/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "tu_private.h" #include "main/menums.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include "util/debug.h" #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "vk_format.h" #include "vk_util.h" #include "tu_cs.h" struct tu_pipeline_builder { struct tu_device *device; struct tu_pipeline_cache *cache; const VkAllocationCallbacks *alloc; const VkGraphicsPipelineCreateInfo *create_info; struct tu_shader *shaders[MESA_SHADER_STAGES]; uint32_t shader_offsets[MESA_SHADER_STAGES]; uint32_t binning_vs_offset; uint32_t shader_total_size; bool rasterizer_discard; /* these states are affectd by rasterizer_discard */ VkSampleCountFlagBits samples; bool use_depth_stencil_attachment; bool use_color_attachments; uint32_t color_attachment_count; VkFormat color_attachment_formats[MAX_RTS]; }; static enum tu_dynamic_state_bits tu_dynamic_state_bit(VkDynamicState state) { switch (state) { case VK_DYNAMIC_STATE_VIEWPORT: return TU_DYNAMIC_VIEWPORT; case VK_DYNAMIC_STATE_SCISSOR: return TU_DYNAMIC_SCISSOR; case VK_DYNAMIC_STATE_LINE_WIDTH: return TU_DYNAMIC_LINE_WIDTH; case VK_DYNAMIC_STATE_DEPTH_BIAS: return TU_DYNAMIC_DEPTH_BIAS; case VK_DYNAMIC_STATE_BLEND_CONSTANTS: return TU_DYNAMIC_BLEND_CONSTANTS; case VK_DYNAMIC_STATE_DEPTH_BOUNDS: return TU_DYNAMIC_DEPTH_BOUNDS; case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: return TU_DYNAMIC_STENCIL_COMPARE_MASK; case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: return TU_DYNAMIC_STENCIL_WRITE_MASK; case VK_DYNAMIC_STATE_STENCIL_REFERENCE: return TU_DYNAMIC_STENCIL_REFERENCE; default: unreachable("invalid dynamic state"); return 0; } } static gl_shader_stage tu_shader_stage(VkShaderStageFlagBits stage) { switch (stage) { case VK_SHADER_STAGE_VERTEX_BIT: return MESA_SHADER_VERTEX; case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: return MESA_SHADER_TESS_CTRL; case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: return MESA_SHADER_TESS_EVAL; case VK_SHADER_STAGE_GEOMETRY_BIT: return MESA_SHADER_GEOMETRY; case VK_SHADER_STAGE_FRAGMENT_BIT: return MESA_SHADER_FRAGMENT; case VK_SHADER_STAGE_COMPUTE_BIT: return MESA_SHADER_COMPUTE; default: unreachable("invalid VkShaderStageFlagBits"); return MESA_SHADER_NONE; } } static const VkVertexInputAttributeDescription * tu_find_vertex_input_attribute( const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot) { assert(slot >= VERT_ATTRIB_GENERIC0); slot -= VERT_ATTRIB_GENERIC0; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { if (vi_info->pVertexAttributeDescriptions[i].location == slot) return &vi_info->pVertexAttributeDescriptions[i]; } return NULL; } static const VkVertexInputBindingDescription * tu_find_vertex_input_binding( const VkPipelineVertexInputStateCreateInfo *vi_info, const VkVertexInputAttributeDescription *vi_attr) { assert(vi_attr); for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding) return &vi_info->pVertexBindingDescriptions[i]; } return NULL; } static bool tu_logic_op_reads_dst(VkLogicOp op) { switch (op) { case VK_LOGIC_OP_CLEAR: case VK_LOGIC_OP_COPY: case VK_LOGIC_OP_COPY_INVERTED: case VK_LOGIC_OP_SET: return false; default: return true; } } static VkBlendFactor tu_blend_factor_no_dst_alpha(VkBlendFactor factor) { /* treat dst alpha as 1.0 and avoid reading it */ switch (factor) { case VK_BLEND_FACTOR_DST_ALPHA: return VK_BLEND_FACTOR_ONE; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return VK_BLEND_FACTOR_ZERO; default: return factor; } } static enum pc_di_primtype tu6_primtype(VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return DI_PT_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return DI_PT_LINELIST; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return DI_PT_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return DI_PT_TRILIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return DI_PT_TRILIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return DI_PT_TRIFAN; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: return DI_PT_LINE_ADJ; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return DI_PT_LINESTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: return DI_PT_TRI_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return DI_PT_TRISTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: default: unreachable("invalid primitive topology"); return DI_PT_NONE; } } static enum adreno_compare_func tu6_compare_func(VkCompareOp op) { switch (op) { case VK_COMPARE_OP_NEVER: return FUNC_NEVER; case VK_COMPARE_OP_LESS: return FUNC_LESS; case VK_COMPARE_OP_EQUAL: return FUNC_EQUAL; case VK_COMPARE_OP_LESS_OR_EQUAL: return FUNC_LEQUAL; case VK_COMPARE_OP_GREATER: return FUNC_GREATER; case VK_COMPARE_OP_NOT_EQUAL: return FUNC_NOTEQUAL; case VK_COMPARE_OP_GREATER_OR_EQUAL: return FUNC_GEQUAL; case VK_COMPARE_OP_ALWAYS: return FUNC_ALWAYS; default: unreachable("invalid VkCompareOp"); return FUNC_NEVER; } } static enum adreno_stencil_op tu6_stencil_op(VkStencilOp op) { switch (op) { case VK_STENCIL_OP_KEEP: return STENCIL_KEEP; case VK_STENCIL_OP_ZERO: return STENCIL_ZERO; case VK_STENCIL_OP_REPLACE: return STENCIL_REPLACE; case VK_STENCIL_OP_INCREMENT_AND_CLAMP: return STENCIL_INCR_CLAMP; case VK_STENCIL_OP_DECREMENT_AND_CLAMP: return STENCIL_DECR_CLAMP; case VK_STENCIL_OP_INVERT: return STENCIL_INVERT; case VK_STENCIL_OP_INCREMENT_AND_WRAP: return STENCIL_INCR_WRAP; case VK_STENCIL_OP_DECREMENT_AND_WRAP: return STENCIL_DECR_WRAP; default: unreachable("invalid VkStencilOp"); return STENCIL_KEEP; } } static enum a3xx_rop_code tu6_rop(VkLogicOp op) { switch (op) { case VK_LOGIC_OP_CLEAR: return ROP_CLEAR; case VK_LOGIC_OP_AND: return ROP_AND; case VK_LOGIC_OP_AND_REVERSE: return ROP_AND_REVERSE; case VK_LOGIC_OP_COPY: return ROP_COPY; case VK_LOGIC_OP_AND_INVERTED: return ROP_AND_INVERTED; case VK_LOGIC_OP_NO_OP: return ROP_NOOP; case VK_LOGIC_OP_XOR: return ROP_XOR; case VK_LOGIC_OP_OR: return ROP_OR; case VK_LOGIC_OP_NOR: return ROP_NOR; case VK_LOGIC_OP_EQUIVALENT: return ROP_EQUIV; case VK_LOGIC_OP_INVERT: return ROP_INVERT; case VK_LOGIC_OP_OR_REVERSE: return ROP_OR_REVERSE; case VK_LOGIC_OP_COPY_INVERTED: return ROP_COPY_INVERTED; case VK_LOGIC_OP_OR_INVERTED: return ROP_OR_INVERTED; case VK_LOGIC_OP_NAND: return ROP_NAND; case VK_LOGIC_OP_SET: return ROP_SET; default: