != nir_deref_type_var) { assert(deref->deref_type == nir_deref_type_array); if (!nir_src_is_const(deref->arr.index)) return; array_index = nir_src_as_uint(deref->arr.index); array_index = MIN2(array_index, binding->array_size - 1); } const struct tu_sampler_ycbcr_conversion *ycbcr_sampler = ycbcr_samplers + array_index; if (ycbcr_sampler->ycbcr_model == VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) return; builder->cursor = nir_after_instr(&tex->instr); uint8_t bits = vk_format_get_component_bits(ycbcr_sampler->format, UTIL_FORMAT_COLORSPACE_RGB, PIPE_SWIZZLE_X); uint32_t bpcs[3] = {bits, bits, bits}; /* TODO: use right bpc for each channel ? */ nir_ssa_def *result = nir_convert_ycbcr_to_rgb(builder, ycbcr_sampler->ycbcr_model, ycbcr_sampler->ycbcr_range, &tex->dest.ssa, bpcs); nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(result), result->parent_instr); builder->cursor = nir_before_instr(&tex->instr); } static bool lower_tex(nir_builder *b, nir_tex_instr *tex, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { lower_tex_ycbcr(layout, b, tex); int sampler_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_deref); if (sampler_src_idx >= 0) { nir_deref_instr *deref = nir_src_as_deref(tex->src[sampler_src_idx].src); nir_ssa_def *bindless = build_bindless(b, deref, true, shader, layout); nir_instr_rewrite_src(&tex->instr, &tex->src[sampler_src_idx].src, nir_src_for_ssa(bindless)); tex->src[sampler_src_idx].src_type = nir_tex_src_sampler_handle; } int tex_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref); if (tex_src_idx >= 0) { nir_deref_instr *deref = nir_src_as_deref(tex->src[tex_src_idx].src); nir_ssa_def *bindless = build_bindless(b, deref, false, shader, layout); nir_instr_rewrite_src(&tex->instr, &tex->src[tex_src_idx].src, nir_src_for_ssa(bindless)); tex->src[tex_src_idx].src_type = nir_tex_src_texture_handle; } return true; } static bool lower_impl(nir_function_impl *impl, struct tu_shader *shader, const struct tu_pipeline_layout *layout) { nir_builder b; nir_builder_init(&b, impl); bool progress = false; nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { b.cursor = nir_before_instr(instr); switch (instr->type) { case nir_instr_type_tex: progress |= lower_tex(&b, nir_instr_as_tex(instr), shader, layout); break; case nir_instr_type_intrinsic: progress |= lower_intrinsic(&b, nir_instr_as_intrinsic(instr), shader, layout); break; default: break; } } } return progress; } /* Figure out the range of push constants that we're actually going to push to * the shader, and tell the backend to reserve this range when pushing UBO * constants. */ static void gather_push_constants(nir_shader *shader, struct tu_shader *tu_shader) { uint32_t min = UINT32_MAX, max = 0; nir_foreach_function(function, shader) { if (!function->impl) continue; nir_foreach_block(block, function->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_load_push_constant) continue; uint32_t base = nir_intrinsic_base(intrin); uint32_t range = nir_intrinsic_range(intrin); min = MIN2(min, base); max = MAX2(max, base + range); break; } } } if (min >= max) { tu_shader->push_consts.lo = 0; tu_shader->push_consts.count = 0; tu_shader->ir3_shader.const_state.num_reserved_user_consts = 0; return; } /* CP_LOAD_STATE OFFSET and NUM_UNIT are in units of vec4 (4 dwords), * however there's an alignment requirement of 4 on OFFSET. Expand the * range and change units accordingly. */ tu_shader->push_consts.lo = (min / 16) / 4 * 4; tu_shader->push_consts.count = align(max, 16) / 16 - tu_shader->push_consts.lo; tu_shader->ir3_shader.const_state.num_reserved_user_consts = align(tu_shader->push_consts.count, 4); } /* Gather the InputAttachmentIndex for each input attachment from the NIR * shader and organize the info in a way so that draw-time patching is easy. */ static void