/* * Copyright (C) 2015 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_math.h" #include "ir3_compiler.h" #include "ir3_image.h" #include "ir3_shader.h" #include "ir3_nir.h" #include "instr-a3xx.h" #include "ir3.h" #include "ir3_context.h" static struct ir3_instruction * create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n, struct ir3_instruction *address, struct ir3_instruction *collect) { struct ir3_block *block = ctx->block; struct ir3_instruction *mov; struct ir3_register *src; mov = ir3_instr_create(block, OPC_MOV); mov->cat1.src_type = TYPE_U32; mov->cat1.dst_type = TYPE_U32; __ssa_dst(mov); src = __ssa_src(mov, collect, IR3_REG_RELATIV); src->size = arrsz; src->array.offset = n; ir3_instr_set_address(mov, address); return mov; } static struct ir3_instruction * create_input(struct ir3_context *ctx, unsigned compmask) { struct ir3_instruction *in; in = ir3_instr_create(ctx->in_block, OPC_META_INPUT); in->input.sysval = ~0; __ssa_dst(in)->wrmask = compmask; array_insert(ctx->ir, ctx->ir->inputs, in); return in; } static struct ir3_instruction * create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n) { struct ir3_block *block = ctx->block; struct ir3_instruction *instr; /* packed inloc is fixed up later: */ struct ir3_instruction *inloc = create_immed(block, n); if (use_ldlv) { instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0); instr->cat6.type = TYPE_U32; instr->cat6.iim_val = 1; } else { instr = ir3_BARY_F(block, inloc, 0, ctx->ij_pixel, 0); instr->regs[2]->wrmask = 0x3; } return instr; } static struct ir3_instruction * create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp) { /* first four vec4 sysval's reserved for UBOs: */ /* NOTE: dp is in scalar, but there can be >4 dp components: */ struct ir3_const_state *const_state = &ctx->so->shader->const_state; unsigned n = const_state->offsets.driver_param; unsigned r = regid(n + dp / 4, dp % 4); return create_uniform(ctx->block, r); } /* * Adreno uses uint rather than having dedicated bool type, * which (potentially) requires some conversion, in particular * when using output of an bool instr to int input, or visa * versa. * * | Adreno | NIR | * -------+---------+-------+- * true | 1 | ~0 | * false | 0 | 0 | * * To convert from an adreno bool (uint) to nir, use: * * absneg.s dst, (neg)src * * To convert back in the other direction: * * absneg.s dst, (abs)arc * * The CP step can clean up the absneg.s that cancel each other * out, and with a slight bit of extra cleverness (to recognize * the instructions which produce either a 0 or 1) can eliminate * the absneg.s's completely when an instruction that wants * 0/1 consumes the result. For example, when a nir 'bcsel' * consumes the result of 'feq'. So we should be able to get by * without a boolean resolve step, and without incuring any * extra penalty in instruction count. */ /* NIR bool -> native (adreno): */ static struct ir3_instruction * ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr) { return ir3_ABSNEG_S(block, instr, IR3_REG_SABS); } /* native (adreno) -> NIR bool: */ static struct ir3_instruction * ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr) { return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG); } /* * alu/sfu instructions: */ static struct ir3_instruction * create_cov(struct ir3_context *ctx, struct ir3_instruction *src, unsigned src_bitsize, nir_op op) { type_t src_type, dst_type; switch (op) { case nir_op_f2f32: case nir_op_f2f16_rtne: case nir_op_f2f16_rtz: case nir_op_f2f16: case nir_op_f2i32: case nir_op_f2i16: case nir_op_f2i8: case nir_op_f2u32: case nir_op_f2u16: case nir_op_f2u8: switch (src_bitsize) { case 32: src_type = TYPE_F32; break; case 16: src_type = TYPE_F16; break; default: ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize); } break; case nir_op_i2f32: case nir_op_i2f16: case nir_op_i2i32: case nir_op_i2i16: case nir_op_i2i8: switch (src_bitsize) { case 32: src_type = TYPE_S32; break; case 16: src_type = TYPE_S16; break; case 8: src_type = TYPE_S8; break; default: ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize); } break; case nir_op_u2f32: case nir_op_u2f16: case nir_op_u2u32: case nir_op_u2u16: case nir_op_u2u8: switch (src_bitsize) { case 32: src_type = TYPE_U32; break; case 16: src_type = TYPE_U16; break; case 8: src_type = TYPE_U8; break; default: ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize); } break; default: ir3_context_error(ctx, "invalid conversion op: %u", op); } switch (op) { case nir_op_f2f32: case nir_op_i2f32: case nir_op_u2f32: dst_type = TYPE_F32; break; case nir_op_f2f16_rtne: case nir_op_f2f16_rtz: case nir_op_f2f16: /* TODO how to handle rounding mode? */ case nir_op_i2f16: case nir_op_u2f16: dst_type = TYPE_F16; break; case nir_op_f2i32: case nir_op_i2i32: dst_type = TYPE_S32; break; case nir_op_f2i16: case nir_op_i2i16: dst_type = TYPE_S16; break; case nir_op_f2i8: case nir_op_i2i8: dst_type = TYPE_S8; break; case nir_op_f2u32: case nir_op_u2u32: dst_type = TYPE_U32; break; case nir_op_f2u16: case nir_op_u2u16: dst_type = TYPE_U16; break; case nir_op_f2u8: case nir_op_u2u8: dst_type = TYPE_U8; break; default: ir3_context_error(ctx, "invalid conversion op: %u", op); } return ir3_COV(ctx->block, src, src_type, dst_type); } static