unreachable("invalid VkLogicOp"); return ROP_NOOP; } } static enum adreno_rb_blend_factor tu6_blend_factor(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return FACTOR_ZERO; case VK_BLEND_FACTOR_ONE: return FACTOR_ONE; case VK_BLEND_FACTOR_SRC_COLOR: return FACTOR_SRC_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return FACTOR_ONE_MINUS_SRC_COLOR; case VK_BLEND_FACTOR_DST_COLOR: return FACTOR_DST_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: return FACTOR_ONE_MINUS_DST_COLOR; case VK_BLEND_FACTOR_SRC_ALPHA: return FACTOR_SRC_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return FACTOR_ONE_MINUS_SRC_ALPHA; case VK_BLEND_FACTOR_DST_ALPHA: return FACTOR_DST_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return FACTOR_ONE_MINUS_DST_ALPHA; case VK_BLEND_FACTOR_CONSTANT_COLOR: return FACTOR_CONSTANT_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return FACTOR_ONE_MINUS_CONSTANT_COLOR; case VK_BLEND_FACTOR_CONSTANT_ALPHA: return FACTOR_CONSTANT_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return FACTOR_ONE_MINUS_CONSTANT_ALPHA; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return FACTOR_SRC_ALPHA_SATURATE; case VK_BLEND_FACTOR_SRC1_COLOR: return FACTOR_SRC1_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: return FACTOR_ONE_MINUS_SRC1_COLOR; case VK_BLEND_FACTOR_SRC1_ALPHA: return FACTOR_SRC1_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return FACTOR_ONE_MINUS_SRC1_ALPHA; default: unreachable("invalid VkBlendFactor"); return FACTOR_ZERO; } } static enum a3xx_rb_blend_opcode tu6_blend_op(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return BLEND_DST_PLUS_SRC; case VK_BLEND_OP_SUBTRACT: return BLEND_SRC_MINUS_DST; case VK_BLEND_OP_REVERSE_SUBTRACT: return BLEND_DST_MINUS_SRC; case VK_BLEND_OP_MIN: return BLEND_MIN_DST_SRC; case VK_BLEND_OP_MAX: return BLEND_MAX_DST_SRC; default: unreachable("invalid VkBlendOp"); return BLEND_DST_PLUS_SRC; } } static void tu6_emit_vs_config(struct tu_cs *cs, const struct ir3_shader_variant *vs) { uint32_t sp_vs_ctrl = A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) | A6XX_SP_VS_CTRL_REG0_MERGEDREGS | A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack); if (vs->num_samp) sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE; uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(vs->num_samp) | A6XX_SP_VS_CONFIG_NSAMP(vs->num_samp); if (vs->instrlen) sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED; tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1); tu_cs_emit(cs, sp_vs_ctrl); tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2); tu_cs_emit(cs, sp_vs_config); tu_cs_emit(cs, vs->instrlen); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1); tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) | 0x100); } static void tu6_emit_hs_config(struct tu_cs *cs, const struct ir3_shader_variant *hs) { uint32_t sp_hs_config = 0; if (hs->instrlen) sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED; tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2); tu_cs_emit(cs, sp_hs_config); tu_cs_emit(cs, hs->instrlen); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1); tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4))); } static void tu6_emit_ds_config(struct tu_cs *cs, const struct ir3_shader_variant *ds) { uint32_t sp_ds_config = 0; if (ds->instrlen) sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED; tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2); tu_cs_emit(cs, sp_ds_config); tu_cs_emit(cs, ds->instrlen); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1); tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4))); } static void tu6_emit_gs_config(struct tu_cs *cs, const struct ir3_shader_variant *gs) { uint32_t sp_gs_config = 0; if (gs->instrlen) sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED; tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2); tu_cs_emit(cs, sp_gs_config); tu_cs_emit(cs, gs->instrlen); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1); tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4))); } static void tu6_emit_fs_config(struct tu_cs *cs, const struct ir3_shader_variant *fs) { uint32_t sp_fs_ctrl = A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 | A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) | A6XX_SP_FS_CTRL_REG0_MERGEDREGS | A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack); if (fs->total_in > 0 || fs->frag_coord) sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING; if (fs->num_samp > 0) sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE; uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(fs->num_samp) | A6XX_SP_FS_CONFIG_NSAMP(fs->num_samp); if (fs->instrlen) sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED; tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A99E, 1); tu_cs_emit(cs, 0x7fc0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1); tu_cs_emit(cs, 0x5); tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1); tu_cs_emit(cs, sp_fs_ctrl); tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2); tu_cs_emit(cs, sp_fs_config); tu_cs_emit(cs, fs->instrlen); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1); tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) | 0x100); } static void tu6_emit_vs_system_values(struct tu_cs *cs, const struct ir3_shader_variant *vs) { const uint32_t vertexid_regid = ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE); const uint32_t instanceid_regid = ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID); tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6); tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) | A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) | 0xfcfc0000); tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */ tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */ tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */ tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */ tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */ } static void tu6_emit_vpc(struct tu_cs *cs, const struct ir3_shader_variant *vs, const struct ir3_shader_variant *fs, bool binning_pass) { struct ir3_shader_linkage linkage = { 0 }; ir3_link_shaders(&linkage, vs, fs); if (vs->shader->stream_output.num_outputs && !binning_pass) tu_finishme("stream output"); BITSET_DECLARE(vpc_var_enables, 128) = { 