gather_input_attachments(nir_shader *shader, struct tu_shader *tu_shader, const struct tu_pipeline_layout *layout) { nir_foreach_variable(var, &shader->uniforms) { const struct glsl_type *glsl_type = glsl_without_array(var->type); if (!glsl_type_is_image(glsl_type)) continue; enum glsl_sampler_dim dim = glsl_get_sampler_dim(glsl_type); const uint32_t set = var->data.descriptor_set; const uint32_t binding = var->data.binding; const struct tu_descriptor_set_binding_layout *bind_layout = &layout->set[set].layout->binding[binding]; const uint32_t array_size = bind_layout->array_size; if (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS) { unsigned offset = layout->set[set].input_attachment_start + bind_layout->input_attachment_offset; for (unsigned i = 0; i < array_size; i++) tu_shader->attachment_idx[offset + i] = var->data.index + i; } } } static bool tu_lower_io(nir_shader *shader, struct tu_shader *tu_shader, const struct tu_pipeline_layout *layout) { bool progress = false; gather_push_constants(shader, tu_shader); gather_input_attachments(shader, tu_shader, layout); nir_foreach_function(function, shader) { if (function->impl) progress |= lower_impl(function->impl, tu_shader, layout); } return progress; } static void tu_gather_xfb_info(nir_shader *nir, struct tu_shader *shader) { struct ir3_stream_output_info *info = &shader->ir3_shader.stream_output; nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL); if (!xfb) return; /* creating a map from VARYING_SLOT_* enums to consecutive index */ uint8_t num_outputs = 0; uint64_t outputs_written = 0; for (int i = 0; i < xfb->output_count; i++) outputs_written |= BITFIELD64_BIT(xfb->outputs[i].location); uint8_t output_map[VARYING_SLOT_TESS_MAX]; memset(output_map, 0, sizeof(output_map)); for (unsigned attr = 0; attr < VARYING_SLOT_MAX; attr++) { if (outputs_written & BITFIELD64_BIT(attr)) output_map[attr] = num_outputs++; } assert(xfb->output_count < IR3_MAX_SO_OUTPUTS); info->num_outputs = xfb->output_count; for (int i = 0; i < IR3_MAX_SO_BUFFERS; i++) info->stride[i] = xfb->buffers[i].stride / 4; for (int i = 0; i < xfb->output_count; i++) { info->output[i].register_index = output_map[xfb->outputs[i].location]; info->output[i].start_component = xfb->outputs[i].component_offset; info->output[i].num_components = util_bitcount(xfb->outputs[i].component_mask); info->output[i].output_buffer = xfb->outputs[i].buffer; info->output[i].dst_offset = xfb->outputs[i].offset / 4; info->output[i].stream = xfb->buffer_to_stream[xfb->outputs[i].buffer]; } ralloc_free(xfb); } struct tu_shader * tu_shader_create(struct tu_device *dev, gl_shader_stage stage, const VkPipelineShaderStageCreateInfo *stage_info, struct tu_pipeline_layout *layout, const VkAllocationCallbacks *alloc) { struct tu_shader *shader; const uint32_t max_variant_count = (stage == MESA_SHADER_VERTEX) ? 2 : 1; shader = vk_zalloc2( &dev->alloc, alloc, sizeof(*shader) + sizeof(struct ir3_shader_variant) * max_variant_count, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!shader) return NULL; nir_shader *nir; if (stage_info) { /* translate SPIR-V to NIR */ const struct tu_shader_module *module = tu_shader_module_from_handle(stage_info->module); assert(module->code_size % 4 == 0); nir = tu_spirv_to_nir( dev->compiler, (const uint32_t *) module->code, module->code_size / 4, stage, stage_info->pName, stage_info->pSpecializationInfo); } else { assert(stage == MESA_SHADER_FRAGMENT); nir_builder fs_b; const nir_shader_compiler_options *nir_options = ir3_get_compiler_options(dev->compiler); nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, nir_options); fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs"); nir = fs_b.shader; } if (!nir) { vk_free2(&dev->alloc, alloc, shader); return NULL; } if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_NIR)) { fprintf(stderr, "translated