void emit_alu(struct ir3_context *ctx, nir_alu_instr *alu) { const nir_op_info *info = &nir_op_infos[alu->op]; struct ir3_instruction **dst, *src[info->num_inputs]; unsigned bs[info->num_inputs]; /* bit size */ struct ir3_block *b = ctx->block; unsigned dst_sz, wrmask; type_t dst_type = nir_dest_bit_size(alu->dest.dest) < 32 ? TYPE_U16 : TYPE_U32; if (alu->dest.dest.is_ssa) { dst_sz = alu->dest.dest.ssa.num_components; wrmask = (1 << dst_sz) - 1; } else { dst_sz = alu->dest.dest.reg.reg->num_components; wrmask = alu->dest.write_mask; } dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz); /* Vectors are special in that they have non-scalarized writemasks, * and just take the first swizzle channel for each argument in * order into each writemask channel. */ if ((alu->op == nir_op_vec2) || (alu->op == nir_op_vec3) || (alu->op == nir_op_vec4)) { for (int i = 0; i < info->num_inputs; i++) { nir_alu_src *asrc = &alu->src[i]; compile_assert(ctx, !asrc->abs); compile_assert(ctx, !asrc->negate); src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]]; if (!src[i]) src[i] = create_immed_typed(ctx->block, 0, dst_type); dst[i] = ir3_MOV(b, src[i], dst_type); } ir3_put_dst(ctx, &alu->dest.dest); return; } /* We also get mov's with more than one component for mov's so * handle those specially: */ if (alu->op == nir_op_mov) { nir_alu_src *asrc = &alu->src[0]; struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src); for (unsigned i = 0; i < dst_sz; i++) { if (wrmask & (1 << i)) { dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type); } else { dst[i] = NULL; } } ir3_put_dst(ctx, &alu->dest.dest); return; } /* General case: We can just grab the one used channel per src. */ for (int i = 0; i < info->num_inputs; i++) { unsigned chan = ffs(alu->dest.write_mask) - 1; nir_alu_src *asrc = &alu->src[i]; compile_assert(ctx, !asrc->abs); compile_assert(ctx, !asrc->negate); src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]]; bs[i] = nir_src_bit_size(asrc->src); compile_assert(ctx, src[i]); } switch (alu->op) { case nir_op_f2f32: case nir_op_f2f16_rtne: case nir_op_f2f16_rtz: case nir_op_f2f16: case nir_op_f2i32: case nir_op_f2i16: case nir_op_f2i8: case nir_op_f2u32: case nir_op_f2u16: case nir_op_f2u8: case nir_op_i2f32: case nir_op_i2f16: case nir_op_i2i32: case nir_op_i2i16: case nir_op_i2i8: case nir_op_u2f32: case nir_op_u2f16: case nir_op_u2u32: case nir_op_u2u16: case nir_op_u2u8: dst[0] = create_cov(ctx, src[0], bs[0], alu->op); break; case nir_op_fquantize2f16: dst[0] = create_cov(ctx, create_cov(ctx, src[0], 32, nir_op_f2f16), 16, nir_op_f2f32); break; case nir_op_f2b16: { struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_F16); dst[0] = ir3_CMPS_F(b, src[0], 0, zero, 0); dst[0]->cat2.condition = IR3_COND_NE; break; } case nir_op_f2b32: dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0); dst[0]->cat2.condition = IR3_COND_NE; break; case nir_op_b2f16: dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F16); break; case nir_op_b2f32: dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32); break; case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: dst[0] = ir3_b2n(b, src[0]); break; case nir_op_i2b16: { struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_S16); dst[0] = ir3_CMPS_S(b, src[0], 0, zero, 0); dst[0]->cat2.condition = IR3_COND_NE; break; } case nir_op_i2b32: dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0); dst[0]->cat2.condition = IR3_COND_NE; break; case nir_op_fneg: dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG); break; case nir_op_fabs: dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS); break; case nir_op_fmax: dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0); break; case nir_op_fmin: dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0); break; case nir_op_fsat: /* if there is just a single use of the src, and it supports * (sat) bit, we can just fold the (sat) flag back to the * src instruction and create a mov. This is easier for cp * to eliminate. * * TODO probably opc_cat==4 is ok too */ if (alu->src[0].src.is_ssa && (list_length(&alu->src[0].src.ssa->uses) == 1) && ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) { src[0]->flags |= IR3_INSTR_SAT; dst[0] = ir3_MOV(b, src[0], dst_type); } else { /* otherwise generate a max.f that saturates.. blob does * similar (generating a cat2 mov using max.f) */ dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0); dst[0]->flags |= IR3_INSTR_SAT; } break; case nir_op_fmul: dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0); break; case nir_op_fadd: dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0); break; case nir_op_fsub: dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG); break; case nir_op_ffma: dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0); break; case nir_op_fddx: case nir_op_fddx_coarse: dst[0] = ir3_DSX(b, src[0], 0); dst[0]->cat5.type = TYPE_F32; break; case nir_op_fddy: case nir_op_fddy_coarse: dst[0] = ir3_DSY(b, src[0], 0); dst[0]->cat5.type = TYPE_F32; break; break; case nir_op_flt16: case nir_op_flt32: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; break; case nir_op_fge16: case nir_op_fge32: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; break; case nir_op_feq16: case nir_op_feq32: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_EQ; break; case nir_op_fne16: case nir_op_fne32: dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_NE; break; case nir_op_fceil: dst[0] = ir3_CEIL_F(b, src[0], 0); break; case nir_op_ffloor: dst[0] = ir3_FLOOR_F(b, src[0], 0); break; case nir_op_ftrunc: dst[0] = ir3_TRUNC_F(b, src[0], 0); break; case nir_op_fround_even: dst[0] = ir3_RNDNE_F(b, src[0], 0); break; case nir_op_fsign: dst[0] = ir3_SIGN_F(b, src[0], 0); break; case nir_op_fsin: dst[0] = ir3_SIN(b, src[0], 0); break; case nir_op_fcos: dst[0] = ir3_COS(b, src[0], 0); break; case nir_op_frsq: dst[0] = ir3_RSQ(b, src[0], 0); break; case nir_op_frcp: dst[0] = ir3_RCP(b, src[0], 0); break; case nir_op_flog2: dst[0] = ir3_LOG2(b, src[0], 0); break; case nir_op_fexp2: dst[0] = ir3_EXP2(b, src[0], 0); break; case nir_op_fsqrt: dst[0] = ir3_SQRT(b, src[0], 0); break; case nir_op_iabs: dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS); break; case nir_op_iadd: dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0); break; case nir_op_iand: dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0); break; case nir_op_imax: dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0); break; case nir_op_umax: dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0); break; case nir_op_imin: dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0); break; case nir_op_umin: dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0); break; case nir_op_umul_low: dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0); break; case nir_op_imadsh_mix16: dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0); break; case nir_op_imad24_ir3: dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0); break; case nir_op_imul24: dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0); break; case nir_op_ineg: dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG); break; case nir_op_inot: dst[0] = ir3_NOT_B(b, src[0], 0); break; case nir_op_ior: dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0); break; case nir_op_ishl: dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0); break; case nir_op_ishr: dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0); break; case nir_op_isub: dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0); break; case nir_op_ixor: dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0); break; case nir_op_ushr: dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0); break; case nir_op_ilt16: case nir_op_ilt32: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; break; case nir_op_ige16: case nir_op_ige32: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; break; case nir_op_ieq16: case nir_op_ieq32: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_EQ; break; case nir_op_ine16: case nir_op_ine32: dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_NE; break; case nir_op_ult16: case nir_op_ult32: dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_LT; break; case nir_op_uge16: case nir_op_uge32: dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0); dst[0]->cat2.condition = IR3_COND_GE; break; case nir_op_b16csel: case nir_op_b32csel: { struct ir3_instruction *cond = ir3_b2n(b, src[0]); if ((src[0]->regs[0]->flags & IR3_REG_HALF)) cond->regs[0]->flags |= IR3_REG_HALF; compile_assert(ctx, bs[1] == bs[2]); /* Make sure the boolean condition has the same bit size as the other * two arguments, adding a conversion if necessary. */ if (bs[1] < bs[0]) cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16); else if (bs[1] > bs[0]) cond = ir3_COV(b, cond, TYPE_U16, TYPE_U32); if (bs[1] > 16) dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0); else dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0); break; } case nir_op_bit_count: { // TODO, we need to do this 16b at a time on a5xx+a6xx.. need to // double check on earlier gen's. Once half-precision support is // in place, this should probably move to a NIR lowering pass: struct ir3_instruction *hi, *lo; hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0), TYPE_U32, TYPE_U16); lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16); hi = ir3_CBITS_B(b, hi, 0); lo = ir3_CBITS_B(b, lo, 0); // TODO maybe the builders should default to making dst half-precision // if the src's were half precision, to make this less awkward.. otoh // we should probably just do this lowering in NIR. hi->regs[0]->flags |= IR3_REG_HALF; lo->regs[0]->flags |= IR3_REG_HALF; dst[0] = ir3_ADD_S(b, hi, 0, lo, 0); dst[0]->regs[0]->flags |= IR3_REG_HALF; dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32); break; } case nir_op_ifind_msb: { struct ir3_instruction *cmp; dst[0] = ir3_CLZ_S(b, src[0], 0); cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0); cmp->cat2.condition = IR3_COND_GE; dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0, cmp, 0, dst[0], 0); break; } case nir_op_ufind_msb: dst[0] = ir3_CLZ_B(b, src[0], 0); dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0, src[0], 0, dst[0], 0); break; case nir_op_find_lsb: dst[0] = ir3_BFREV_B(b, src[0], 0); dst[0] = ir3_CLZ_B(b, dst[0], 0); break; case nir_op_bitfield_reverse: dst[0] = ir3_BFREV_B(b, src[0], 0); break; default: ir3_context_error(ctx, "Unhandled ALU op: %s\n", nir_op_infos[alu->op].name); break; } if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) { assert(dst_sz == 1); if (nir_dest_bit_size(alu->dest.dest) < 32) dst[0]->regs[0]->flags |= IR3_REG_HALF; dst[0] = ir3_n2b(b, dst[0]); } if (nir_dest_bit_size(alu->dest.dest) < 32) { for (unsigned i = 0; i < dst_sz; i++) { dst[i]->regs[0]->flags |= IR3_REG_HALF; } } ir3_put_dst(ctx, &alu->dest.dest); } /* handles direct/indirect UBO reads: */ static void emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1; /* UBO addresses are the first driver params, but subtract 2 here to * account for nir_lower_uniforms_to_ubo rebasing the UBOs such that UBO 0 * is the uniforms: */ struct ir3_const_state *const_state = &ctx->so->shader->const_state; unsigned ubo = regid(const_state->offsets.ubo, 0) - 2; const unsigned ptrsz = ir3_pointer_size(ctx->compiler); int off = 0; /* First src is ubo index, which could either be an immed or not: */ src0 = ir3_get_src(ctx, &intr->src[0])[0]; if (is_same_type_mov(src0) && (src0->regs[1]->flags & IR3_REG_IMMED)) { base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz)); base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1); } else { base_lo = create_uniform_indirect(b, ubo, ir3_get_addr(ctx, src0, ptrsz)); base_hi = create_uniform_indirect(b, ubo + 1, ir3_get_addr(ctx, src0, ptrsz)); /* NOTE: since relative addressing is used, make sure constlen is * at least big enough to cover all the UBO addresses, since the * assembler won't know what the max address reg is. */ ctx->so->constlen = MAX2(ctx->so->constlen, const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz)); } /* note: on 32bit gpu's base_hi is ignored and DCE'd */ addr = base_lo; if (nir_src_is_const(intr->src[1])) { off += nir_src_as_uint(intr->src[1]); } else { /* For load_ubo_indirect, second src is indirect offset: */ src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* and add offset to addr: */ addr = ir3_ADD_S(b, addr, 0, src1, 0); } /* if offset is to large to encode in the ldg, split it out: */ if ((off + (intr->num_components * 4)) > 1024) { /* split out the minimal amount to improve the odds that * cp can fit the immediate in the add.s instruction: */ unsigned off2 = off + (intr->num_components * 4) - 1024; addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0); off -= off2; } if (ptrsz == 2) { struct ir3_instruction *carry; /* handle 32b rollover, ie: * if (addr < base_lo) * base_hi++ */ carry = ir3_CMPS_U(b, addr, 0, base_lo, 0); carry->cat2.condition = IR3_COND_LT; base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0); addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2); } for (int i = 0; i < intr->num_components; i++) { struct ir3_instruction *load = ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */ create_immed(b, off + i * 4), 0); load->cat6.type = TYPE_U32; dst[i] = load; } } /* src[] = { block_index } */ static void emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { /* SSBO size stored as a const starting at ssbo_sizes: */ struct ir3_const_state *const_state = &ctx->so->shader->const_state; unsigned blk_idx = nir_src_as_uint(intr->src[0]); unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) + const_state->ssbo_size.off[blk_idx]; debug_assert(const_state->ssbo_size.mask & (1 << blk_idx)); dst[0] = create_uniform(ctx->block, idx); } /* src[] = { offset }. const_index[] = { base } */ static void emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; struct ir3_instruction *ldl, *offset; unsigned base; offset = ir3_get_src(ctx, &intr->src[0])[0]; base = nir_intrinsic_base(intr); ldl = ir3_LDL(b, offset, 0, create_immed(b, intr->num_components), 0, create_immed(b, base), 0); ldl->cat6.type = utype_dst(intr->dest); ldl->regs[0]->wrmask = MASK(intr->num_components); ldl->barrier_class = IR3_BARRIER_SHARED_R; ldl->barrier_conflict = IR3_BARRIER_SHARED_W; ir3_split_dest(b, dst, ldl, 0, intr->num_components); } /* src[] = { value, offset }. const_index[] = { base, write_mask } */ static void emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *stl, *offset; struct ir3_instruction * const *value; unsigned base, wrmask; value = ir3_get_src(ctx, &intr->src[0]); offset = ir3_get_src(ctx, &intr->src[1])[0]; base = nir_intrinsic_base(intr); wrmask = nir_intrinsic_write_mask(intr); /* Combine groups of consecutive enabled channels in one write * message. We use ffs to find the first enabled channel and then ffs on * the bit-inverse, down-shifted writemask to determine the length of * the block of enabled bits. * * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic()) */ while (wrmask) { unsigned first_component = ffs(wrmask) - 1; unsigned length = ffs(~(wrmask >> first_component)) - 1; stl = ir3_STL(b, offset, 0, ir3_create_collect(ctx, &value[first_component], length), 0, create_immed(b, length), 0); stl->cat6.dst_offset = first_component + base; stl->cat6.type = utype_src(intr->src[0]); stl->barrier_class = IR3_BARRIER_SHARED_W; stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W; array_insert(b, b->keeps, stl); /* Clear the bits in the writemask that we just wrote, then try * again to see if more channels are left. */ wrmask &= (15 << (first_component + length)); } } /* src[] = { offset }. const_index[] = { base } */ static void emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; struct ir3_instruction *load, *offset; unsigned base; offset = ir3_get_src(ctx, &intr->src[0])[0]; base = nir_intrinsic_base(intr); load = ir3_LDLW(b, offset, 0, create_immed(b, intr->num_components), 0, create_immed(b, base), 0); load->cat6.type = utype_dst(intr->dest); load->regs[0]->wrmask = MASK(intr->num_components); load->barrier_class = IR3_BARRIER_SHARED_R; load->barrier_conflict = IR3_BARRIER_SHARED_W; ir3_split_dest(b, dst, load, 0, intr->num_components); } /* src[] = { value, offset }. const_index[] = { base, write_mask } */ static void emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *store, *offset; struct ir3_instruction * const *value; unsigned base, wrmask; value = ir3_get_src(ctx, &intr->src[0]); offset = ir3_get_src(ctx, &intr->src[1])[0]; base = nir_intrinsic_base(intr); wrmask = nir_intrinsic_write_mask(intr); /* Combine groups of consecutive enabled channels in one write * message. We use ffs to find the first enabled channel and then ffs on * the bit-inverse, down-shifted writemask to determine the length of * the block of enabled bits. * * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic()) */ while (wrmask) { unsigned first_component = ffs(wrmask) - 1; unsigned length = ffs(~(wrmask >> first_component)) - 1; store = ir3_STLW(b, offset, 0, ir3_create_collect(ctx, &value[first_component], length), 0, create_immed(b, length), 0); store->cat6.dst_offset = first_component + base; store->cat6.type = utype_src(intr->src[0]); store->barrier_class = IR3_BARRIER_SHARED_W; store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W; array_insert(b, b->keeps, store); /* Clear the bits in the writemask that we just wrote, then try * again to see if more channels are left. */ wrmask &= (15 << (first_component + length)); } } /* * CS shared variable atomic intrinsics * * All of the shared variable atomic memory operations read a value from * memory, compute a new value using one of the operations below, write the * new value to memory, and return the original value read. * * All operations take 2 sources except CompSwap that takes 3. These * sources represent: * * 0: The offset into the shared variable storage region that the atomic * operation will operate on. * 1: The data parameter to the atomic function (i.e. the value to add * in shared_atomic_add, etc). * 2: For CompSwap only: the second data parameter. */ static struct ir3_instruction * emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *atomic, *src0, *src1; type_t type = TYPE_U32; src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */ src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */ switch (intr->intrinsic) { case nir_intrinsic_shared_atomic_add: atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_imin: atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0); type = TYPE_S32; break; case nir_intrinsic_shared_atomic_umin: atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_imax: atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0); type = TYPE_S32; break; case nir_intrinsic_shared_atomic_umax: atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_and: atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_or: atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_xor: atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_exchange: atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0); break; case nir_intrinsic_shared_atomic_comp_swap: /* for cmpxchg, src1 is [ui]vec2(data, compare): */ src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ ir3_get_src(ctx, &intr->src[2])[0], src1, }, 2); atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0); break; default: unreachable("boo"); } atomic->cat6.iim_val = 1; atomic->cat6.d = 1; atomic->cat6.type = type; atomic->barrier_class = IR3_BARRIER_SHARED_W; atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W; /* even if nothing consume the result, we can't DCE the instruction: */ array_insert(b, b->keeps, atomic); return atomic; } /* TODO handle actual indirect/dynamic case.. which is going to be weird * to handle with the image_mapping table.. */ static struct ir3_instruction * get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr) { unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0])); unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot); struct ir3_instruction *texture, *sampler; texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16); sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16); return ir3_create_collect(ctx, (struct ir3_instruction*[]){ sampler, texture, }, 2); } /* src[] = { deref, coord, sample_index }. const_index[] = {} */ static void emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; const nir_variable *var = nir_intrinsic_get_var(intr, 0); struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr); struct ir3_instruction *sam; struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]); struct ir3_instruction *coords[4]; unsigned flags, ncoords = ir3_get_image_coords(var, &flags); type_t type = ir3_get_image_type(var); /* hmm, this seems a bit odd, but it is what blob does and (at least * a5xx) just faults on bogus addresses otherwise: */ if (flags & IR3_INSTR_3D) { flags &= ~IR3_INSTR_3D; flags |= IR3_INSTR_A; } for (unsigned i = 0; i < ncoords; i++) coords[i] = src0[i]; if (ncoords == 1) coords[ncoords++] = create_immed(b, 0); sam = ir3_SAM(b, OPC_ISAM, type, 0b1111, flags, samp_tex, ir3_create_collect(ctx, coords, ncoords), NULL); sam->barrier_class = IR3_BARRIER_IMAGE_R; sam->barrier_conflict = IR3_BARRIER_IMAGE_W; ir3_split_dest(b, dst, sam, 0, 4); } static void emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; const nir_variable *var = nir_intrinsic_get_var(intr, 0); struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr); struct ir3_instruction *sam, *lod; unsigned flags, ncoords = ir3_get_image_coords(var, &flags); type_t dst_type = nir_dest_bit_size(intr->dest) < 32 ? TYPE_U16 : TYPE_U32; lod = create_immed(b, 0); sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags, samp_tex, lod, NULL); /* Array size actually ends up in .w rather than .z. This doesn't * matter for miplevel 0, but for higher mips the value in z is * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is * returned, which means that we have to add 1 to it for arrays for * a3xx. * * Note use a temporary dst and then copy, since the size of the dst * array that is passed in is based on nir's understanding of the * result size, not the hardware's */ struct ir3_instruction *tmp[4]; ir3_split_dest(b, tmp, sam, 0, 4); /* get_size instruction returns size in bytes instead of texels * for imageBuffer, so we need to divide it by the pixel size * of the image format. * * TODO: This is at least true on a5xx. Check other gens. */ enum glsl_sampler_dim dim = glsl_get_sampler_dim(glsl_without_array(var->type)); if (dim == GLSL_SAMPLER_DIM_BUF) { /* Since all the possible values the divisor can take are * power-of-two (4, 8, or 16), the division is implemented * as a shift-right. * During shader setup, the log2 of the image format's * bytes-per-pixel should have been emitted in 2nd slot of * image_dims. See ir3_shader::emit_image_dims(). */ struct ir3_const_state *const_state = &ctx->so->shader->const_state; unsigned cb = regid(const_state->offsets.image_dims, 0) + const_state->image_dims.off[var->data.driver_location]; struct ir3_instruction *aux = create_uniform(b, cb + 1); tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0); } for (unsigned i = 0; i < ncoords; i++) dst[i] = tmp[i]; if (flags & IR3_INSTR_A) { if (ctx->compiler->levels_add_one) { dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0); } else { dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32); } } } static void emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *barrier; switch (intr->intrinsic) { case nir_intrinsic_barrier: barrier = ir3_BAR(b); barrier->cat7.g = true; barrier->cat7.l = true; barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY; barrier->barrier_class = IR3_BARRIER_EVERYTHING; break; case nir_intrinsic_memory_barrier: barrier = ir3_FENCE(b); barrier->cat7.g = true; barrier->cat7.r = true; barrier->cat7.w = true; barrier->cat7.l = true; barrier->barrier_class = IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W; barrier->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; break; case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: barrier = ir3_FENCE(b); barrier->cat7.g = true; barrier->cat7.r = true; barrier->cat7.w = true; barrier->barrier_class = IR3_BARRIER_BUFFER_W; barrier->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; break; case nir_intrinsic_memory_barrier_image: // TODO double check if this should have .g set barrier = ir3_FENCE(b); barrier->cat7.g = true; barrier->cat7.r = true; barrier->cat7.w = true; barrier->barrier_class = IR3_BARRIER_IMAGE_W; barrier->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W; break; case nir_intrinsic_memory_barrier_shared: barrier = ir3_FENCE(b); barrier->cat7.g = true; barrier->cat7.l = true; barrier->cat7.r = true; barrier->cat7.w = true; barrier->barrier_class = IR3_BARRIER_SHARED_W; barrier->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W; break; case nir_intrinsic_group_memory_barrier: barrier = ir3_FENCE(b); barrier->cat7.g = true; barrier->cat7.l = true; barrier->cat7.r = true; barrier->cat7.w = true; barrier->barrier_class = IR3_BARRIER_SHARED_W | IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W; barrier->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W | IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; break; default: unreachable("boo"); } /* make sure barrier doesn't get DCE'd */ array_insert(b, b->keeps, barrier); } static void add_sysval_input_compmask(struct ir3_context *ctx, gl_system_value slot, unsigned compmask, struct ir3_instruction *instr) { struct ir3_shader_variant *so = ctx->so; unsigned n = so->inputs_count++; assert(instr->opc == OPC_META_INPUT); instr->input.inidx = n; instr->input.sysval = slot; so->inputs[n].sysval = true; so->inputs[n].slot = slot; so->inputs[n].compmask = compmask; so->inputs[n].interpolate = INTERP_MODE_FLAT; so->total_in++; } static struct ir3_instruction * create_sysval_input(struct ir3_context *ctx, gl_system_value slot, unsigned compmask) { assert(compmask); struct ir3_instruction *sysval = create_input(ctx, compmask); add_sysval_input_compmask(ctx, slot, compmask, sysval); return