0 }; for (uint32_t i = 0; i < linkage.cnt; i++) { const uint32_t comp_count = util_last_bit(linkage.var[i].compmask); for (uint32_t j = 0; j < comp_count; j++) BITSET_SET(vpc_var_enables, linkage.var[i].loc + j); } tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4); tu_cs_emit(cs, ~vpc_var_enables[0]); tu_cs_emit(cs, ~vpc_var_enables[1]); tu_cs_emit(cs, ~vpc_var_enables[2]); tu_cs_emit(cs, ~vpc_var_enables[3]); /* a6xx finds position/pointsize at the end */ const uint32_t position_regid = ir3_find_output_regid(vs, VARYING_SLOT_POS); const uint32_t pointsize_regid = ir3_find_output_regid(vs, VARYING_SLOT_PSIZ); uint32_t pointsize_loc = 0xff, position_loc = 0xff; if (position_regid != regid(63, 0)) { position_loc = linkage.max_loc; ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc); } if (pointsize_regid != regid(63, 0)) { pointsize_loc = linkage.max_loc; ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc); } /* map vs outputs to VPC */ assert(linkage.cnt <= 32); const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2; const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4; uint32_t sp_vs_out[16]; uint32_t sp_vs_vpc_dst[8]; sp_vs_out[sp_vs_out_count - 1] = 0; sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0; for (uint32_t i = 0; i < linkage.cnt; i++) { ((uint16_t *) sp_vs_out)[i] = A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) | A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask); ((uint8_t *) sp_vs_vpc_dst)[i] = A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc); } tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count); tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count); tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count); tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1); tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) | (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) | 0xff00ff00); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1); tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) | A6XX_VPC_PACK_PSIZELOC(pointsize_loc) | A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc)); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1); tu_cs_emit(cs, 0x0000ffff); /* XXX */ tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1); tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt)); tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1); tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) | (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0)); } static int tu6_vpc_varying_mode(const struct ir3_shader_variant *fs, uint32_t index, uint8_t *interp_mode, uint8_t *ps_repl_mode) { enum { INTERP_SMOOTH = 0, INTERP_FLAT = 1, INTERP_ZERO = 2, INTERP_ONE = 3, }; enum { PS_REPL_NONE = 0, PS_REPL_S = 1, PS_REPL_T = 2, PS_REPL_ONE_MINUS_T = 3, }; const uint32_t compmask = fs->inputs[index].compmask; /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and * fourth component occupy three consecutive varying slots */ int shift = 0; *interp_mode = 0; *ps_repl_mode = 0; if (fs->inputs[index].slot == VARYING_SLOT_PNTC) { if (compmask & 0x1) { *ps_repl_mode |= PS_REPL_S << shift; shift += 2; } if (compmask & 0x2) { *ps_repl_mode |= PS_REPL_T << shift; shift += 2; } if (compmask & 0x4) { *interp_mode |= INTERP_ZERO << shift; shift += 2; } if (compmask & 0x8) { *interp_mode |= INTERP_ONE << 6; shift += 2; } } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) || fs->inputs[index].rasterflat) { for (int i = 0; i < 4; i++) { if (compmask & (1 << i)) { *interp_mode |= INTERP_FLAT << shift; shift += 2; } } } return shift; } static void tu6_emit_vpc_varying_modes(struct tu_cs *cs, const struct ir3_shader_variant *fs, bool binning_pass) { uint32_t interp_modes[8] = { 0 }; uint32_t ps_repl_modes[8] = { 0 }; if (!binning_pass) { for (int i = -1; (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) { /* get the mode for input i */ uint8_t interp_mode; uint8_t ps_repl_mode; const int bits = tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode); /* OR the mode into the array */ const uint32_t inloc = fs->inputs[i].inloc * 2; uint32_t n = inloc / 32; uint32_t shift = inloc % 32; interp_modes[n] |= interp_mode << shift; ps_repl_modes[n] |= ps_repl_mode << shift; if (shift + bits > 32) { n++; shift = 32 - shift; interp_modes[n] |= interp_mode >> shift; ps_repl_modes[n] |= ps_repl_mode >> shift; } } } tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8); tu_cs_emit_array(cs, interp_modes, 8); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8); tu_cs_emit_array(cs, ps_repl_modes, 8); } static void tu6_emit_fs_system_values(struct tu_cs *cs, const struct ir3_shader_variant *fs) { const uint32_t frontfacing_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE); const uint32_t sampleid_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID); const uint32_t samplemaskin_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN); const uint32_t fragcoord_xy_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD); const uint32_t fragcoord_zw_regid = (fragcoord_xy_regid != regid(63, 0)) ? (fragcoord_xy_regid + 2) : fragcoord_xy_regid; const uint32_t varyingcoord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5); tu_cs_emit(cs, 0x7); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(frontfacing_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(sampleid_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(samplemaskin_regid) | A6XX_HLSQ_CONTROL_2_REG_SIZE(regid(63, 0))); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(varyingcoord_regid) | A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(regid(63, 0)) | 0xfc00fc00); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(fragcoord_xy_regid) | A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(fragcoord_zw_regid) | A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(regid(63, 0)) | 0x0000fc00); tu_cs_emit(cs, 0xfc); } static void tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs) { tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1); tu_cs_emit(cs, fs->total_in > 0 ? 