/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "tu_private.h" #include "ir3/ir3_nir.h" #include "main/menums.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include "util/debug.h" #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "vk_format.h" #include "vk_util.h" #include "tu_cs.h" /* Emit IB that preloads the descriptors that the shader uses */ static void emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st, enum a6xx_state_block sb, unsigned base, unsigned offset, unsigned count) { /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not * clear if emitting more packets will even help anything. Presumably the * descriptor cache is relatively small, and these packets stop doing * anything when there are too many descriptors. */ tu_cs_emit_pkt7(cs, opcode, 3); tu_cs_emit(cs, CP_LOAD_STATE6_0_STATE_TYPE(st) | CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1))); tu_cs_emit_qw(cs, offset | (base << 28)); } static unsigned tu6_load_state_size(struct tu_pipeline *pipeline, bool compute) { const unsigned load_state_size = 4; unsigned size = 0; for (unsigned i = 0; i < pipeline->layout->num_sets; i++) { if (pipeline && !(pipeline->active_desc_sets & (1u << i))) continue; struct tu_descriptor_set_layout *set_layout = pipeline->layout->set[i].layout; for (unsigned j = 0; j < set_layout->binding_count; j++) { struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j]; unsigned count = 0; /* Note: some users, like amber for example, pass in * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly. */ VkShaderStageFlags stages = compute ? binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT : binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS; unsigned stage_count = util_bitcount(stages); if (!binding->array_size) continue; switch (binding->type) { case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: /* IBO-backed resources only need one packet for all graphics stages */ if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) count += 1; if (stages & VK_SHADER_STAGE_COMPUTE_BIT) count += 1; break; case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: /* Textures and UBO's needs a packet for each stage */ count = stage_count; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: /* Because of how we pack combined images and samplers, we * currently can't use one packet for the whole array. */ count = stage_count * binding->array_size * 2; break; case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: break; default: unreachable("bad descriptor type"); } size += count * load_state_size; } } return size; } static void tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute) { unsigned size = tu6_load_state_size(pipeline, compute); if (size == 0) return; struct tu_cs cs; tu_cs_begin_sub_stream(&pipeline->cs, size, &cs); struct tu_pipeline_layout *layout = pipeline->layout; for (unsigned i = 0; i < layout->num_sets; i++) { /* From 13.2.7. Descriptor Set Binding: * * A compatible descriptor set must be bound for all set numbers that * any shaders in a pipeline access, at the time that a draw or * dispatch command is recorded to execute using that pipeline. * However, if none of the shaders in a pipeline statically use any * bindings with a particular set number, then no descriptor set need * be bound for that set number, even if the pipeline layout includes * a non-trivial descriptor set layout for that set number. * * This means that descriptor sets unused by the pipeline may have a * garbage or 0 BINDLESS_BASE register, which will cause context faults * when prefetching descriptors from these sets. Skip prefetching for * descriptors from them to avoid this. This is also an optimization, * since these prefetches would be useless. */ if (!(pipeline->active_desc_sets & (1u << i))) continue; struct tu_descriptor_set_layout *set_layout = layout->set[i].layout; for (unsigned j = 0; j < set_layout->binding_count; j++) { struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j]; unsigned base = i; unsigned offset = binding->offset / 4; /* Note: some users, like amber for example, pass in * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly. */ VkShaderStageFlags stages = compute ? binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT : binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS; unsigned count = binding->array_size; if (count == 0 || stages == 0) continue; switch (binding->type) { case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: base = MAX_SETS; offset = (layout->set[i].dynamic_offset_start + binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS; /* fallthrough */ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: /* IBO-backed resources only need one packet for all graphics stages */ if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) { emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO, base, offset, count); } if (stages & VK_SHADER_STAGE_COMPUTE_BIT) { emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER, base, offset, count); } break; case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* nothing - input attachment doesn't use bindless */ break; case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: { tu_foreach_stage(stage, stages) { emit_load_state(&cs, tu6_stage2opcode(stage), binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ? ST6_SHADER : ST6_CONSTANTS, tu6_stage2texsb(stage), base, offset, count); } break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: base = MAX_SETS; offset = (layout->set[i].dynamic_offset_start + binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS; /* fallthrough */ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: { tu_foreach_stage(stage, stages) { emit_load_state(&cs, tu6_stage2opcode(stage), ST6_UBO, tu6_stage2shadersb(stage), base, offset, count); } break; } case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: { tu_foreach_stage(stage, stages) { /* TODO: We could emit less CP_LOAD_STATE6 if we used * struct-of-arrays instead of array-of-structs. */ for (unsigned i = 0; i < count; i++) { unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS; unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS; emit_load_state(&cs, tu6_stage2opcode(stage), ST6_CONSTANTS, tu6_stage2texsb(stage), base, tex_offset, 1); emit_load_state(&cs, tu6_stage2opcode(stage), ST6_SHADER, tu6_stage2texsb(stage), base, sam_offset, 1); } } break; } default: unreachable("bad descriptor type"); } } } pipeline->load_state = tu_cs_end_draw_state(&pipeline->cs, &cs); } struct tu_pipeline_builder { struct tu_device *device; struct tu_pipeline_cache *cache; struct tu_pipeline_layout *layout; const VkAllocationCallbacks *alloc; const VkGraphicsPipelineCreateInfo *create_info; struct tu_shader *shaders[MESA_SHADER_STAGES]; struct ir3_shader_variant *variants[MESA_SHADER_STAGES]; struct ir3_shader_variant *binning_variant; uint64_t shader_iova[MESA_SHADER_STAGES]; uint64_t binning_vs_iova; bool rasterizer_discard; /* these states are affectd by rasterizer_discard */ VkSampleCountFlagBits samples; bool use_color_attachments; bool use_dual_src_blend; uint32_t color_attachment_count; VkFormat color_attachment_formats[MAX_RTS]; VkFormat depth_attachment_format; uint32_t render_components; }; static bool tu_logic_op_reads_dst(VkLogicOp op) { switch (op) { case VK_LOGIC_OP_CLEAR: case VK_LOGIC_OP_COPY: case VK_LOGIC_OP_COPY_INVERTED: case VK_LOGIC_OP_SET: return false; default: return true; } } static VkBlendFactor tu_blend_factor_no_dst_alpha(VkBlendFactor factor) { /* treat dst alpha as 1.0 and avoid reading it */ switch (factor) { case VK_BLEND_FACTOR_DST_ALPHA: return VK_BLEND_FACTOR_ONE; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return VK_BLEND_FACTOR_ZERO; default: return factor; } } static bool tu_blend_factor_is_dual_src(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_SRC1_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: case VK_BLEND_FACTOR_SRC1_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return true; default: return false; } } static bool tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info) { if (!info) return false; for (unsigned i = 0; i < info->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i]; if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) || tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) || tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) || tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor)) return true; } return false; } void tu6_emit_xs_config(struct tu_cs *cs, gl_shader_stage stage, /* xs->type, but xs may be NULL */ const struct ir3_shader_variant *xs, uint64_t binary_iova) { static const struct xs_config { uint16_t reg_sp_xs_ctrl; uint16_t reg_sp_xs_config; uint16_t reg_hlsq_xs_ctrl; uint16_t reg_sp_vs_obj_start; } xs_config[] = { [MESA_SHADER_VERTEX] = { REG_A6XX_SP_VS_CTRL_REG0, REG_A6XX_SP_VS_CONFIG, REG_A6XX_HLSQ_VS_CNTL, REG_A6XX_SP_VS_OBJ_START_LO, }, [MESA_SHADER_TESS_CTRL] = { REG_A6XX_SP_HS_CTRL_REG0, REG_A6XX_SP_HS_CONFIG, REG_A6XX_HLSQ_HS_CNTL, REG_A6XX_SP_HS_OBJ_START_LO, }, [MESA_SHADER_TESS_EVAL] = { REG_A6XX_SP_DS_CTRL_REG0, REG_A6XX_SP_DS_CONFIG, REG_A6XX_HLSQ_DS_CNTL, REG_A6XX_SP_DS_OBJ_START_LO, }, [MESA_SHADER_GEOMETRY] = { REG_A6XX_SP_GS_CTRL_REG0, REG_A6XX_SP_GS_CONFIG, REG_A6XX_HLSQ_GS_CNTL, REG_A6XX_SP_GS_OBJ_START_LO, }, [MESA_SHADER_FRAGMENT] = { REG_A6XX_SP_FS_CTRL_REG0, REG_A6XX_SP_FS_CONFIG, REG_A6XX_HLSQ_FS_CNTL, REG_A6XX_SP_FS_OBJ_START_LO, }, [MESA_SHADER_COMPUTE] = { REG_A6XX_SP_CS_CTRL_REG0, REG_A6XX_SP_CS_CONFIG, REG_A6XX_HLSQ_CS_CNTL, REG_A6XX_SP_CS_OBJ_START_LO, }, }; const struct xs_config *cfg = &xs_config[stage]; if (!xs) { /* shader stage disabled */ tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1); tu_cs_emit(cs, 0); return; } bool is_fs = xs->type == MESA_SHADER_FRAGMENT; enum a3xx_threadsize threadsize = FOUR_QUADS; /* TODO: * the "threadsize" field may have nothing to do with threadsize, * use a value that matches the blob until it is figured out */ if (xs->type == MESA_SHADER_GEOMETRY) threadsize = TWO_QUADS; tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1); tu_cs_emit(cs, A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) | A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) | A6XX_SP_VS_CTRL_REG0_HALFREGFOOTPRINT(xs->info.max_half_reg + 1) | COND(xs->mergedregs, A6XX_SP_VS_CTRL_REG0_MERGEDREGS) | A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) | COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) | COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) | /* only fragment shader sets VARYING bit */ COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) | /* unknown bit, seems unnecessary */ COND(is_fs, 0x1000000)); tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2); tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED | COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) | COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) | COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) | COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) | A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) | A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp)); tu_cs_emit(cs, xs->instrlen); tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1); tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(xs->constlen) | A6XX_HLSQ_VS_CNTL_ENABLED); /* emit program binary * binary_iova should be aligned to 1 instrlen unit (128 bytes) */ assert((binary_iova & 0x7f) == 0); tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2); tu_cs_emit_qw(cs, binary_iova); tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3); tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) | CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen)); tu_cs_emit_qw(cs, binary_iova); /* emit immediates */ const struct ir3_const_state *const_state = ir3_const_state(xs); uint32_t base = const_state->offsets.immediate; int size = const_state->immediates_count; /* truncate size to avoid writing constants that shader * does not use: */ size = MIN2(size + base, xs->constlen) - base; if (size <= 0) return; tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3 + size * 4); tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) | CP_LOAD_STATE6_0_NUM_UNIT(size)); tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); for (unsigned i = 0; i < size; i++) { tu_cs_emit(cs, const_state->immediates[i].val[0]); tu_cs_emit(cs, const_state->immediates[i].val[1]); tu_cs_emit(cs, const_state->immediates[i].val[2]); tu_cs_emit(cs, const_state->immediates[i].val[3]); } } static void tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader, const struct ir3_shader_variant *v, uint32_t binary_iova) { tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD( .cs_state = true, .cs_ibo = true)); tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova); tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1); tu_cs_emit(cs, 0x41); uint32_t local_invocation_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID); uint32_t work_group_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2); tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) | A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) | A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) | A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id)); tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */ } static void tu6_emit_vs_system_values(struct tu_cs *cs, const struct ir3_shader_variant *vs, const struct ir3_shader_variant *hs, const struct ir3_shader_variant *ds, const struct ir3_shader_variant *gs, bool primid_passthru) { const uint32_t vertexid_regid = ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID); const uint32_t instanceid_regid = ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID); const uint32_t tess_coord_x_regid = hs ? ir3_find_sysval_regid(ds, SYSTEM_VALUE_TESS_COORD) : regid(63, 0); const uint32_t tess_coord_y_regid = VALIDREG(tess_coord_x_regid) ? tess_coord_x_regid + 1 : regid(63, 0); const uint32_t hs_patch_regid = hs ? ir3_find_sysval_regid(hs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0); const uint32_t ds_patch_regid = hs ? ir3_find_sysval_regid(ds, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0); const uint32_t hs_invocation_regid = hs ? ir3_find_sysval_regid(hs, SYSTEM_VALUE_TCS_HEADER_IR3) : regid(63, 0); const uint32_t primitiveid_regid = gs ? ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0); const uint32_t gsheader_regid = gs ? ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) : regid(63, 0); tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6); tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) | A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) | A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) | 0xfc000000); tu_cs_emit(cs, A6XX_VFD_CONTROL_2_REGID_HSPATCHID(hs_patch_regid) | A6XX_VFD_CONTROL_2_REGID_INVOCATIONID(hs_invocation_regid)); tu_cs_emit(cs, A6XX_VFD_CONTROL_3_REGID_DSPATCHID(ds_patch_regid) | A6XX_VFD_CONTROL_3_REGID_TESSX(tess_coord_x_regid) | A6XX_VFD_CONTROL_3_REGID_TESSY(tess_coord_y_regid) | 0xfc); tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */ tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) | 0xfc00); /* VFD_CONTROL_5 */ tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */ } /* Add any missing varyings needed for stream-out. Otherwise varyings not * used by fragment shader will be stripped out. */ static void tu6_link_streamout(struct ir3_shader_linkage *l, const struct ir3_shader_variant *v) { const struct ir3_stream_output_info *info = &v->shader->stream_output; /* * First, any stream-out varyings not already in linkage map (ie. also * consumed by frag shader) need to be added: */ for (unsigned i = 0; i < info->num_outputs; i++) { const struct ir3_stream_output *out = &info->output[i]; unsigned compmask = (1 << (out->num_components + out->start_component)) - 1; unsigned k = out->register_index; unsigned idx, nextloc = 0; /* psize/pos need to be the last entries in linkage map, and will * get added link_stream_out, so skip over them: */ if (v->outputs[k].slot == VARYING_SLOT_PSIZ || v->outputs[k].slot == VARYING_SLOT_POS) continue; for (idx = 0; idx < l->cnt; idx++) { if (l->var[idx].regid == v->outputs[k].regid) break; nextloc = MAX2(nextloc, l->var[idx].loc + 4); } /* add if not already in linkage map: */ if (idx == l->cnt) ir3_link_add(l, v->outputs[k].regid, compmask, nextloc); /* expand component-mask if needed, ie streaming out all components * but frag shader doesn't consume all components: */ if (compmask & ~l->var[idx].compmask) { l->var[idx].compmask |= compmask; l->max_loc = MAX2(l->max_loc, l->var[idx].loc + util_last_bit(l->var[idx].compmask)); } } } static void tu6_setup_streamout(struct tu_cs *cs, const struct ir3_shader_variant *v, struct ir3_shader_linkage *l) { const struct ir3_stream_output_info *info = &v->shader->stream_output; uint32_t prog[IR3_MAX_SO_OUTPUTS * 2] = {}; uint32_t ncomp[IR3_MAX_SO_BUFFERS] = {}; uint32_t prog_count = align(l->max_loc, 2) / 2; /* TODO: streamout state should be in a non-GMEM draw state */ /* no streamout: */ if (info->num_outputs == 0) { tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4); tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL); tu_cs_emit(cs, 0); tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL); tu_cs_emit(cs, 0); return; } /* is there something to do with info->stride[i]? */ for (unsigned i = 0; i < info->num_outputs; i++) { const struct ir3_stream_output *out = &info->output[i]; unsigned k = out->register_index; unsigned idx; /* Skip it, if there's an unused reg in the middle of outputs. */ if (v->outputs[k].regid == INVALID_REG) continue; ncomp[out->output_buffer] += out->num_components; /* linkage map sorted by order frag shader wants things, so * a bit less ideal here.. */ for (idx = 0; idx < l->cnt; idx++) if (l->var[idx].regid == v->outputs[k].regid) break; debug_assert(idx < l->cnt); for (unsigned j = 0; j < out->num_components; j++) { unsigned c = j + out->start_component; unsigned loc = l->var[idx].loc + c; unsigned off = j + out->dst_offset; /* in dwords */ if (loc & 1) { prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN | A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) | A6XX_VPC_SO_PROG_B_OFF(off * 4); } else { prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN | A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) | A6XX_VPC_SO_PROG_A_OFF(off * 4); } } } tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + 2 * prog_count); tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL); tu_cs_emit(cs, A6XX_VPC_SO_BUF_CNTL_ENABLE | COND(ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) | COND(ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) | COND(ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) | COND(ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3)); for (uint32_t i = 0; i < 4; i++) { tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(i)); tu_cs_emit(cs, ncomp[i]); } /* note: "VPC_SO_CNTL" write seems to be responsible for resetting the SO_PROG */ tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL); tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE); for (uint32_t i = 0; i < prog_count; i++) { tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG); tu_cs_emit(cs, prog[i]); } } static void tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base, enum a6xx_state_block block, uint32_t offset, uint32_t size, uint32_t *dwords) { assert(size % 4 == 0); tu_cs_emit_pkt7(cs, opcode, 3 + size); tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(block) | CP_LOAD_STATE6_0_NUM_UNIT(size / 4)); tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); dwords = (uint32_t *)&((uint8_t *)dwords)[offset]; tu_cs_emit_array(cs, dwords, size); } static void tu6_emit_link_map(struct tu_cs *cs, const struct ir3_shader_variant *producer, const struct ir3_shader_variant *consumer, enum a6xx_state_block sb) { const struct ir3_const_state *const_state = ir3_const_state(consumer); uint32_t base = const_state->offsets.primitive_map; uint32_t patch_locs[MAX_VARYING] = { }, num_loc; num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs); int size = DIV_ROUND_UP(num_loc, 4); size = (MIN2(size + base, consumer->constlen) - base) * 4; if (size <= 0) return; tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, sb, 0, size, patch_locs); } static uint16_t gl_primitive_to_tess(uint16_t primitive) { switch (primitive) { case GL_POINTS: return TESS_POINTS; case GL_LINE_STRIP: return TESS_LINES; case GL_TRIANGLE_STRIP: return TESS_CW_TRIS; default: unreachable(""); } } void tu6_emit_vpc(struct tu_cs *cs, const struct ir3_shader_variant *vs, const struct ir3_shader_variant *hs, const struct ir3_shader_variant *ds, const struct ir3_shader_variant *gs, const struct ir3_shader_variant *fs) { /* note: doesn't compile as static because of the array regs.. */ const struct reg_config { uint16_t reg_sp_xs_out_reg; uint16_t reg_sp_xs_vpc_dst_reg; uint16_t reg_vpc_xs_pack; uint16_t reg_vpc_xs_clip_cntl; uint16_t reg_gras_xs_cl_cntl; uint16_t reg_pc_xs_out_cntl; uint16_t reg_sp_xs_primitive_cntl; uint16_t reg_vpc_xs_layer_cntl; uint16_t reg_gras_xs_layer_cntl; } reg_config[] = { [MESA_SHADER_VERTEX] = { REG_A6XX_SP_VS_OUT_REG(0), REG_A6XX_SP_VS_VPC_DST_REG(0), REG_A6XX_VPC_VS_PACK, REG_A6XX_VPC_VS_CLIP_CNTL, REG_A6XX_GRAS_VS_CL_CNTL, REG_A6XX_PC_VS_OUT_CNTL, REG_A6XX_SP_VS_PRIMITIVE_CNTL, REG_A6XX_VPC_VS_LAYER_CNTL, REG_A6XX_GRAS_VS_LAYER_CNTL }, [MESA_SHADER_TESS_EVAL] = { REG_A6XX_SP_DS_OUT_REG(0), REG_A6XX_SP_DS_VPC_DST_REG(0), REG_A6XX_VPC_DS_PACK, REG_A6XX_VPC_DS_CLIP_CNTL, REG_A6XX_GRAS_DS_CL_CNTL, REG_A6XX_PC_DS_OUT_CNTL, REG_A6XX_SP_DS_PRIMITIVE_CNTL, REG_A6XX_VPC_DS_LAYER_CNTL, REG_A6XX_GRAS_DS_LAYER_CNTL }, [MESA_SHADER_GEOMETRY] = { REG_A6XX_SP_GS_OUT_REG(0), REG_A6XX_SP_GS_VPC_DST_REG(0), REG_A6XX_VPC_GS_PACK, REG_A6XX_VPC_GS_CLIP_CNTL, REG_A6XX_GRAS_GS_CL_CNTL, REG_A6XX_PC_GS_OUT_CNTL, REG_A6XX_SP_GS_PRIMITIVE_CNTL, REG_A6XX_VPC_GS_LAYER_CNTL, REG_A6XX_GRAS_GS_LAYER_CNTL }, }; const struct ir3_shader_variant *last_shader; if (gs) { last_shader = gs; } else if (hs) { last_shader = ds; } else { last_shader = vs; } const struct reg_config *cfg = ®_config[last_shader->type]; struct ir3_shader_linkage linkage = { .primid_loc = 0xff }; if (fs) ir3_link_shaders(&linkage, last_shader, fs, true); if (last_shader->shader->stream_output.num_outputs) tu6_link_streamout(&linkage, last_shader); /* We do this after linking shaders in order to know whether PrimID * passthrough needs to be enabled. */ bool primid_passthru = linkage.primid_loc != 0xff; tu6_emit_vs_system_values(cs, vs, hs, ds, gs, primid_passthru); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4); tu_cs_emit(cs, ~linkage.varmask[0]); tu_cs_emit(cs, ~linkage.varmask[1]); tu_cs_emit(cs, ~linkage.varmask[2]); tu_cs_emit(cs, ~linkage.varmask[3]); /* a6xx finds position/pointsize at the end */ const uint32_t position_regid = ir3_find_output_regid(last_shader, VARYING_SLOT_POS); const uint32_t pointsize_regid = ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ); const uint32_t layer_regid = ir3_find_output_regid(last_shader, VARYING_SLOT_LAYER); uint32_t primitive_regid = gs ? ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0); uint32_t flags_regid = gs ? ir3_find_output_regid(gs, VARYING_SLOT_GS_VERTEX_FLAGS_IR3) : 0; uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff; if (layer_regid != regid(63, 0)) { layer_loc = linkage.max_loc; ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc); } if (position_regid != regid(63, 0)) { position_loc = linkage.max_loc; ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc); } if (pointsize_regid != regid(63, 0)) { pointsize_loc = linkage.max_loc; ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc); } tu6_setup_streamout(cs, last_shader, &linkage); /* map outputs of the last shader to VPC */ assert(linkage.cnt <= 32); const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2); const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4); uint32_t sp_out[16]; uint32_t sp_vpc_dst[8]; for (uint32_t i = 0; i < linkage.cnt; i++) { ((uint16_t *) sp_out)[i] = A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) | A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask); ((uint8_t *) sp_vpc_dst)[i] = A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc); } tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_out_reg, sp_out_count); tu_cs_emit_array(cs, sp_out, sp_out_count); tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_vpc_dst_reg, sp_vpc_dst_count); tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count); tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_pack, 1); tu_cs_emit(cs, A6XX_VPC_VS_PACK_POSITIONLOC(position_loc) | A6XX_VPC_VS_PACK_PSIZELOC(pointsize_loc) | A6XX_VPC_VS_PACK_STRIDE_IN_VPC(linkage.max_loc)); tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_clip_cntl, 1); tu_cs_emit(cs, 0xffff00); tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_cl_cntl, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, cfg->reg_pc_xs_out_cntl, 1); tu_cs_emit(cs, A6XX_PC_VS_OUT_CNTL_STRIDE_IN_VPC(linkage.max_loc) | CONDREG(pointsize_regid, A6XX_PC_VS_OUT_CNTL_PSIZE) | CONDREG(layer_regid, A6XX_PC_VS_OUT_CNTL_LAYER) | CONDREG(primitive_regid, A6XX_PC_VS_OUT_CNTL_PRIMITIVE_ID)); tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_primitive_cntl, 1); tu_cs_emit(cs, A6XX_SP_VS_PRIMITIVE_CNTL_OUT(linkage.cnt) | A6XX_SP_GS_PRIMITIVE_CNTL_FLAGS_REGID(flags_regid)); tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_layer_cntl, 1); tu_cs_emit(cs, A6XX_VPC_GS_LAYER_CNTL_LAYERLOC(layer_loc) | 0xff00); tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_layer_cntl, 1); tu_cs_emit(cs, CONDREG(layer_regid, A6XX_GRAS_GS_LAYER_CNTL_WRITES_LAYER)); tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1); tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU)); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1); tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) | COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) | A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) | A6XX_VPC_CNTL_0_UNKLOC(0xff)); if (hs) { shader_info *hs_info = &hs->shader->nir->info; tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_NUM_VERTEX, 1); tu_cs_emit(cs, hs_info->tess.tcs_vertices_out); /* Total attribute slots in HS incoming patch. */ tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9801, 1); tu_cs_emit(cs, hs_info->tess.tcs_vertices_out * vs->output_size / 4); tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1); tu_cs_emit(cs, vs->output_size); /* In SPIR-V generated from GLSL, the tessellation primitive params are * are specified in the tess eval shader, but in SPIR-V generated from * HLSL, they are specified in the tess control shader. */ shader_info *tess_info = ds->shader->nir->info.tess.spacing == TESS_SPACING_UNSPECIFIED ? &hs->shader->nir->info : &ds->shader->nir->info; tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_CNTL, 1); uint32_t output; if (tess_info->tess.point_mode) output = TESS_POINTS; else if (tess_info->tess.primitive_mode == GL_ISOLINES) output = TESS_LINES; else if (tess_info->tess.ccw) output = TESS_CCW_TRIS; else output = TESS_CW_TRIS; enum a6xx_tess_spacing spacing; switch (tess_info->tess.spacing) { case TESS_SPACING_EQUAL: spacing = TESS_EQUAL; break; case TESS_SPACING_FRACTIONAL_ODD: spacing = TESS_FRACTIONAL_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: spacing = TESS_FRACTIONAL_EVEN; break; case TESS_SPACING_UNSPECIFIED: default: unreachable("invalid tess spacing"); } tu_cs_emit(cs, A6XX_PC_TESS_CNTL_SPACING(spacing) | A6XX_PC_TESS_CNTL_OUTPUT(output)); tu6_emit_link_map(cs, vs, hs, SB6_HS_SHADER); tu6_emit_link_map(cs, hs, ds, SB6_DS_SHADER); } if (gs) { uint32_t vertices_out, invocations, output, vec4_size; /* this detects the tu_clear_blit path, which doesn't set ->nir */ if (gs->shader->nir) { if (hs) { tu6_emit_link_map(cs, ds, gs, SB6_GS_SHADER); } else { tu6_emit_link_map(cs, vs, gs, SB6_GS_SHADER); } vertices_out = gs->shader->nir->info.gs.vertices_out - 1; output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive); invocations = gs->shader->nir->info.gs.invocations - 1; /* Size of per-primitive alloction in ldlw memory in vec4s. */ vec4_size = gs->shader->nir->info.gs.vertices_in * DIV_ROUND_UP(vs->output_size, 4); } else { vertices_out = 3; output = TESS_CW_TRIS; invocations = 0; vec4_size = 0; } tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1); tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) | A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) | A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations)); tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1); tu_cs_emit(cs, 0xff); tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1); tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size)); tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1); tu_cs_emit(cs, vs->output_size); } } static