/* * Copyright (C) 2015-2018 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "ir3_compiler.h" #include "ir3_context.h" #include "ir3_image.h" #include "ir3_shader.h" #include "ir3_nir.h" struct ir3_context * ir3_context_init(struct ir3_compiler *compiler, struct ir3_shader_variant *so) { struct ir3_context *ctx = rzalloc(NULL, struct ir3_context); if (compiler->gpu_id >= 400) { if (so->type == MESA_SHADER_VERTEX) { ctx->astc_srgb = so->key.vastc_srgb; } else if (so->type == MESA_SHADER_FRAGMENT) { ctx->astc_srgb = so->key.fastc_srgb; } } else { if (so->type == MESA_SHADER_VERTEX) { ctx->samples = so->key.vsamples; } else if (so->type == MESA_SHADER_FRAGMENT) { ctx->samples = so->key.fsamples; } } if (compiler->gpu_id >= 600) { ctx->funcs = &ir3_a6xx_funcs; } else if (compiler->gpu_id >= 400) { ctx->funcs = &ir3_a4xx_funcs; } ctx->compiler = compiler; ctx->so = so; ctx->def_ht = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); ctx->block_ht = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); /* TODO: maybe generate some sort of bitmask of what key * lowers vs what shader has (ie. no need to lower * texture clamp lowering if no texture sample instrs).. * although should be done further up the stack to avoid * creating duplicate variants.. */ if (ir3_key_lowers_nir(&so->key)) { nir_shader *s = nir_shader_clone(ctx, so->shader->nir); ctx->s = ir3_optimize_nir(so->shader, s, &so->key); } else { /* fast-path for shader key that lowers nothing in NIR: */ ctx->s = nir_shader_clone(ctx, so->shader->nir); } /* this needs to be the last pass run, so do this here instead of * in ir3_optimize_nir(): */ NIR_PASS_V(ctx->s, nir_lower_bool_to_int32); NIR_PASS_V(ctx->s, nir_lower_locals_to_regs); /* We want to lower nir_op_imul as late as possible, to catch also * those generated by earlier passes (e.g, nir_lower_locals_to_regs). * However, we want a final swing of a few passes to have a chance * at optimizing the result. */ bool progress = false; NIR_PASS(progress, ctx->s, ir3_nir_lower_imul); if (progress) { NIR_PASS_V(ctx->s, nir_opt_algebraic); NIR_PASS_V(ctx->s, nir_opt_copy_prop_vars); NIR_PASS_V(ctx->s, nir_opt_dead_write_vars); NIR_PASS_V(ctx->s, nir_opt_dce); NIR_PASS_V(ctx->s, nir_opt_constant_folding); } NIR_PASS_V(ctx->s, nir_convert_from_ssa, true); if (ir3_shader_debug & IR3_DBG_DISASM) { DBG("dump nir%dv%d: type=%d, k={cts=%u,hp=%u}", so->shader->id, so->id, so->type, so->key.color_two_side, so->key.half_precision); nir_print_shader(ctx->s, stdout); } if (shader_debug_enabled(so->type)) { fprintf(stderr, "NIR (final form) for %s shader:\n", _mesa_shader_stage_to_string(so->type)); nir_print_shader(ctx->s, stderr); } ir3_ibo_mapping_init(&so->image_mapping, ctx->s->info.num_textures); return ctx; } void ir3_context_free(struct ir3_context *ctx) { ralloc_free(ctx); } /* * Misc helpers */ /* allocate a n element value array (to be populated by caller) and * insert in def_ht */ struct ir3_instruction ** ir3_get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n) { struct ir3_instruction **value = ralloc_array(ctx->def_ht, struct ir3_instruction *, n); _mesa_hash_table_insert(ctx->def_ht, dst, value); return value; } struct ir3_instruction ** ir3_get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n) { struct ir3_instruction **value; if (dst->is_ssa) { value = ir3_get_dst_ssa(ctx, &dst->ssa, n); } else { value = ralloc_array(ctx, struct ir3_instruction *, n); } /* NOTE: in non-ssa case, we don't really need to store last_dst * but this helps us catch cases where put_dst() call is forgotten */ compile_assert(ctx, !ctx->last_dst); ctx->last_dst = value; ctx->last_dst_n = n; return value; } struct ir3_instruction * const * ir3_get_src(struct ir3_context *ctx, nir_src *src) { if (src->is_ssa) { struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->def_ht, src->ssa); compile_assert(ctx, entry); return entry->data; } else { nir_register *reg = src->reg.reg; struct ir3_array *arr = ir3_get_array(ctx, reg); unsigned num_components = arr->r->num_components; struct ir3_instruction *addr = NULL; struct ir3_instruction **value = ralloc_array(ctx, struct ir3_instruction *, num_components); if (src->reg.indirect) addr = ir3_get_addr(ctx, ir3_get_src(ctx, src->reg.indirect)[0], reg->num_components); for (unsigned i = 0; i < num_components; i++) { unsigned n = src->reg.base_offset * reg->num_components + i; compile_assert(ctx, n < arr->length); value[i] = ir3_create_array_load(ctx, arr, n, addr, reg->bit_size); } return value; } } void ir3_put_dst(struct ir3_context *ctx, nir_dest *dst) { unsigned bit_size = nir_dest_bit_size(*dst); /* add extra mov if dst value is HIGH reg.. in some cases not all * instructions can read from HIGH regs, in cases