3 : 1); tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1); tu_cs_emit(cs, 0); /* XXX */ tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1); tu_cs_emit(cs, 0xff); /* XXX */ uint32_t gras_cntl = 0; if (fs->total_in > 0) gras_cntl |= A6XX_GRAS_CNTL_VARYING; if (fs->frag_coord) { gras_cntl |= A6XX_GRAS_CNTL_SIZE | A6XX_GRAS_CNTL_XCOORD | A6XX_GRAS_CNTL_YCOORD | A6XX_GRAS_CNTL_ZCOORD | A6XX_GRAS_CNTL_WCOORD; } tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1); tu_cs_emit(cs, gras_cntl); uint32_t rb_render_control = 0; if (fs->total_in > 0) { rb_render_control = A6XX_RB_RENDER_CONTROL0_VARYING | A6XX_RB_RENDER_CONTROL0_UNK10; } if (fs->frag_coord) { rb_render_control |= A6XX_RB_RENDER_CONTROL0_SIZE | A6XX_RB_RENDER_CONTROL0_XCOORD | A6XX_RB_RENDER_CONTROL0_YCOORD | A6XX_RB_RENDER_CONTROL0_ZCOORD | A6XX_RB_RENDER_CONTROL0_WCOORD; } tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2); tu_cs_emit(cs, rb_render_control); tu_cs_emit(cs, (fs->frag_face ? A6XX_RB_RENDER_CONTROL1_FACENESS : 0)); } static void tu6_emit_fs_outputs(struct tu_cs *cs, const struct ir3_shader_variant *fs, uint32_t mrt_count) { const uint32_t fragdepth_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH); uint32_t fragdata_regid[8]; if (fs->color0_mrt) { fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR); for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++) fragdata_regid[i] = fragdata_regid[0]; } else { for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i); } tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2); tu_cs_emit( cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(fragdepth_regid) | 0xfcfc0000); tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count)); tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8); for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) { // TODO we could have a mix of half and full precision outputs, // we really need to figure out half-precision from IR3_REG_HALF tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) | (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0)); } tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2); tu_cs_emit(cs, fs->writes_pos ? A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z : 0); tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count)); uint32_t gras_su_depth_plane_cntl = 0; uint32_t rb_depth_plane_cntl = 0; if (fs->no_earlyz | fs->writes_pos) { gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z; rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z; } tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1); tu_cs_emit(cs, gras_su_depth_plane_cntl); tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1); tu_cs_emit(cs, rb_depth_plane_cntl); } static void tu6_emit_shader_object(struct tu_cs *cs, gl_shader_stage stage, const struct ir3_shader_variant *variant, const struct tu_bo *binary_bo, uint32_t binary_offset) { uint16_t reg; uint8_t opcode; enum a6xx_state_block sb; switch (stage) { case MESA_SHADER_VERTEX: reg = REG_A6XX_SP_VS_OBJ_START_LO; opcode = CP_LOAD_STATE6_GEOM; sb = SB6_VS_SHADER; break; case MESA_SHADER_TESS_CTRL: reg = REG_A6XX_SP_HS_OBJ_START_LO; opcode = CP_LOAD_STATE6_GEOM; sb = SB6_HS_SHADER; break; case MESA_SHADER_TESS_EVAL: reg = REG_A6XX_SP_DS_OBJ_START_LO; opcode = CP_LOAD_STATE6_GEOM; sb = SB6_DS_SHADER; break; case MESA_SHADER_GEOMETRY: reg = REG_A6XX_SP_GS_OBJ_START_LO; opcode = CP_LOAD_STATE6_GEOM; sb = SB6_GS_SHADER; break; case MESA_SHADER_FRAGMENT: reg = REG_A6XX_SP_FS_OBJ_START_LO; opcode = CP_LOAD_STATE6_FRAG; sb = SB6_FS_SHADER; break; case MESA_SHADER_COMPUTE: reg = REG_A6XX_SP_CS_OBJ_START_LO; opcode = CP_LOAD_STATE6_FRAG; sb = SB6_CS_SHADER; break; default: unreachable("invalid gl_shader_stage"); opcode = CP_LOAD_STATE6_GEOM; sb = SB6_VS_SHADER; break; } if (!variant->instrlen) { tu_cs_emit_pkt4(cs, reg, 2); tu_cs_emit_qw(cs, 0); return; } assert(variant->type == stage); const uint64_t binary_iova = binary_bo->iova + binary_offset; assert((binary_iova & 0x3) == 0); tu_cs_emit_pkt4(cs, reg, 2); tu_cs_emit_qw(cs, binary_iova); /* always indirect */ const bool indirect = true; if (indirect) { tu_cs_emit_pkt7(cs, opcode, 3); tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen)); tu_cs_emit_qw(cs, binary_iova); } else { const void *binary = binary_bo->map + binary_offset; tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords); tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen)); tu_cs_emit_qw(cs, 0); tu_cs_emit_array(cs, binary, variant->info.sizedwords); } } static void tu6_emit_program(struct tu_cs *cs, const struct tu_pipeline_builder *builder, const struct tu_bo *binary_bo, bool binning_pass) { static const struct ir3_shader_variant dummy_variant = { .type = MESA_SHADER_NONE }; assert(builder->shaders[MESA_SHADER_VERTEX]); const struct ir3_shader_variant *vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[0]; const struct ir3_shader_variant *hs = builder->shaders[MESA_SHADER_TESS_CTRL] ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0] : &dummy_variant; const struct ir3_shader_variant *ds = builder->shaders[MESA_SHADER_TESS_EVAL] ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0] : &dummy_variant; const struct ir3_shader_variant *gs = builder->shaders[MESA_SHADER_GEOMETRY] ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0] : &dummy_variant; const struct ir3_shader_variant *fs = builder->shaders[MESA_SHADER_FRAGMENT] ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0] : &dummy_variant; if (binning_pass) { vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1]; fs = &dummy_variant; } tu6_emit_vs_config(cs, vs); tu6_emit_hs_config(cs, hs); tu6_emit_ds_config(cs, ds); tu6_emit_gs_config(cs, gs); tu6_emit_fs_config(cs, fs); tu6_emit_vs_system_values(cs, vs); tu6_emit_vpc(cs, vs, fs, binning_pass); tu6_emit_vpc_varying_modes(cs, fs, binning_pass); tu6_emit_fs_system_values(cs, fs); tu6_emit_fs_inputs(cs, fs); tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count); tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo, builder->shader_offsets[MESA_SHADER_VERTEX]); tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo, builder->shader_offsets[MESA_SHADER_FRAGMENT]); } static void tu6_emit_vertex_input(struct tu_cs *cs, const struct ir3_shader_variant *vs, const VkPipelineVertexInputStateCreateInfo *vi_info, uint8_t bindings[MAX_VERTEX_ATTRIBS], uint16_t strides[MAX_VERTEX_ATTRIBS], uint16_t offsets[MAX_VERTEX_ATTRIBS], uint32_t *count) { uint32_t vfd_decode_idx = 0; /* why do we go beyond inputs_count? */ assert(vs->inputs_count + 1 <= MAX_VERTEX_ATTRIBS); for (uint32_t