nir:\n"); nir_print_shader(nir, stderr); } /* multi step inlining procedure */ NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_opt_deref); foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (!func->is_entrypoint) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); NIR_PASS_V(nir, nir_lower_variable_initializers, ~nir_var_function_temp); /* Split member structs. We do this before lower_io_to_temporaries so that * it doesn't lower system values to temporaries by accident. */ NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_split_per_member_structs); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared, NULL); /* Gather information for transform feedback. * This should be called after nir_split_per_member_structs. * Also needs to be called after nir_remove_dead_variables with varyings, * so that we could align stream outputs correctly. */ if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL || nir->info.stage == MESA_SHADER_GEOMETRY) tu_gather_xfb_info(nir, shader); NIR_PASS_V(nir, nir_propagate_invariant); NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true); NIR_PASS_V(nir, nir_lower_global_vars_to_local); NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_lower_var_copies); NIR_PASS_V(nir, nir_opt_copy_prop_vars); NIR_PASS_V(nir, nir_opt_combine_stores, nir_var_all); /* ir3 doesn't support indirect input/output */ NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_shader_in | nir_var_shader_out); NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, false); nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs, stage); nir_assign_io_var_locations(&nir->outputs, &nir->num_outputs, stage); NIR_PASS_V(nir, nir_lower_system_values); NIR_PASS_V(nir, nir_lower_frexp); if (stage == MESA_SHADER_FRAGMENT) NIR_PASS_V(nir, nir_lower_input_attachments, true); if (stage == MESA_SHADER_GEOMETRY) NIR_PASS_V(nir, ir3_nir_lower_gs); NIR_PASS_V(nir, tu_lower_io, shader, layout); NIR_PASS_V(nir, nir_lower_io, nir_var_all, ir3_glsl_type_size, 0); if (stage == MESA_SHADER_FRAGMENT) { /* NOTE: lower load_barycentric_at_sample first, since it * produces load_barycentric_at_offset: */ NIR_PASS_V(nir, ir3_nir_lower_load_barycentric_at_sample); NIR_PASS_V(nir, ir3_nir_lower_load_barycentric_at_offset); NIR_PASS_V(nir, ir3_nir_move_varying_inputs); } nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); /* num_uniforms only used by ir3 for size of ubo 0 (push constants) */ nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE / 16; shader->ir3_shader.compiler = dev->compiler; shader->ir3_shader.type = stage; shader->ir3_shader.nir = nir; return shader; } void tu_shader_destroy(struct tu_device *dev, struct tu_shader *shader, const VkAllocationCallbacks *alloc) { if (shader->ir3_shader.nir) ralloc_free(shader->ir3_shader.nir); for (uint32_t i = 0; i < 1 + shader->has_binning_pass; i++) { if (shader->variants[i].ir) ir3_destroy(shader->variants[i].ir); } if (shader->ir3_shader.const_state.immediates) free(shader->ir3_shader.const_state.immediates); if (shader->binary) free(shader->binary); if (shader->binning_binary) free(shader->binning_binary); vk_free2(&dev->alloc, alloc, shader); } void tu_shader_compile_options_init( struct tu_shader_compile_options *options, const VkGraphicsPipelineCreateInfo *pipeline_info) { bool has_gs = false; bool msaa = false; if (pipeline_info) { for (uint32_t i = 0; i < pipeline_info->stageCount; i++) { if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) { has_gs = true; break; } } const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState; const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations = vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); if (!pipeline_info->pRasterizationState->rasterizerDiscardEnable && (msaa_info->rasterizationSamples > 1 || /* also set msaa key when sample location is not the default * since this affects varying interpolation */ (sample_locations && sample_locations->sampleLocationsEnable))) { msaa = true; } } *options = (struct tu_shader_compile_options) { /* TODO: Populate the remaining fields of ir3_shader_key. */ .key = { .has_gs = has_gs, .msaa = msaa, }, /* TODO: VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT * some optimizations need to happen otherwise shader might not compile */ .optimize = true, .include_binning_pass = true, }; } static uint32_t * tu_compile_shader_variant(struct ir3_shader *shader, const struct ir3_shader_key *key, struct ir3_shader_variant *nonbinning, struct ir3_shader_variant *variant) { variant->shader = shader; variant->type = shader->type; variant->key = *key; variant->binning_pass = !!nonbinning; variant->nonbinning = nonbinning; int ret = ir3_compile_shader_nir(shader->compiler, variant); if (ret) return NULL; /* num_samp should be 0 for bindless, but we use it with blit shader */ variant->num_samp = 0; /* when assemble fails, we rely on tu_shader_destroy to clean up the * variant */ return ir3_shader_assemble(variant, shader->compiler->gpu_id); } VkResult tu_shader_compile(struct tu_device *dev, struct tu_shader *shader, const struct tu_shader *next_stage, const struct tu_shader_compile_options *options, const VkAllocationCallbacks *alloc) { if (options->optimize) { /* ignore the key for the first pass of optimization */ ir3_optimize_nir(&shader->ir3_shader, shader->ir3_shader.nir, NULL); if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_NIR)) { fprintf(stderr, "optimized nir:\n"); nir_print_shader(shader->ir3_shader.nir, stderr); } } shader->binary = tu_compile_shader_variant( &shader->ir3_shader, &options->key, NULL, &shader->variants[0]); if (!shader->binary) return VK_ERROR_OUT_OF_HOST_MEMORY; if (shader_debug_enabled(shader->ir3_shader.type)) { fprintf(stdout, "Native code for unnamed %s shader %s:\n", ir3_shader_stage(&shader->variants[0]), shader->ir3_shader.nir->info.name); if (shader->ir3_shader.type == MESA_SHADER_FRAGMENT) fprintf(stdout, "SIMD0\n"); ir3_shader_disasm(&shader->variants[0], shader->binary, stdout); } /* compile another variant for the binning pass */ if (options->include_binning_pass && shader->ir3_shader.type == MESA_SHADER_VERTEX) { shader->binning_binary = tu_compile_shader_variant( &shader->ir3_shader, &options->key, &shader->variants[0], &shader->variants[1]); if (!shader->binning_binary) return VK_ERROR_OUT_OF_HOST_MEMORY; shader->has_binning_pass = true; if (shader_debug_enabled(MESA_SHADER_VERTEX)) { fprintf(stdout, "Native code for unnamed binning shader %s:\n", shader->ir3_shader.nir->info.name); ir3_shader_disasm(&shader->variants[1], shader->binary, stdout); } } if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_IR3)) { fprintf(stderr, "disassembled ir3:\n"); fprintf(stderr, "shader: %s\n", gl_shader_stage_name(shader->ir3_shader.type)); ir3_shader_disasm(&shader->variants[0], shader->binary, stderr); if (shader->has_binning_pass) { fprintf(stderr, "disassembled ir3:\n"); fprintf(stderr, "shader: %s (binning)\n", gl_shader_stage_name(shader->ir3_shader.type)); ir3_shader_disasm(&shader->variants[1], shader->binning_binary, stderr); } } return VK_SUCCESS; } VkResult tu_CreateShaderModule(VkDevice _device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); assert(pCreateInfo->codeSize % 4 == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); module->code_size = pCreateInfo->codeSize; memcpy(module->code, pCreateInfo->pCode, pCreateInfo->codeSize); _mesa_sha1_compute(module->code, module->code_size, module->sha1); *pShaderModule = tu_shader_module_to_handle(module); return VK_SUCCESS; } void tu_DestroyShaderModule(VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); }