where they can * ir3_cp will clean up the extra mov: */ for (unsigned i = 0; i < ctx->last_dst_n; i++) { if (!ctx->last_dst[i]) continue; if (ctx->last_dst[i]->regs[0]->flags & IR3_REG_HIGH) { ctx->last_dst[i] = ir3_MOV(ctx->block, ctx->last_dst[i], TYPE_U32); } } if (bit_size < 32) { for (unsigned i = 0; i < ctx->last_dst_n; i++) { struct ir3_instruction *dst = ctx->last_dst[i]; dst->regs[0]->flags |= IR3_REG_HALF; if (ctx->last_dst[i]->opc == OPC_META_FO) dst->regs[1]->instr->regs[0]->flags |= IR3_REG_HALF; } } if (!dst->is_ssa) { nir_register *reg = dst->reg.reg; struct ir3_array *arr = ir3_get_array(ctx, reg); unsigned num_components = ctx->last_dst_n; struct ir3_instruction *addr = NULL; if (dst->reg.indirect) addr = ir3_get_addr(ctx, ir3_get_src(ctx, dst->reg.indirect)[0], reg->num_components); for (unsigned i = 0; i < num_components; i++) { unsigned n = dst->reg.base_offset * reg->num_components + i; compile_assert(ctx, n < arr->length); if (!ctx->last_dst[i]) continue; ir3_create_array_store(ctx, arr, n, ctx->last_dst[i], addr); } ralloc_free(ctx->last_dst); } ctx->last_dst = NULL; ctx->last_dst_n = 0; } struct ir3_instruction * ir3_create_collect(struct ir3_context *ctx, struct ir3_instruction *const *arr, unsigned arrsz) { struct ir3_block *block = ctx->block; struct ir3_instruction *collect; if (arrsz == 0) return NULL; unsigned flags = arr[0]->regs[0]->flags & IR3_REG_HALF; collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz); ir3_reg_create(collect, 0, flags); /* dst */ for (unsigned i = 0; i < arrsz; i++) { struct ir3_instruction *elem = arr[i]; /* Since arrays are pre-colored in RA, we can't assume that * things will end up in the right place. (Ie. if a collect * joins elements from two different arrays.) So insert an * extra mov. * * We could possibly skip this if all the collected elements * are contiguous elements in a single array.. not sure how * likely that is to happen. * * Fixes a problem with glamor shaders, that in effect do * something like: * * if (foo) * texcoord = .. * else * texcoord = .. * color = texture2D(tex, texcoord); * * In this case, texcoord will end up as nir registers (which * translate to ir3 array's of length 1. And we can't assume * the two (or more) arrays will get allocated in consecutive * scalar registers. * */ if (elem->regs[0]->flags & IR3_REG_ARRAY) { type_t type = (flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32; elem = ir3_MOV(block, elem, type); } compile_assert(ctx, (elem->regs[0]->flags & IR3_REG_HALF) == flags); ir3_reg_create(collect, 0, IR3_REG_SSA | flags)->instr = elem; } collect->regs[0]->wrmask = MASK(arrsz); return collect; } /* helper for instructions that produce multiple consecutive scalar * outputs which need to have a split/fanout meta instruction inserted */ void ir3_split_dest(struct ir3_block *block, struct ir3_instruction **dst, struct ir3_instruction *src, unsigned base, unsigned n) { struct ir3_instruction *prev = NULL; if ((n == 1) && (src->regs[0]->wrmask == 0x1)) { dst[0] = src; return; } unsigned flags = src->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH); for (int i = 0, j = 0; i < n; i++) { struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO); ir3_reg_create(split, 0, IR3_REG_SSA | flags); ir3_reg_create(split, 0, IR3_REG_SSA | flags)->instr = src; split->fo.off = i + base; if (prev) { split->cp.left = prev; split->cp.left_cnt++; prev->cp.right = split; prev->cp.right_cnt++; } prev = split; if (src->regs[0]->wrmask & (1 << (i + base))) dst[j++] = split; } } NORETURN void ir3_context_error(struct ir3_context *ctx, const char *format, ...) { struct hash_table *errors = NULL; va_list ap; va_start(ap, format); if (ctx->cur_instr) { errors = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); char *msg = ralloc_vasprintf(errors, format, ap); _mesa_hash_table_insert(errors, ctx->cur_instr, msg); } else { _debug_vprintf(format, ap); } va_end(ap); nir_print_shader_annotated(ctx->s, stdout, errors); ralloc_free(errors); ctx->error = true; unreachable(""); } static struct ir3_instruction * create_addr(struct ir3_block *block, struct ir3_instruction *src, int align) { struct ir3_instruction *instr, *immed; /* TODO in at least some cases, the backend could probably be * made clever enough to propagate IR3_REG_HALF.. */ instr = ir3_COV(block, src, TYPE_U32, TYPE_S16); instr->regs[0]->flags |= IR3_REG_HALF; switch(align){ case 1: /* src *= 1: */ break; case 2: /* src *= 2 => src <<= 1: */ immed = create_immed(block, 1); immed->regs[0]->flags |= IR3_REG_HALF; instr = ir3_SHL_B(block, instr, 0, immed, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; break; case 3: /* src *= 3: */ immed = create_immed(block, 3); immed->regs[0]->flags |= IR3_REG_HALF; instr = ir3_MULL_U(block, instr, 0, immed, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; break; case 4: /* src *= 4 => src <<= 2: */ immed = create_immed(block, 2); immed->regs[0]->flags |= IR3_REG_HALF; instr = ir3_SHL_B(block, instr, 0, immed, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; break; default: unreachable("bad align"); return NULL; } instr = ir3_MOV(block, instr, TYPE_S16); instr->regs[0]->num = regid(REG_A0, 0); instr->regs[0]->flags |= IR3_REG_HALF; instr->regs[1]->flags |= IR3_REG_HALF; return instr; } /* caches addr values to avoid generating multiple cov/shl/mova * sequences for each use of a given NIR level src as address */ struct ir3_instruction * ir3_get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align) { struct ir3_instruction *addr; unsigned idx = align - 1; compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht)); if (!ctx->addr_ht[idx]) { ctx->addr_ht[idx] = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); } else { struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->addr_ht[idx], src); if (entry) return entry->data; } addr = create_addr(ctx->block, src, align); _mesa_hash_table_insert(ctx->addr_ht[idx], src, addr); return addr; } struct ir3_instruction * ir3_get_predicate(struct ir3_context *ctx, struct ir3_instruction *src) { struct ir3_block *b = ctx->block; struct ir3_instruction *cond; /* NOTE: only cmps.*.* can write p0.x: */ cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0); cond->cat2.condition = IR3_COND_NE; /* condition always goes in predicate register: */ cond->regs[0]->num = regid(REG_P0, 0); return cond; } /* * Array helpers */ void ir3_declare_array(struct ir3_context *ctx, nir_register *reg) { struct ir3_array *arr = rzalloc(ctx, struct ir3_array); arr->id = ++ctx->num_arrays; /* NOTE: sometimes we get non array regs, for example for arrays of * length 1. See fs-const-array-of-struct-of-array.shader_test. So * treat a non-array as if it was an array of length 1. * * It would be nice if there was a nir pass to convert arrays of * length 1 to ssa. */ arr->length = reg->num_components * MAX2(1, reg->num_array_elems); compile_assert(ctx, arr->length > 0); arr->r = reg; list_addtail(&arr->node, &ctx->ir->array_list); } struct ir3_array * ir3_get_array(struct ir3_context *ctx, nir_register *reg) { list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) { if (arr->r == reg) return arr; } ir3_context_error(ctx, "bogus reg: %s\n", reg->name); return NULL; } /* relative (indirect) if address!=NULL */ struct ir3_instruction * ir3_create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n, struct ir3_instruction *address, unsigned bitsize) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *src; unsigned flags = 0; mov = ir3_instr_create(block, OPC_MOV); if (bitsize < 32) { mov->cat1.src_type = TYPE_U16; mov->cat1.dst_type = TYPE_U16; flags |= IR3_REG_HALF; } else { mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; } mov->barrier_class = IR3_BARRIER_ARRAY_R; mov->barrier_conflict = IR3_BARRIER_ARRAY_W; ir3_reg_create(mov, 0, flags); src = ir3_reg_create(mov, 0, IR3_REG_ARRAY | COND(address, IR3_REG_RELATIV) | flags); src->instr = arr->last_write; src->size = arr->length; src->array.id = arr->id; src->array.offset = n; if (address) ir3_instr_set_address(mov, address); return mov; } /* relative (indirect) if address!=NULL */ void ir3_create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n, struct ir3_instruction *src, struct ir3_instruction *address) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *dst; /* if not relative store, don't create an extra mov, since that * ends up being difficult for cp to remove. */ if (!address) { dst = src->regs[0]; src->barrier_class |= IR3_BARRIER_ARRAY_W; src->barrier_conflict |= IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W; dst->flags |= IR3_REG_ARRAY; dst->instr = arr->last_write; dst->size = arr->length; dst->array.id = arr->id; dst->array.offset = n; arr->last_write = src; array_insert(block, block->keeps, src); return; } mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; mov->barrier_class = IR3_BARRIER_ARRAY_W; mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W; dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY | COND(address, IR3_REG_RELATIV)); dst->instr = arr->last_write; dst->size = arr->length; dst->array.id = arr->id; dst->array.offset = n; ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src; if (address) ir3_instr_set_address(mov, address); arr->last_write = mov; /* the array store may only matter to something in an earlier * block (ie. loops), but since arrays are not in SSA, depth * pass won't know this.. so keep all array stores: */ array_insert(block, block->keeps, mov); }