i = 0; i <= vs->inputs_count; i++) { if (vs->inputs[i].sysval || !vs->inputs[i].compmask) continue; const VkVertexInputAttributeDescription *vi_attr = tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot); const VkVertexInputBindingDescription *vi_binding = tu_find_vertex_input_binding(vi_info, vi_attr); assert(vi_attr && vi_binding); const struct tu_native_format *format = tu6_get_native_format(vi_attr->format); assert(format && format->vtx >= 0); uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) | A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) | A6XX_VFD_DECODE_INSTR_SWAP(format->swap) | A6XX_VFD_DECODE_INSTR_UNK30; if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED; if (!vk_format_is_int(vi_attr->format)) vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT; const uint32_t vfd_decode_step_rate = 1; const uint32_t vfd_dest_cntl = A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) | A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid); tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2); tu_cs_emit(cs, vfd_decode); tu_cs_emit(cs, vfd_decode_step_rate); tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1); tu_cs_emit(cs, vfd_dest_cntl); bindings[vfd_decode_idx] = vi_binding->binding; strides[vfd_decode_idx] = vi_binding->stride; offsets[vfd_decode_idx] = vi_attr->offset; vfd_decode_idx++; } tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1); tu_cs_emit( cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8)); *count = vfd_decode_idx; } static uint32_t tu6_guardband_adj(uint32_t v) { if (v > 256) return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0)); else return 511; } void tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport) { float offsets[3]; float scales[3]; scales[0] = viewport->width / 2.0f; scales[1] = viewport->height / 2.0f; scales[2] = viewport->maxDepth - viewport->minDepth; offsets[0] = viewport->x + scales[0]; offsets[1] = viewport->y + scales[1]; offsets[2] = viewport->minDepth; VkOffset2D min; VkOffset2D max; min.x = (int32_t) viewport->x; max.x = (int32_t) ceilf(viewport->x + viewport->width); if (viewport->height >= 0.0f) { min.y = (int32_t) viewport->y; max.y = (int32_t) ceilf(viewport->y + viewport->height); } else { min.y = (int32_t)(viewport->y + viewport->height); max.y = (int32_t) ceilf(viewport->y); } /* the spec allows viewport->height to be 0.0f */ if (min.y == max.y) max.y++; assert(min.x >= 0 && min.x < max.x); assert(min.y >= 0 && min.y < max.y); VkExtent2D guardband_adj; guardband_adj.width = tu6_guardband_adj(max.x - min.x); guardband_adj.height = tu6_guardband_adj(max.y - min.y); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0])); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0])); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1])); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1])); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2])); tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2])); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2); tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y)); tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1)); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1); tu_cs_emit(cs, A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) | A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height)); } void tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor) { const VkOffset2D min = scissor->offset; const VkOffset2D max = { scissor->offset.x + scissor->extent.width, scissor->offset.y + scissor->extent.height, }; tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2); tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) | A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y)); tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) | A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1)); } static void tu6_emit_gras_unknowns(struct tu_cs *cs) { tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1); tu_cs_emit(cs, 0x80); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1); tu_cs_emit(cs, 0x0); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8004, 1); tu_cs_emit(cs, 0x0); } static void tu6_emit_point_size(struct tu_cs *cs) { tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2); tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) | A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f)); tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f)); } static uint32_t tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info, VkSampleCountFlagBits samples) { uint32_t gras_su_cntl = 0; if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT; if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK; if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE) gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW; /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */ if (rast_info->depthBiasEnable) gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET; if (samples > VK_SAMPLE_COUNT_1_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE; return gras_su_cntl; } void tu6_emit_gras_su_cntl(struct tu_cs *cs, uint32_t gras_su_cntl, float line_width) { assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0); gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1); tu_cs_emit(cs, gras_su_cntl); } void tu6_emit_depth_bias(struct tu_cs *cs, float constant_factor, float clamp, float slope_factor) { tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor)); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor)); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp)); } static void tu6_emit_alpha_control_disable(struct tu_cs *cs) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1); tu_cs_emit(cs, 0); } static void tu6_emit_depth_control(struct tu_cs *cs, const VkPipelineDepthStencilStateCreateInfo *ds_info) { assert(!ds_info->depthBoundsTestEnable); uint32_t rb_depth_cntl = 0; if (ds_info->depthTestEnable) { rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_ENABLE | A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; if (ds_info->depthWriteEnable) rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE; } tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1); tu_cs_emit(cs, rb_depth_cntl); } static void tu6_emit_stencil_control(struct tu_cs *cs, const VkPipelineDepthStencilStateCreateInfo *ds_info) { uint32_t rb_stencil_control = 0; if (ds_info->stencilTestEnable) { const VkStencilOpState *front = &ds_info->front; const VkStencilOpState *back = &ds_info->back; rb_stencil_control |= A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE | A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF | A6XX_RB_STENCIL_CONTROL_STENCIL_READ | A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) | A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) | A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) | A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) | A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) | A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) | A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) | A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp)); } tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1); tu_cs_emit(cs, rb_stencil_control); } void tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1); tu_cs_emit( cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back)); } void tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1); tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) | A6XX_RB_STENCILWRMASK_BFWRMASK(back)); } void tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1); tu_cs_emit(cs, A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back)); } static uint32_t tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att, bool has_alpha) { const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp); const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor( has_alpha ? att->srcColorBlendFactor : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor)); const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor( has_alpha ? att->dstColorBlendFactor : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor)); const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp); const enum adreno_rb_blend_factor src_alpha_factor = tu6_blend_factor(att->srcAlphaBlendFactor); const enum adreno_rb_blend_factor dst_alpha_factor = tu6_blend_factor(att->dstAlphaBlendFactor); return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) | A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) | A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor); } static uint32_t tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att, uint32_t rb_mrt_control_rop, bool is_int, bool has_alpha) { uint32_t rb_mrt_control = A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask); /* ignore blending and logic op for integer attachments */ if (is_int) { rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY); return rb_mrt_control; } rb_mrt_control |= rb_mrt_control_rop; if (att->blendEnable) { rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND; if (has_alpha) rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2; } return rb_mrt_control; } static void tu6_emit_rb_mrt_controls(struct tu_cs *cs, const VkPipelineColorBlendStateCreateInfo *blend_info, const VkFormat attachment_formats[MAX_RTS], uint32_t *blend_enable_mask) { *blend_enable_mask = 0; bool rop_reads_dst = false; uint32_t rb_mrt_control_rop = 0; if (blend_info->logicOpEnable) { rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp); rb_mrt_control_rop = A6XX_RB_MRT_CONTROL_ROP_ENABLE | A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp)); } for (uint32_t i = 0; i < blend_info->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &blend_info->pAttachments[i]; const VkFormat format = attachment_formats[i]; uint32_t rb_mrt_control = 0; uint32_t rb_mrt_blend_control = 0; if (format != VK_FORMAT_UNDEFINED) { const bool is_int = vk_format_is_int(format); const bool has_alpha = vk_format_has_alpha(format); rb_mrt_control = tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha); rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha); if (att->blendEnable || rop_reads_dst) *blend_enable_mask |= 1 << i; } tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2); tu_cs_emit(cs, rb_mrt_control); tu_cs_emit(cs, rb_mrt_blend_control); } for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2); tu_cs_emit(cs, 0); tu_cs_emit(cs, 0); } } static void tu6_emit_blend_control(struct tu_cs *cs, uint32_t blend_enable_mask, const VkPipelineMultisampleStateCreateInfo *msaa_info) { assert(!msaa_info->sampleShadingEnable); assert(!msaa_info->alphaToOneEnable); uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8; if (blend_enable_mask) sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED; if (msaa_info->alphaToCoverageEnable) sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE; const uint32_t sample_mask = msaa_info->pSampleMask ? *msaa_info->pSampleMask : ((1 << msaa_info->rasterizationSamples) - 1); /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */ uint32_t rb_blend_cntl = A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) | A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND | A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask); if (msaa_info->alphaToCoverageEnable) rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE; tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1); tu_cs_emit(cs, sp_blend_cntl); tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1); tu_cs_emit(cs, rb_blend_cntl); } void tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4]) { tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4); tu_cs_emit_array(cs, (const uint32_t *) constants, 4); } static VkResult tu_pipeline_builder_create_pipeline(struct tu_pipeline_builder *builder, struct tu_pipeline **out_pipeline) { struct tu_device *dev = builder->device; struct tu_pipeline *pipeline = vk_zalloc2(&dev->alloc, builder->alloc, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pipeline) return VK_ERROR_OUT_OF_HOST_MEMORY; tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048); /* reserve the space now such that tu_cs_begin_sub_stream never fails */ VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048); if (result != VK_SUCCESS) { vk_free2(&dev->alloc, builder->alloc, pipeline); return result; } *out_pipeline = pipeline; return VK_SUCCESS; } static VkResult tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder) { const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = { NULL }; for (uint32_t i = 0; i < builder->create_info->stageCount; i++) { gl_shader_stage