int tu6_vpc_varying_mode(const struct ir3_shader_variant *fs, uint32_t index, uint8_t *interp_mode, uint8_t *ps_repl_mode) { enum { INTERP_SMOOTH = 0, INTERP_FLAT = 1, INTERP_ZERO = 2, INTERP_ONE = 3, }; enum { PS_REPL_NONE = 0, PS_REPL_S = 1, PS_REPL_T = 2, PS_REPL_ONE_MINUS_T = 3, }; const uint32_t compmask = fs->inputs[index].compmask; /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and * fourth component occupy three consecutive varying slots */ int shift = 0; *interp_mode = 0; *ps_repl_mode = 0; if (fs->inputs[index].slot == VARYING_SLOT_PNTC) { if (compmask & 0x1) { *ps_repl_mode |= PS_REPL_S << shift; shift += 2; } if (compmask & 0x2) { *ps_repl_mode |= PS_REPL_T << shift; shift += 2; } if (compmask & 0x4) { *interp_mode |= INTERP_ZERO << shift; shift += 2; } if (compmask & 0x8) { *interp_mode |= INTERP_ONE << 6; shift += 2; } } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) || fs->inputs[index].rasterflat) { for (int i = 0; i < 4; i++) { if (compmask & (1 << i)) { *interp_mode |= INTERP_FLAT << shift; shift += 2; } } } return shift; } static void tu6_emit_vpc_varying_modes(struct tu_cs *cs, const struct ir3_shader_variant *fs) { uint32_t interp_modes[8] = { 0 }; uint32_t ps_repl_modes[8] = { 0 }; if (fs) { for (int i = -1; (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) { /* get the mode for input i */ uint8_t interp_mode; uint8_t ps_repl_mode; const int bits = tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode); /* OR the mode into the array */ const uint32_t inloc = fs->inputs[i].inloc * 2; uint32_t n = inloc / 32; uint32_t shift = inloc % 32; interp_modes[n] |= interp_mode << shift; ps_repl_modes[n] |= ps_repl_mode << shift; if (shift + bits > 32) { n++; shift = 32 - shift; interp_modes[n] |= interp_mode >> shift; ps_repl_modes[n] |= ps_repl_mode >> shift; } } } tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8); tu_cs_emit_array(cs, interp_modes, 8); tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8); tu_cs_emit_array(cs, ps_repl_modes, 8); } void tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs) { uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid; uint32_t ij_regid[IJ_COUNT]; uint32_t smask_in_regid; bool sample_shading = fs->per_samp | fs->key.sample_shading; bool enable_varyings = fs->total_in > 0; samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID); smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN); face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE); coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD); zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0); for (unsigned i = 0; i < ARRAY_SIZE(ij_regid); i++) ij_regid[i] = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + i); if (VALIDREG(ij_regid[IJ_LINEAR_SAMPLE])) tu_finishme("linear sample varying"); if (VALIDREG(ij_regid[IJ_LINEAR_CENTROID])) tu_finishme("linear centroid varying"); if (fs->num_sampler_prefetch > 0) { assert(VALIDREG(ij_regid[IJ_PERSP_PIXEL])); /* also, it seems like ij_pix is *required* to be r0.x */ assert(ij_regid[IJ_PERSP_PIXEL] == regid(0, 0)); } tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch); tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) | A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) | 0x7000); // XXX); for (int i = 0; i < fs->num_sampler_prefetch; i++) { const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i]; tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) | A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) | A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) | A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) | A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) | COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) | A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd)); } if (fs->num_sampler_prefetch > 0) { tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch); for (int i = 0; i < fs->num_sampler_prefetch; i++) { const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i]; tu_cs_emit(cs, A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) | A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id)); } } tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5); tu_cs_emit(cs, 0x7); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) | A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) | A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_regid[IJ_PERSP_SIZE])); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_PIXEL(ij_regid[IJ_PERSP_PIXEL]) | A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_PIXEL(ij_regid[IJ_LINEAR_PIXEL]) | A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_CENTROID(ij_regid[IJ_PERSP_CENTROID]) | A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_CENTROID(ij_regid[IJ_LINEAR_CENTROID])); tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) | A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) | A6XX_HLSQ_CONTROL_4_REG_IJ_PERSP_SAMPLE(ij_regid[IJ_PERSP_SAMPLE]) | A6XX_HLSQ_CONTROL_4_REG_IJ_LINEAR_SAMPLE(ij_regid[IJ_LINEAR_SAMPLE])); tu_cs_emit(cs, 0xfc); tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1); tu_cs_emit(cs, enable_varyings ? 3 : 1); bool need_size = fs->frag_face || fs->fragcoord_compmask != 0; bool need_size_persamp = false; if (VALIDREG(ij_regid[IJ_PERSP_SIZE])) { if (sample_shading) need_size_persamp = true; else need_size = true; } if (VALIDREG(ij_regid[IJ_LINEAR_PIXEL])) need_size = true; tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1); tu_cs_emit(cs, CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_GRAS_CNTL_IJ_PERSP_PIXEL) | CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_GRAS_CNTL_IJ_PERSP_CENTROID) | CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_GRAS_CNTL_IJ_PERSP_SAMPLE) | COND(need_size, A6XX_GRAS_CNTL_SIZE) | COND(need_size_persamp, A6XX_GRAS_CNTL_SIZE_PERSAMP) | COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask))); tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2); tu_cs_emit(cs, CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_PIXEL) | CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_CENTROID) | CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_SAMPLE) | COND(need_size, A6XX_RB_RENDER_CONTROL0_SIZE) | COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) | COND(need_size_persamp, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) | COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask))); tu_cs_emit(cs, /* these two bits (UNK4/UNK5) relate to fragcoord * without them, fragcoord is the same for all samples */ COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK4) | COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK5) | CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) | CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) | CONDREG(ij_regid[IJ_PERSP_SIZE], A6XX_RB_RENDER_CONTROL1_SIZE) | COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS)); tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1); tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE)); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1); tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1); tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE)); } static void tu6_emit_fs_outputs(struct tu_cs *cs, const struct ir3_shader_variant *fs, uint32_t mrt_count, bool dual_src_blend, uint32_t render_components, bool is_s8_uint) { uint32_t smask_regid, posz_regid; posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH); smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK); uint32_t fragdata_regid[8]; if (fs->color0_mrt) { fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR); for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++) fragdata_regid[i] = fragdata_regid[0]; } else { for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i); } tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2); tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) | A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) | COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) | 0xfc000000); tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count)); tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8); for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) { // TODO we could have a mix of half and full precision outputs, // we really need to figure out half-precision from IR3_REG_HALF tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) | (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0)); } tu_cs_emit_regs(cs, A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components)); tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2); tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) | COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) | COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE)); tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count)); tu_cs_emit_regs(cs, A6XX_RB_RENDER_COMPONENTS(.dword = render_components)); enum a6xx_ztest_mode zmode; if (fs->no_earlyz || fs->has_kill || fs->writes_pos || is_s8_uint) { zmode = A6XX_LATE_Z; } else { zmode = A6XX_EARLY_Z; } tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1); tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode)); tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1); tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode)); } static void tu6_emit_geom_tess_consts(struct tu_cs *cs, const struct ir3_shader_variant *vs, const struct ir3_shader_variant *hs, const struct ir3_shader_variant *ds, const struct ir3_shader_variant *gs, uint32_t cps_per_patch) { uint32_t num_vertices = hs ? cps_per_patch : gs->shader->nir->info.gs.vertices_in; uint32_t vs_params[4] = { vs->output_size * num_vertices * 4, /* vs primitive stride */ vs->output_size * 4, /* vs vertex stride */ 0, 0, }; uint32_t vs_base = ir3_const_state(vs)->offsets.primitive_param; tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0, ARRAY_SIZE(vs_params), vs_params); if (hs) { assert(ds->type != MESA_SHADER_NONE); uint32_t hs_params[4] = { vs->output_size * num_vertices * 4, /* hs primitive stride */ vs->output_size * 4, /* hs vertex stride */ hs->output_size, cps_per_patch, }; uint32_t hs_base = hs->const_state->offsets.primitive_param; tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, hs_base, SB6_HS_SHADER, 0, ARRAY_SIZE(hs_params), hs_params); if (gs) num_vertices = gs->shader->nir->info.gs.vertices_in; uint32_t ds_params[4] = { ds->output_size * num_vertices * 4, /* ds primitive stride */ ds->output_size * 4, /* ds vertex stride */ hs->output_size, /* hs vertex stride (dwords) */ hs->shader->nir->info.tess.tcs_vertices_out }; uint32_t ds_base = ds->const_state->offsets.primitive_param; tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, ds_base, SB6_DS_SHADER, 0, ARRAY_SIZE(ds_params), ds_params); } if (gs) { const struct ir3_shader_variant *prev = ds ? ds : vs; uint32_t gs_params[4] = { prev->output_size * num_vertices * 4, /* gs primitive stride */ prev->output_size * 4, /* gs vertex stride */ 0, 0, }; uint32_t gs_base = gs->const_state->offsets.primitive_param; tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0, ARRAY_SIZE(gs_params), gs_params); } } static void tu6_emit_program(struct tu_cs *cs, struct tu_pipeline_builder *builder, bool binning_pass) { const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX]; const struct ir3_shader_variant *bs = builder->binning_variant; const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL]; const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL]; const struct ir3_shader_variant *gs = builder->variants[MESA_SHADER_GEOMETRY]; const struct ir3_shader_variant *fs = builder->variants[MESA_SHADER_FRAGMENT]; gl_shader_stage stage = MESA_SHADER_VERTEX; STATIC_ASSERT(MESA_SHADER_VERTEX == 0); tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD( .vs_state = true, .hs_state = true, .ds_state = true, .gs_state = true, .fs_state = true, .gfx_ibo = true)); /* Don't use the binning pass variant when GS is present because we don't * support compiling correct binning pass variants with GS. */ if (binning_pass && !gs) { vs = bs; tu6_emit_xs_config(cs, stage, bs, builder->binning_vs_iova); stage++; } for (; stage < ARRAY_SIZE(builder->shaders); stage++) { const struct ir3_shader_variant *xs = builder->variants[stage]; if (stage == MESA_SHADER_FRAGMENT && binning_pass) fs = xs = NULL; tu6_emit_xs_config(cs, stage, xs, builder->shader_iova[stage]); } tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1); tu_cs_emit(cs, 0); tu6_emit_vpc(cs, vs, hs, ds, gs, fs); tu6_emit_vpc_varying_modes(cs, fs); if (fs) { tu6_emit_fs_inputs(cs, fs); tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count, builder->use_dual_src_blend, builder->render_components, builder->depth_attachment_format == VK_FORMAT_S8_UINT); } else { /* TODO: check if these can be skipped if fs is disabled */ struct ir3_shader_variant dummy_variant = {}; tu6_emit_fs_inputs(cs, &dummy_variant); tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count, builder->use_dual_src_blend, builder->render_components, builder->depth_attachment_format == VK_FORMAT_S8_UINT); } if (gs || hs) { uint32_t cps_per_patch = builder->create_info->pTessellationState ? builder->create_info->pTessellationState->patchControlPoints : 0; tu6_emit_geom_tess_consts(cs, vs, hs, ds, gs, cps_per_patch); } } static void tu6_emit_vertex_input(struct tu_cs *cs, const struct ir3_shader_variant *vs, const VkPipelineVertexInputStateCreateInfo *info, uint32_t *bindings_used) { uint32_t vfd_decode_idx = 0; uint32_t binding_instanced = 0; /* bitmask of instanced bindings */ uint32_t step_rate[MAX_VBS]; for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *binding = &info->pVertexBindingDescriptions[i]; tu_cs_emit_regs(cs, A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride)); if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) binding_instanced |= 1 << binding->binding; *bindings_used |= 1 << binding->binding; step_rate[binding->binding] = 1; } const VkPipelineVertexInputDivisorStateCreateInfoEXT *div_state = vk_find_struct_const(info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); if (div_state) { for (uint32_t i = 0; i < div_state->vertexBindingDivisorCount; i++) { const VkVertexInputBindingDivisorDescriptionEXT *desc = &div_state->pVertexBindingDivisors[i]; step_rate[desc->binding] = desc->divisor; } } /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */ for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *attr = &info->pVertexAttributeDescriptions[i]; uint32_t input_idx; assert(*bindings_used & BIT(attr->binding)); for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) { if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location) break; } /* attribute not used, skip it */ if (input_idx == vs->inputs_count) continue; const struct tu_native_format format = tu6_format_vtx(attr->format); tu_cs_emit_regs(cs, A6XX_VFD_DECODE_INSTR(vfd_decode_idx, .idx = attr->binding, .offset = attr->offset, .instanced = binding_instanced & (1 << attr->binding), .format = format.fmt, .swap = format.swap, .unk30 = 1, ._float = !vk_format_is_int(attr->format)), A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, step_rate[attr->binding])); tu_cs_emit_regs(cs, A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx, .writemask = vs->inputs[input_idx].compmask, .regid = vs->inputs[input_idx].regid)); vfd_decode_idx++; } tu_cs_emit_regs(cs, A6XX_VFD_CONTROL_0( .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */ .decode_cnt = vfd_decode_idx)); } static uint32_t tu6_guardband_adj(uint32_t v) { if (v > 256) return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0)); else return 511; } void tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport) { float offsets[3]; float scales[3]; scales[0] = viewport->width / 2.0f; scales[1] = viewport->height / 2.0f; scales[2] = viewport->maxDepth - viewport->minDepth; offsets[0] = viewport->x + scales[0]; offsets[1] = viewport->y + scales[1]; offsets[2] = viewport->minDepth; VkOffset2D min; VkOffset2D max; min.x = (int32_t) viewport->x; max.x = (int32_t) ceilf(viewport->x + viewport->width); if (viewport->height >= 0.0f) { min.y = (int32_t) viewport->y; max.y = (int32_t) ceilf(viewport->y + viewport->height); } else { min.y = (int32_t)(viewport->y + viewport->height); max.y = (int32_t) ceilf(viewport->y); } /* the spec allows viewport->height to be 0.0f */ if (min.y == max.y) max.y++; assert(min.x >= 0 && min.x < max.x); assert(min.y >= 0 && min.y < max.y); VkExtent2D guardband_adj; guardband_adj.width = tu6_guardband_adj(max.x - min.x); guardband_adj.height = tu6_guardband_adj(max.y - min.y); tu_cs_emit_regs(cs, A6XX_GRAS_CL_VPORT_XOFFSET(0, offsets[0]), A6XX_GRAS_CL_VPORT_XSCALE(0, scales[0]), A6XX_GRAS_CL_VPORT_YOFFSET(0, offsets[1]), A6XX_GRAS_CL_VPORT_YSCALE(0, scales[1]), A6XX_GRAS_CL_VPORT_ZOFFSET(0, offsets[2]), A6XX_GRAS_CL_VPORT_ZSCALE(0, scales[2])); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL(0), 2); tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(min.x) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(min.y)); tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(max.x - 1) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(max.y - 1)); tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1); tu_cs_emit(cs, A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) | A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height)); float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth); float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth); tu_cs_emit_regs(cs, A6XX_GRAS_CL_Z_CLAMP_MIN(0, z_clamp_min), A6XX_GRAS_CL_Z_CLAMP_MAX(0, z_clamp_max)); tu_cs_emit_regs(cs, A6XX_RB_Z_CLAMP_MIN(z_clamp_min), A6XX_RB_Z_CLAMP_MAX(z_clamp_max)); } void tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor) { VkOffset2D min = scissor->offset; VkOffset2D max = { scissor->offset.x + scissor->extent.width, scissor->offset.y + scissor->extent.height, }; /* special case for empty scissor with max == 0 to avoid overflow */ if (max.x == 0) min.x = max.x = 1; if (max.y == 0) min.y = max.y = 1; /* avoid overflow with large scissor * note the max will be limited to min - 1, so that empty scissor works */ uint32_t scissor_max = BITFIELD_MASK(15); min.x = MIN2(scissor_max, min.x); min.y = MIN2(scissor_max, min.y); max.x = MIN2(scissor_max, max.x); max.y = MIN2(scissor_max, max.y); tu_cs_emit_regs(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL(0, .x = min.x, .y = min.y), A6XX_GRAS_SC_SCREEN_SCISSOR_BR(0, .x = max.x - 1, .y = max.y - 1)); } void tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc) { if (!samp_loc) { tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1); tu_cs_emit(cs, 0); tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1); tu_cs_emit(cs, 0); return; } assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount); assert(samp_loc->sampleLocationGridSize.width == 1); assert(samp_loc->sampleLocationGridSize.height == 1); uint32_t sample_config = A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE; uint32_t sample_locations = 0; for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) { sample_locations |= (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) | A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8; } tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2); tu_cs_emit(cs, sample_config); tu_cs_emit(cs, sample_locations); tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2); tu_cs_emit(cs, sample_config); tu_cs_emit(cs, sample_locations); tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2); tu_cs_emit(cs, sample_config); tu_cs_emit(cs, sample_locations); } static uint32_t tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info, VkSampleCountFlagBits samples) { uint32_t gras_su_cntl = 0; if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT; if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK; if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE) gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW; /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */ if (rast_info->depthBiasEnable) gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET; if (samples > VK_SAMPLE_COUNT_1_BIT) gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE; return gras_su_cntl; } void tu6_emit_depth_bias(struct tu_cs *cs, float constant_factor, float clamp, float slope_factor) { tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value); tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value); } static void tu6_emit_depth_control(struct tu_cs *cs, const VkPipelineDepthStencilStateCreateInfo *ds_info, const VkPipelineRasterizationStateCreateInfo *rast_info) { uint32_t rb_depth_cntl = 0; if (ds_info->depthTestEnable) { rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_ENABLE | A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; /* TODO: don't set for ALWAYS/NEVER */ if (rast_info->depthClampEnable) rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE; if (ds_info->depthWriteEnable) rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE; } if (ds_info->depthBoundsTestEnable) rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1); tu_cs_emit(cs, rb_depth_cntl); } static void tu6_emit_stencil_control(struct tu_cs *cs, const VkPipelineDepthStencilStateCreateInfo *ds_info) { uint32_t rb_stencil_control = 0; if (ds_info->stencilTestEnable) { const VkStencilOpState *front = &ds_info->front; const VkStencilOpState *back = &ds_info->back; rb_stencil_control |= A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE | A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF | A6XX_RB_STENCIL_CONTROL_STENCIL_READ | A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) | A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) | A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) | A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) | A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) | A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) | A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) | A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp)); } tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1); tu_cs_emit(cs, rb_stencil_control); } static uint32_t tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att, bool has_alpha) { const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp); const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor( has_alpha ? att->srcColorBlendFactor : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor)); const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor( has_alpha ? att->dstColorBlendFactor : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor)); const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp); const enum adreno_rb_blend_factor src_alpha_factor = tu6_blend_factor(att->srcAlphaBlendFactor); const enum adreno_rb_blend_factor dst_alpha_factor = tu6_blend_factor(att->dstAlphaBlendFactor); return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) | A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) | A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) | A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor); } static uint32_t tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att, uint32_t rb_mrt_control_rop, bool is_int, bool has_alpha) { uint32_t rb_mrt_control = A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask); /* ignore blending and logic op for integer attachments */ if (is_int) { rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY); return rb_mrt_control; } rb_mrt_control |= rb_mrt_control_rop; if (att->blendEnable) { rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND; if (has_alpha) rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2; } return rb_mrt_control; } static void tu6_emit_rb_mrt_controls(struct tu_cs *cs, const VkPipelineColorBlendStateCreateInfo *blend_info, const VkFormat attachment_formats[MAX_RTS], uint32_t *blend_enable_mask) { *blend_enable_mask = 0; bool rop_reads_dst = false; uint32_t rb_mrt_control_rop = 0; if (blend_info->logicOpEnable) { rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp); rb_mrt_control_rop = A6XX_RB_MRT_CONTROL_ROP_ENABLE | A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp)); } for (uint32_t i = 0; i < blend_info->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &blend_info->pAttachments[i]; const VkFormat format = attachment_formats[i]; uint32_t rb_mrt_control = 0; uint32_t rb_mrt_blend_control = 0; if (format != VK_FORMAT_UNDEFINED) { const bool is_int = vk_format_is_int(format); const bool has_alpha = vk_format_has_alpha(format); rb_mrt_control = tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha); rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha); if (att->blendEnable || rop_reads_dst) *blend_enable_mask |= 1 << i; } tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2); tu_cs_emit(cs, rb_mrt_control); tu_cs_emit(cs, rb_mrt_blend_control); } } static void tu6_emit_blend_control(struct tu_cs *cs, uint32_t blend_enable_mask, bool dual_src_blend, const VkPipelineMultisampleStateCreateInfo *msaa_info) { const uint32_t sample_mask = msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff) : ((1 << msaa_info->rasterizationSamples) - 1); tu_cs_emit_regs(cs, A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask, .dual_color_in_enable = dual_src_blend, .alpha_to_coverage = msaa_info->alphaToCoverageEnable, .unk8 = true)); /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */ tu_cs_emit_regs(cs, A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask, .independent_blend = true, .sample_mask = sample_mask, .dual_color_in_enable = dual_src_blend, .alpha_to_coverage = msaa_info->alphaToCoverageEnable, .alpha_to_one = msaa_info->alphaToOneEnable)); } static VkResult tu_pipeline_allocate_cs(struct tu_device *dev, struct tu_pipeline *pipeline, struct tu_pipeline_builder *builder, struct ir3_shader_variant *compute) { uint32_t size = 2048 + tu6_load_state_size(pipeline, compute); /* graphics case: */ if (builder) { for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { if (builder->variants[i]) size += builder->variants[i]->info.sizedwords; } size += builder->binning_variant->info.sizedwords; } else { size += compute->info.sizedwords; } tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, size); /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note * that LOAD_STATE can potentially take up a large amount of space so we * calculate its size explicitly. */ return tu_cs_reserve_space(&pipeline->cs, size); } static void tu_pipeline_shader_key_init(struct ir3_shader_key *key, const VkGraphicsPipelineCreateInfo *pipeline_info) { for (uint32_t i = 0; i < pipeline_info->stageCount; i++) { if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) { key->has_gs = true; break; } } if (pipeline_info->pRasterizationState->rasterizerDiscardEnable) return; const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState; const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations = vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); if (msaa_info->rasterizationSamples > 1 || /* also set msaa key when sample location is not the default * since this affects varying interpolation */ (sample_locations && sample_locations->sampleLocationsEnable)) { key->msaa = true; } /* note: not actually used by ir3, just checked in tu6_emit_fs_inputs */ if (msaa_info->sampleShadingEnable) key->sample_shading = true; /* We set this after we compile to NIR because we need the prim mode */ key->tessellation = IR3_TESS_NONE; } static uint32_t tu6_get_tessmode(struct tu_shader* shader) { uint32_t primitive_mode = shader->ir3_shader->nir->info.tess.primitive_mode; switch (primitive_mode) { case GL_ISOLINES: return IR3_TESS_ISOLINES; case GL_TRIANGLES: return IR3_TESS_TRIANGLES; case GL_QUADS: return IR3_TESS_QUADS; case GL_NONE: return IR3_TESS_NONE; default: unreachable("bad tessmode"); } } static uint64_t tu_upload_variant(struct tu_pipeline *pipeline, const struct ir3_shader_variant *variant) { struct tu_cs_memory memory; if (!variant) return 0; /* this expects to get enough alignment because shaders are allocated first * and sizedwords is always aligned correctly * note: an assert in tu6_emit_xs_config validates the alignment */ tu_cs_alloc(&pipeline->cs, variant->info.sizedwords, 1, &memory); memcpy(memory.map, variant->bin, sizeof(uint32_t) * variant->info.sizedwords); return memory.iova; } static VkResult tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const struct ir3_compiler *compiler = builder->device->compiler; const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = { NULL }; for (uint32_t i = 0; i < builder->create_info->stageCount; i++) { gl_shader_stage stage = vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage); stage_infos[stage] = &builder->create_info->pStages[i]; } struct ir3_shader_key key = {}; tu_pipeline_shader_key_init(&key, builder->create_info); for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_SHADER_STAGES; stage++) { const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage]; if (!stage_info && stage != MESA_SHADER_FRAGMENT) continue; struct tu_shader *shader = tu_shader_create(builder->device, stage, stage_info, builder->layout, builder->alloc); if (!shader) return VK_ERROR_OUT_OF_HOST_MEMORY; /* In SPIR-V generated from GLSL, the primitive mode is specified in the * tessellation evaluation shader, but in SPIR-V generated from HLSL, * the mode is specified in the tessellation control shader. */ if ((stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_TESS_CTRL) && key.tessellation == IR3_TESS_NONE) { key.tessellation = tu6_get_tessmode(shader); } builder->shaders[stage] = shader; } struct tu_shader *gs = builder->shaders[MESA_SHADER_GEOMETRY]; key.layer_zero = !gs || !