stage = tu_shader_stage(builder->create_info->pStages[i].stage); stage_infos[stage] = &builder->create_info->pStages[i]; } struct tu_shader_compile_options options; tu_shader_compile_options_init(&options, builder->create_info); /* compile shaders in reverse order */ struct tu_shader *next_stage_shader = NULL; for (gl_shader_stage stage = MESA_SHADER_STAGES - 1; stage > MESA_SHADER_NONE; stage--) { const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage]; if (!stage_info) continue; struct tu_shader *shader = tu_shader_create(builder->device, stage, stage_info, builder->alloc); if (!shader) return VK_ERROR_OUT_OF_HOST_MEMORY; VkResult result = tu_shader_compile(builder->device, shader, next_stage_shader, &options, builder->alloc); if (result != VK_SUCCESS) return result; builder->shaders[stage] = shader; builder->shader_offsets[stage] = builder->shader_total_size; builder->shader_total_size += sizeof(uint32_t) * shader->variants[0].info.sizedwords; next_stage_shader = shader; } if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) { const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX]; builder->binning_vs_offset = builder->shader_total_size; builder->shader_total_size += sizeof(uint32_t) * vs->variants[1].info.sizedwords; } return VK_SUCCESS; } static VkResult tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { struct tu_bo *bo = &pipeline->program.binary_bo; VkResult result = tu_bo_init_new(builder->device, bo, builder->shader_total_size); if (result != VK_SUCCESS) return result; result = tu_bo_map(builder->device, bo); if (result != VK_SUCCESS) return result; for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { const struct tu_shader *shader = builder->shaders[i]; if (!shader) continue; memcpy(bo->map + builder->shader_offsets[i], shader->binary, sizeof(uint32_t) * shader->variants[0].info.sizedwords); } if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) { const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX]; memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary, sizeof(uint32_t) * vs->variants[1].info.sizedwords); } return VK_SUCCESS; } static void tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineDynamicStateCreateInfo *dynamic_info = builder->create_info->pDynamicState; if (!dynamic_info) return; for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) { pipeline->dynamic_state.mask |= tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]); } } static void tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { struct tu_cs prog_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs); tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false); pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs); tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs); tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true); pipeline->program.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs); } static void tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineVertexInputStateCreateInfo *vi_info = builder->create_info->pVertexInputState; const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX]; struct tu_cs vi_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs); tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info, pipeline->vi.bindings, pipeline->vi.strides, pipeline->vi.offsets, &pipeline->vi.count); pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs); if (vs->has_binning_pass) { tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs); tu6_emit_vertex_input( &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings, pipeline->vi.binning_strides, pipeline->vi.binning_offsets, &pipeline->vi.binning_count); pipeline->vi.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs); } } static void tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineInputAssemblyStateCreateInfo *ia_info = builder->create_info->pInputAssemblyState; pipeline->ia.primtype = tu6_primtype(ia_info->topology); pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable; } static void tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pViewportState is a pointer to an instance of the * VkPipelineViewportStateCreateInfo structure, and is ignored if the * pipeline has rasterization disabled." * * We leave the relevant registers stale in that case. */ if (builder->rasterizer_discard) return; const VkPipelineViewportStateCreateInfo *vp_info = builder->create_info->pViewportState; struct tu_cs vp_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs); if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) { assert(vp_info->viewportCount == 1); tu6_emit_viewport(&vp_cs, vp_info->pViewports); } if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) { assert(vp_info->scissorCount == 1); tu6_emit_scissor(&vp_cs, vp_info->pScissors); } pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs); } static void tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineRasterizationStateCreateInfo *rast_info = builder->create_info->pRasterizationState; assert(!rast_info->depthClampEnable); assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL); struct tu_cs rast_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs); /* move to hw ctx init? */ tu6_emit_gras_unknowns(&rast_cs); tu6_emit_point_size(&rast_cs); const uint32_t gras_su_cntl = tu6_gras_su_cntl(rast_info, builder->samples); if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH)) tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth); if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) { tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor, rast_info->depthBiasClamp, rast_info->depthBiasSlopeFactor); } pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs); pipeline->rast.gras_su_cntl = gras_su_cntl; } static void tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pDepthStencilState is a pointer to an instance of the * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if * the pipeline has rasterization disabled or if the subpass of the * render pass the pipeline is created against does not use a * depth/stencil attachment. * * We disable both depth and stenil tests in those cases. */ static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info; const VkPipelineDepthStencilStateCreateInfo *ds_info = builder->use_depth_stencil_attachment ? builder->create_info->pDepthStencilState : &dummy_ds_info; struct tu_cs ds_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs); /* move to hw ctx init? */ tu6_emit_alpha_control_disable(&ds_cs); tu6_emit_depth_control(&ds_cs, ds_info); tu6_emit_stencil_control(&ds_cs, ds_info); if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) { tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask, ds_info->back.compareMask); } if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) { tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask, ds_info->back.writeMask); } if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) { tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference, ds_info->back.reference); } pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs); } static void tu_pipeline_builder_parse_multisample_and_color_blend( struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pMultisampleState is a pointer to an instance of the * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline * has rasterization disabled. * * Also, * * pColorBlendState is a pointer to an instance of the * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the * pipeline has rasterization disabled or if the subpass of the render * pass the pipeline is created against does not use any color * attachments. * * We leave the relevant registers stale when rasterization is disabled. */ if (builder->rasterizer_discard) return; static const VkPipelineColorBlendStateCreateInfo dummy_blend_info; const VkPipelineMultisampleStateCreateInfo *msaa_info = builder->create_info->pMultisampleState; const VkPipelineColorBlendStateCreateInfo *blend_info = builder->use_color_attachments ? builder->create_info->pColorBlendState : &dummy_blend_info; struct tu_cs blend_cs; tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9, &blend_cs); uint32_t blend_enable_mask; tu6_emit_rb_mrt_controls(&blend_cs, blend_info, builder->color_attachment_formats, &blend_enable_mask); if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS)) tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants); tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info); pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs); } static void tu_pipeline_finish(struct tu_pipeline *pipeline, struct tu_device *dev, const VkAllocationCallbacks *alloc) { tu_cs_finish(dev, &pipeline->cs); if (pipeline->program.binary_bo.gem_handle) tu_bo_finish(dev, &pipeline->program.binary_bo); } static VkResult tu_pipeline_builder_build(struct tu_pipeline_builder *builder, struct tu_pipeline **pipeline) { VkResult result = tu_pipeline_builder_create_pipeline(builder, pipeline); if (result != VK_SUCCESS) return result; /* compile and upload shaders */ result = tu_pipeline_builder_compile_shaders(builder); if (result == VK_SUCCESS) result = tu_pipeline_builder_upload_shaders(builder, *pipeline); if (result != VK_SUCCESS) { tu_pipeline_finish(*pipeline, builder->device, builder->alloc); vk_free2(&builder->device->alloc, builder->alloc, *pipeline); *pipeline = VK_NULL_HANDLE; return result; } tu_pipeline_builder_parse_dynamic(builder, *pipeline); tu_pipeline_builder_parse_shader_stages(builder, *pipeline); tu_pipeline_builder_parse_vertex_input(builder, *pipeline); tu_pipeline_builder_parse_input_assembly(builder, *pipeline); tu_pipeline_builder_parse_viewport(builder, *pipeline); tu_pipeline_builder_parse_rasterization(builder, *pipeline); tu_pipeline_builder_parse_depth_stencil(builder, *pipeline); tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline); /* we should have reserved enough space upfront such that the CS never * grows */ assert((*pipeline)->cs.bo_count == 1); return VK_SUCCESS; } static void tu_pipeline_builder_finish(struct tu_pipeline_builder *builder) { for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { if (!builder->shaders[i]) continue; tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc); } } static void tu_pipeline_builder_init_graphics( struct tu_pipeline_builder *builder, struct tu_device *dev, struct tu_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *create_info, const VkAllocationCallbacks *alloc) { *builder = (struct tu_pipeline_builder) { .device = dev, .cache = cache, .create_info = create_info, .alloc = alloc, }; builder->rasterizer_discard = create_info->pRasterizationState->rasterizerDiscardEnable; if (builder->rasterizer_discard) { builder->samples = VK_SAMPLE_COUNT_1_BIT; } else { builder->samples = create_info->pMultisampleState->rasterizationSamples; const struct tu_render_pass *pass = tu_render_pass_from_handle(create_info->renderPass); const struct tu_subpass *subpass = &pass->subpasses[create_info->subpass]; builder->use_depth_stencil_attachment = subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED; assert(subpass->color_count == create_info->pColorBlendState->attachmentCount); builder->color_attachment_count = subpass->color_count; for (uint32_t i = 0; i < subpass->color_count; i++) { const uint32_t a = subpass->color_attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; builder->color_attachment_formats[i] = pass->attachments[a].format; builder->use_color_attachments = true; } } } VkResult tu_CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { TU_FROM_HANDLE(tu_device, dev, device); TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache); for (uint32_t i = 0; i < count; i++) { struct tu_pipeline_builder builder; tu_pipeline_builder_init_graphics(&builder, dev, cache, &pCreateInfos[i], pAllocator); struct tu_pipeline *pipeline; VkResult result = tu_pipeline_builder_build(&builder, &pipeline); tu_pipeline_builder_finish(&builder); if (result != VK_SUCCESS) { for (uint32_t j = 0; j < i; j++) { tu_DestroyPipeline(device, pPipelines[j], pAllocator); pPipelines[j] = VK_NULL_HANDLE; } return result; } pPipelines[i] = tu_pipeline_to_handle(pipeline); } return VK_SUCCESS; } static VkResult tu_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { return VK_SUCCESS; } VkResult tu_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = tu_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; } } return result; } void tu_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, dev, _device); TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline); if (!_pipeline) return; tu_pipeline_finish(pipeline, dev, pAllocator); vk_free2(&dev->alloc, pAllocator, pipeline); }