(gs->ir3_shader->nir->info.outputs_written & VARYING_SLOT_LAYER); pipeline->tess.patch_type = key.tessellation; for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_SHADER_STAGES; stage++) { if (!builder->shaders[stage]) continue; bool created; builder->variants[stage] = ir3_shader_get_variant(builder->shaders[stage]->ir3_shader, &key, false, &created); if (!builder->variants[stage]) return VK_ERROR_OUT_OF_HOST_MEMORY; } uint32_t safe_constlens = ir3_trim_constlen(builder->variants, compiler); key.safe_constlen = true; for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_SHADER_STAGES; stage++) { if (!builder->shaders[stage]) continue; if (safe_constlens & (1 << stage)) { bool created; builder->variants[stage] = ir3_shader_get_variant(builder->shaders[stage]->ir3_shader, &key, false, &created); if (!builder->variants[stage]) return VK_ERROR_OUT_OF_HOST_MEMORY; } } const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX]; struct ir3_shader_variant *variant; if (vs->ir3_shader->stream_output.num_outputs || !ir3_has_binning_vs(&key)) { variant = builder->variants[MESA_SHADER_VERTEX]; } else { bool created; key.safe_constlen = !!(safe_constlens & (1 << MESA_SHADER_VERTEX)); variant = ir3_shader_get_variant(vs->ir3_shader, &key, true, &created); if (!variant) return VK_ERROR_OUT_OF_HOST_MEMORY; } builder->binning_variant = variant; return VK_SUCCESS; } static void tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineDynamicStateCreateInfo *dynamic_info = builder->create_info->pDynamicState; if (!dynamic_info) return; for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) { VkDynamicState state = dynamic_info->pDynamicStates[i]; switch (state) { case VK_DYNAMIC_STATE_VIEWPORT ... VK_DYNAMIC_STATE_STENCIL_REFERENCE: pipeline->dynamic_state_mask |= BIT(state); break; case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: pipeline->dynamic_state_mask |= BIT(TU_DYNAMIC_STATE_SAMPLE_LOCATIONS); break; default: assert(!"unsupported dynamic state"); break; } } } static void tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link, struct tu_shader *shader, struct ir3_shader_variant *v) { link->const_state = *ir3_const_state(v); link->constlen = v->constlen; link->push_consts = shader->push_consts; } static void tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { struct tu_cs prog_cs; tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs); tu6_emit_program(&prog_cs, builder, false); pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs); tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs); tu6_emit_program(&prog_cs, builder, true); pipeline->program.binning_state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs); VkShaderStageFlags stages = 0; for (unsigned i = 0; i < builder->create_info->stageCount; i++) { stages |= builder->create_info->pStages[i].stage; } pipeline->active_stages = stages; uint32_t desc_sets = 0; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (!builder->shaders[i]) continue; tu_pipeline_set_linkage(&pipeline->program.link[i], builder->shaders[i], builder->variants[i]); desc_sets |= builder->shaders[i]->active_desc_sets; } pipeline->active_desc_sets = desc_sets; } static void tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineVertexInputStateCreateInfo *vi_info = builder->create_info->pVertexInputState; const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX]; const struct ir3_shader_variant *bs = builder->binning_variant; struct tu_cs vi_cs; tu_cs_begin_sub_stream(&pipeline->cs, MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs); tu6_emit_vertex_input(&vi_cs, vs, vi_info, &pipeline->vi.bindings_used); pipeline->vi.state = tu_cs_end_draw_state(&pipeline->cs, &vi_cs); if (bs) { tu_cs_begin_sub_stream(&pipeline->cs, MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs); tu6_emit_vertex_input( &vi_cs, bs, vi_info, &pipeline->vi.bindings_used); pipeline->vi.binning_state = tu_cs_end_draw_state(&pipeline->cs, &vi_cs); } } static void tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineInputAssemblyStateCreateInfo *ia_info = builder->create_info->pInputAssemblyState; pipeline->ia.primtype = tu6_primtype(ia_info->topology); pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable; } static bool tu_pipeline_static_state(struct tu_pipeline *pipeline, struct tu_cs *cs, uint32_t id, uint32_t size) { assert(id < ARRAY_SIZE(pipeline->dynamic_state)); if (pipeline->dynamic_state_mask & BIT(id)) return false; pipeline->dynamic_state[id] = tu_cs_draw_state(&pipeline->cs, cs, size); return true; } static void tu_pipeline_builder_parse_tessellation(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineTessellationStateCreateInfo *tess_info = builder->create_info->pTessellationState; if (!tess_info) return; assert(pipeline->ia.primtype == DI_PT_PATCHES0); assert(tess_info->patchControlPoints <= 32); pipeline->ia.primtype += tess_info->patchControlPoints; const VkPipelineTessellationDomainOriginStateCreateInfo *domain_info = vk_find_struct_const(tess_info->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO); pipeline->tess.upper_left_domain_origin = !domain_info || domain_info->domainOrigin == VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT; const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL]; const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL]; pipeline->tess.param_stride = hs->output_size * 4; pipeline->tess.hs_bo_regid = hs->const_state->offsets.primitive_param + 1; pipeline->tess.ds_bo_regid = ds->const_state->offsets.primitive_param + 1; } static void tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pViewportState is a pointer to an instance of the * VkPipelineViewportStateCreateInfo structure, and is ignored if the * pipeline has rasterization disabled." * * We leave the relevant registers stale in that case. */ if (builder->rasterizer_discard) return; const VkPipelineViewportStateCreateInfo *vp_info = builder->create_info->pViewportState; struct tu_cs cs; if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_VIEWPORT, 18)) tu6_emit_viewport(&cs, vp_info->pViewports); if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_SCISSOR, 3)) tu6_emit_scissor(&cs, vp_info->pScissors); } static void tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { const VkPipelineRasterizationStateCreateInfo *rast_info = builder->create_info->pRasterizationState; enum a6xx_polygon_mode mode = tu6_polygon_mode(rast_info->polygonMode); struct tu_cs cs; pipeline->rast_state = tu_cs_draw_state(&pipeline->cs, &cs, 9); tu_cs_emit_regs(&cs, A6XX_GRAS_CL_CNTL( .znear_clip_disable = rast_info->depthClampEnable, .zfar_clip_disable = rast_info->depthClampEnable, .unk5 = rast_info->depthClampEnable, .zero_gb_scale_z = 1, .vp_clip_code_ignore = 1)); tu_cs_emit_regs(&cs, A6XX_VPC_POLYGON_MODE(mode)); tu_cs_emit_regs(&cs, A6XX_PC_POLYGON_MODE(.mode = mode)); /* move to hw ctx init? */ tu_cs_emit_regs(&cs, A6XX_GRAS_SU_POINT_MINMAX(.min = 1.0f / 16.0f, .max = 4092.0f), A6XX_GRAS_SU_POINT_SIZE(1.0f)); pipeline->gras_su_cntl = tu6_gras_su_cntl(rast_info, builder->samples); if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_LINE_WIDTH, 2)) { pipeline->gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(rast_info->lineWidth / 2.0f); tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = pipeline->gras_su_cntl)); } if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BIAS, 4)) { tu6_emit_depth_bias(&cs, rast_info->depthBiasConstantFactor, rast_info->depthBiasClamp, rast_info->depthBiasSlopeFactor); } } static void tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pDepthStencilState is a pointer to an instance of the * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if * the pipeline has rasterization disabled or if the subpass of the * render pass the pipeline is created against does not use a * depth/stencil attachment. * * Disable both depth and stencil tests if there is no ds attachment, * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines * only the separate stencil attachment */ static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info; const VkPipelineDepthStencilStateCreateInfo *ds_info = builder->depth_attachment_format != VK_FORMAT_UNDEFINED ? builder->create_info->pDepthStencilState : &dummy_ds_info; const VkPipelineDepthStencilStateCreateInfo *ds_info_depth = builder->depth_attachment_format != VK_FORMAT_S8_UINT ? ds_info : &dummy_ds_info; struct tu_cs cs; pipeline->ds_state = tu_cs_draw_state(&pipeline->cs, &cs, 6); /* move to hw ctx init? */ tu_cs_emit_regs(&cs, A6XX_RB_ALPHA_CONTROL()); tu6_emit_depth_control(&cs, ds_info_depth, builder->create_info->pRasterizationState); tu6_emit_stencil_control(&cs, ds_info); if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3)) { tu_cs_emit_regs(&cs, A6XX_RB_Z_BOUNDS_MIN(ds_info->minDepthBounds), A6XX_RB_Z_BOUNDS_MAX(ds_info->maxDepthBounds)); } if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2)) { tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.mask = ds_info->front.compareMask & 0xff, .bfmask = ds_info->back.compareMask & 0xff)); } if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2)) { tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.wrmask = ds_info->front.writeMask & 0xff, .bfwrmask = ds_info->back.writeMask & 0xff)); } if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2)) { tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.ref = ds_info->front.reference & 0xff, .bfref = ds_info->back.reference & 0xff)); } } static void tu_pipeline_builder_parse_multisample_and_color_blend( struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline) { /* The spec says: * * pMultisampleState is a pointer to an instance of the * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline * has rasterization disabled. * * Also, * * pColorBlendState is a pointer to an instance of the * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the * pipeline has rasterization disabled or if the subpass of the render * pass the pipeline is created against does not use any color * attachments. * * We leave the relevant registers stale when rasterization is disabled. */ if (builder->rasterizer_discard) return; static const VkPipelineColorBlendStateCreateInfo dummy_blend_info; const VkPipelineMultisampleStateCreateInfo *msaa_info = builder->create_info->pMultisampleState; const VkPipelineColorBlendStateCreateInfo *blend_info = builder->use_color_attachments ? builder->create_info->pColorBlendState : &dummy_blend_info; struct tu_cs cs; pipeline->blend_state = tu_cs_draw_state(&pipeline->cs, &cs, blend_info->attachmentCount * 3 + 4); uint32_t blend_enable_mask; tu6_emit_rb_mrt_controls(&cs, blend_info, builder->color_attachment_formats, &blend_enable_mask); tu6_emit_blend_control(&cs, blend_enable_mask, builder->use_dual_src_blend, msaa_info); assert(cs.cur == cs.end); /* validate draw state size */ if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5)) { tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4); tu_cs_emit_array(&cs, (const uint32_t *) blend_info->blendConstants, 4); } const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations = vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); const VkSampleLocationsInfoEXT *samp_loc = NULL; if (sample_locations && sample_locations->sampleLocationsEnable) samp_loc = &sample_locations->sampleLocationsInfo; if (tu_pipeline_static_state(pipeline, &cs, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, samp_loc ? 9 : 6)) { tu6_emit_sample_locations(&cs, samp_loc); } } static void tu_pipeline_finish(struct tu_pipeline *pipeline, struct tu_device *dev, const VkAllocationCallbacks *alloc) { tu_cs_finish(&pipeline->cs); } static VkResult tu_pipeline_builder_build(struct tu_pipeline_builder *builder, struct tu_pipeline **pipeline) { VkResult result; *pipeline = vk_object_zalloc(&builder->device->vk, builder->alloc, sizeof(**pipeline), VK_OBJECT_TYPE_PIPELINE); if (!*pipeline) return VK_ERROR_OUT_OF_HOST_MEMORY; (*pipeline)->layout = builder->layout; /* compile and upload shaders */ result = tu_pipeline_builder_compile_shaders(builder, *pipeline); if (result != VK_SUCCESS) { vk_object_free(&builder->device->vk, builder->alloc, *pipeline); return result; } result = tu_pipeline_allocate_cs(builder->device, *pipeline, builder, NULL); if (result != VK_SUCCESS) { vk_object_free(&builder->device->vk, builder->alloc, *pipeline); return result; } for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) builder->shader_iova[i] = tu_upload_variant(*pipeline, builder->variants[i]); builder->binning_vs_iova = tu_upload_variant(*pipeline, builder->binning_variant); tu_pipeline_builder_parse_dynamic(builder, *pipeline); tu_pipeline_builder_parse_shader_stages(builder, *pipeline); tu_pipeline_builder_parse_vertex_input(builder, *pipeline); tu_pipeline_builder_parse_input_assembly(builder, *pipeline); tu_pipeline_builder_parse_tessellation(builder, *pipeline); tu_pipeline_builder_parse_viewport(builder, *pipeline); tu_pipeline_builder_parse_rasterization(builder, *pipeline); tu_pipeline_builder_parse_depth_stencil(builder, *pipeline); tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline); tu6_emit_load_state(*pipeline, false); /* we should have reserved enough space upfront such that the CS never * grows */ assert((*pipeline)->cs.bo_count == 1); return VK_SUCCESS; } static void tu_pipeline_builder_finish(struct tu_pipeline_builder *builder) { for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { if (!builder->shaders[i]) continue; tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc); } } static void tu_pipeline_builder_init_graphics( struct tu_pipeline_builder *builder, struct tu_device *dev, struct tu_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *create_info, const VkAllocationCallbacks *alloc) { TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout); *builder = (struct tu_pipeline_builder) { .device = dev, .cache = cache, .create_info = create_info, .alloc = alloc, .layout = layout, }; builder->rasterizer_discard = create_info->pRasterizationState->rasterizerDiscardEnable; if (builder->rasterizer_discard) { builder->samples = VK_SAMPLE_COUNT_1_BIT; } else { builder->samples = create_info->pMultisampleState->rasterizationSamples; const struct tu_render_pass *pass = tu_render_pass_from_handle(create_info->renderPass); const struct tu_subpass *subpass = &pass->subpasses[create_info->subpass]; const uint32_t a = subpass->depth_stencil_attachment.attachment; builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ? pass->attachments[a].format : VK_FORMAT_UNDEFINED; assert(subpass->color_count == 0 || !create_info->pColorBlendState || subpass->color_count == create_info->pColorBlendState->attachmentCount); builder->color_attachment_count = subpass->color_count; for (uint32_t i = 0; i < subpass->color_count; i++) { const uint32_t a = subpass->color_attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; builder->color_attachment_formats[i] = pass->attachments[a].format; builder->use_color_attachments = true; builder->render_components |= 0xf << (i * 4); } if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) { builder->color_attachment_count++; builder->use_dual_src_blend = true; /* dual source blending has an extra fs output in the 2nd slot */ if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED) builder->render_components |= 0xf << 4; } } } static VkResult tu_graphics_pipeline_create(VkDevice device, VkPipelineCache pipelineCache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { TU_FROM_HANDLE(tu_device, dev, device); TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache); struct tu_pipeline_builder builder; tu_pipeline_builder_init_graphics(&builder, dev, cache, pCreateInfo, pAllocator); struct tu_pipeline *pipeline = NULL; VkResult result = tu_pipeline_builder_build(&builder, &pipeline); tu_pipeline_builder_finish(&builder); if (result == VK_SUCCESS) *pPipeline = tu_pipeline_to_handle(pipeline); else *pPipeline = VK_NULL_HANDLE; return result; } VkResult tu_CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult final_result = VK_SUCCESS; for (uint32_t i = 0; i < count; i++) { VkResult result = tu_graphics_pipeline_create(device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (result != VK_SUCCESS) final_result = result; } return final_result; } static VkResult tu_compute_pipeline_create(VkDevice device, VkPipelineCache _cache, const VkComputePipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { TU_FROM_HANDLE(tu_device, dev, device); TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout); const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage; VkResult result; struct tu_pipeline *pipeline; *pPipeline = VK_NULL_HANDLE; pipeline = vk_object_zalloc(&dev->vk, pAllocator, sizeof(*pipeline), VK_OBJECT_TYPE_PIPELINE); if (!pipeline) return VK_ERROR_OUT_OF_HOST_MEMORY; pipeline->layout = layout; struct ir3_shader_key key = {}; struct tu_shader *shader = tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator); if (!shader) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } pipeline->active_desc_sets = shader->active_desc_sets; bool created; struct ir3_shader_variant *v = ir3_shader_get_variant(shader->ir3_shader, &key, false, &created); if (!v) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE], shader, v); result = tu_pipeline_allocate_cs(dev, pipeline, NULL, v); if (result != VK_SUCCESS) goto fail; uint64_t shader_iova = tu_upload_variant(pipeline, v); for (int i = 0; i < 3; i++) pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i]; struct tu_cs prog_cs; tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs); tu6_emit_cs_config(&prog_cs, shader, v, shader_iova); pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs); tu6_emit_load_state(pipeline, true); *pPipeline = tu_pipeline_to_handle(pipeline); return VK_SUCCESS; fail: if (shader) tu_shader_destroy(dev, shader, pAllocator); vk_object_free(&dev->vk, pAllocator, pipeline); return result; } VkResult tu_CreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult final_result = VK_SUCCESS; for (uint32_t i = 0; i < count; i++) { VkResult result = tu_compute_pipeline_create(device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (result != VK_SUCCESS) final_result = result; } return final_result; } void tu_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, dev, _device); TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline); if (!_pipeline) return; tu_pipeline_finish(pipeline, dev, pAllocator); vk_object_free(&dev->vk, pAllocator, pipeline); }