sysval; } static struct ir3_instruction * get_barycentric_centroid(struct ir3_context *ctx) { if (!ctx->ij_centroid) { struct ir3_instruction *xy[2]; struct ir3_instruction *ij; ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_CENTROID, 0x3); ir3_split_dest(ctx->block, xy, ij, 0, 2); ctx->ij_centroid = ir3_create_collect(ctx, xy, 2); } return ctx->ij_centroid; } static struct ir3_instruction * get_barycentric_sample(struct ir3_context *ctx) { if (!ctx->ij_sample) { struct ir3_instruction *xy[2]; struct ir3_instruction *ij; ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_SAMPLE, 0x3); ir3_split_dest(ctx->block, xy, ij, 0, 2); ctx->ij_sample = ir3_create_collect(ctx, xy, 2); } return ctx->ij_sample; } static struct ir3_instruction * get_barycentric_pixel(struct ir3_context *ctx) { /* TODO when tgsi_to_nir supports "new-style" FS inputs switch * this to create ij_pixel only on demand: */ return ctx->ij_pixel; } static struct ir3_instruction * get_frag_coord(struct ir3_context *ctx) { if (!ctx->frag_coord) { struct ir3_block *b = ctx->block; struct ir3_instruction *xyzw[4]; struct ir3_instruction *hw_frag_coord; hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf); ir3_split_dest(ctx->block, xyzw, hw_frag_coord, 0, 4); /* for frag_coord.xy, we get unsigned values.. we need * to subtract (integer) 8 and divide by 16 (right- * shift by 4) then convert to float: * * sub.s tmp, src, 8 * shr.b tmp, tmp, 4 * mov.u32f32 dst, tmp * */ for (int i = 0; i < 2; i++) { xyzw[i] = ir3_SUB_S(b, xyzw[i], 0, create_immed(b, 8), 0); xyzw[i] = ir3_SHR_B(b, xyzw[i], 0, create_immed(b, 4), 0); xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32); } ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4); ctx->so->frag_coord = true; } return ctx->frag_coord; } static void emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; struct ir3_instruction **dst; struct ir3_instruction * const *src; struct ir3_block *b = ctx->block; int idx, comp; if (info->has_dest) { unsigned n = nir_intrinsic_dest_components(intr); dst = ir3_get_dst(ctx, &intr->dest, n); } else { dst = NULL; } const unsigned primitive_param = ctx->so->shader->const_state.offsets.primitive_param * 4; const unsigned primitive_map = ctx->so->shader->const_state.offsets.primitive_map * 4; switch (intr->intrinsic) { case nir_intrinsic_load_uniform: idx = nir_intrinsic_base(intr); if (nir_src_is_const(intr->src[0])) { idx += nir_src_as_uint(intr->src[0]); for (int i = 0; i < intr->num_components; i++) { dst[i] = create_uniform_typed(b, idx + i, nir_dest_bit_size(intr->dest) < 32 ? TYPE_F16 : TYPE_F32); } } else { src = ir3_get_src(ctx, &intr->src[0]); for (int i = 0; i < intr->num_components; i++) { dst[i] = create_uniform_indirect(b, idx + i, ir3_get_addr(ctx, src[0], 1)); } /* NOTE: if relative addressing is used, we set * constlen in the compiler (to worst-case value) * since we don't know in the assembler what the max * addr reg value can be: */ ctx->so->constlen = MAX2(ctx->so->constlen, ctx->so->shader->ubo_state.size / 16); } break; case nir_intrinsic_load_vs_primitive_stride_ir3: dst[0] = create_uniform(b, primitive_param + 0); break; case nir_intrinsic_load_vs_vertex_stride_ir3: dst[0] = create_uniform(b, primitive_param + 1); break; case nir_intrinsic_load_hs_patch_stride_ir3: dst[0] = create_uniform(b, primitive_param + 2); break; case nir_intrinsic_load_patch_vertices_in: dst[0] = create_uniform(b, primitive_param + 3); break; case nir_intrinsic_load_tess_param_base_ir3: dst[0] = create_uniform(b, primitive_param + 4); dst[1] = create_uniform(b, primitive_param + 5); break; case nir_intrinsic_load_tess_factor_base_ir3: dst[0] = create_uniform(b, primitive_param + 6); dst[1] = create_uniform(b, primitive_param + 7); break; case nir_intrinsic_load_primitive_location_ir3: idx = nir_intrinsic_driver_location(intr); dst[0] = create_uniform(b, primitive_map + idx); break; case nir_intrinsic_load_gs_header_ir3: dst[0] = ctx->gs_header; break; case nir_intrinsic_load_tcs_header_ir3: dst[0] = ctx->tcs_header; break; case nir_intrinsic_load_primitive_id: dst[0] = ctx->primitive_id; break; case nir_intrinsic_load_tess_coord: if (!ctx->tess_coord) { ctx->tess_coord = create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3); } ir3_split_dest(b, dst, ctx->tess_coord, 0, 2); /* Unused, but ir3_put_dst() below wants to free something */ dst[2] = create_immed(b, 0); break; case nir_intrinsic_end_patch_ir3: assert(ctx->so->type == MESA_SHADER_TESS_CTRL); struct ir3_instruction *end = ir3_ENDPATCH(b); array_insert(b, b->keeps, end); end->barrier_class = IR3_BARRIER_EVERYTHING; end->barrier_conflict = IR3_BARRIER_EVERYTHING; break; case nir_intrinsic_store_global_ir3: { struct ir3_instruction *value, *addr, *offset; addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ ir3_get_src(ctx, &intr->src[1])[0], ir3_get_src(ctx, &intr->src[1])[1] }, 2); offset = ir3_get_src(ctx, &intr->src[2])[0]; value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), intr->num_components); struct ir3_instruction *stg = ir3_STG_G(ctx->block, addr, 0, value, 0, create_immed(ctx->block, intr->num_components), 0, offset, 0); stg->cat6.type = TYPE_U32; stg->cat6.iim_val = 1; array_insert(b, b->keeps, stg); stg->barrier_class = IR3_BARRIER_BUFFER_W; stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; break; } case nir_intrinsic_load_global_ir3: { struct ir3_instruction *addr, *offset; addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ ir3_get_src(ctx, &intr->src[0])[0], ir3_get_src(ctx, &intr->src[0])[1] }, 2); offset = ir3_get_src(ctx, &intr->src[1])[0]; struct ir3_instruction *load = ir3_LDG(b, addr, 0, create_immed(ctx->block, intr->num_components), 0, offset, 0); load->cat6.type = TYPE_U32; load->regs[0]->wrmask = MASK(intr->num_components); load->barrier_class = IR3_BARRIER_BUFFER_R; load->barrier_conflict = IR3_BARRIER_BUFFER_W; ir3_split_dest(b, dst, load, 0, intr->num_components); break; } case nir_intrinsic_load_ubo: emit_intrinsic_load_ubo(ctx, intr, dst); break; case nir_intrinsic_load_frag_coord: ir3_split_dest(b, dst, get_frag_coord(ctx), 0, 4); break; case nir_intrinsic_load_sample_pos_from_id: { /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32, * but that doesn't seem necessary. */ struct ir3_instruction *offset = ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0); offset->regs[0]->wrmask = 0x3; offset->cat5.type = TYPE_F32; ir3_split_dest(b, dst, offset, 0, 2); break; } case nir_intrinsic_load_size_ir3: if (!ctx->ij_size) { ctx->ij_size = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_SIZE, 0x1); } dst[0] = ctx->ij_size; break; case nir_intrinsic_load_barycentric_centroid: ir3_split_dest(b, dst, get_barycentric_centroid(ctx), 0, 2); break; case nir_intrinsic_load_barycentric_sample: if (ctx->so->key.msaa) { ir3_split_dest(b, dst, get_barycentric_sample(ctx), 0, 2); } else { ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2); } break; case nir_intrinsic_load_barycentric_pixel: ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2); break; case nir_intrinsic_load_interpolated_input: idx = nir_intrinsic_base(intr); comp = nir_intrinsic_component(intr); src = ir3_get_src(ctx, &intr->src[0]); if (nir_src_is_const(intr->src[1])) { struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2); idx += nir_src_as_uint(intr->src[1]); for (int i = 0; i < intr->num_components; i++) { unsigned inloc = idx * 4 + i + comp; if (ctx->so->inputs[idx].bary && !ctx->so->inputs[idx].use_ldlv) { dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0); } else { /* for non-varyings use the pre-setup input, since * that is easier than mapping things back to a * nir_variable to figure out what it is. */ dst[i] = ctx->ir->inputs[inloc]; } } } else { ir3_context_error(ctx, "unhandled"); } break; case nir_intrinsic_load_input: idx = nir_intrinsic_base(intr); comp = nir_intrinsic_component(intr); if (nir_src_is_const(intr->src[0])) { idx += nir_src_as_uint(intr->src[0]); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i + comp; dst[i] = ctx->inputs[n]; compile_assert(ctx, ctx->inputs[n]); } } else { src = ir3_get_src(ctx, &intr->src[0]); struct ir3_instruction *collect = ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs); struct ir3_instruction *addr = ir3_get_addr(ctx, src[0], 4); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i + comp; dst[i] = create_indirect_load(ctx, ctx->ninputs, n, addr, collect); } } break; /* All SSBO intrinsics should have been lowered by 'lower_io_offsets' * pass and replaced by an ir3-specifc version that adds the * dword-offset in the last source. */ case nir_intrinsic_load_ssbo_ir3: ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst); break; case nir_intrinsic_store_ssbo_ir3: if ((ctx->so->type == MESA_SHADER_FRAGMENT) && !ctx->s->info.fs.early_fragment_tests) ctx->so->no_earlyz = true; ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr); break; case nir_intrinsic_get_buffer_size: emit_intrinsic_ssbo_size(ctx, intr, dst); break; case nir_intrinsic_ssbo_atomic_add_ir3: case nir_intrinsic_ssbo_atomic_imin_ir3: case nir_intrinsic_ssbo_atomic_umin_ir3: case nir_intrinsic_ssbo_atomic_imax_ir3: case nir_intrinsic_ssbo_atomic_umax_ir3: case nir_intrinsic_ssbo_atomic_and_ir3: case nir_intrinsic_ssbo_atomic_or_ir3: case nir_intrinsic_ssbo_atomic_xor_ir3: case nir_intrinsic_ssbo_atomic_exchange_ir3: case nir_intrinsic_ssbo_atomic_comp_swap_ir3: if ((ctx->so->type == MESA_SHADER_FRAGMENT) && !ctx->s->info.fs.early_fragment_tests) ctx->so->no_earlyz = true; dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr); break; case nir_intrinsic_load_shared: emit_intrinsic_load_shared(ctx, intr, dst); break; case nir_intrinsic_store_shared: emit_intrinsic_store_shared(ctx, intr); break; case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: dst[0] = emit_intrinsic_atomic_shared(ctx, intr); break; case nir_intrinsic_image_deref_load: emit_intrinsic_load_image(ctx, intr, dst); break; case nir_intrinsic_image_deref_store: if ((ctx->so->type == MESA_SHADER_FRAGMENT) && !ctx->s->info.fs.early_fragment_tests) ctx->so->no_earlyz = true; ctx->funcs->emit_intrinsic_store_image(ctx, intr); break; case nir_intrinsic_image_deref_size: emit_intrinsic_image_size(ctx, intr, dst); break; case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: if ((ctx->so->type == MESA_SHADER_FRAGMENT) && !ctx->s->info.fs.early_fragment_tests) ctx->so->no_earlyz = true; dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr); break; case nir_intrinsic_barrier: case nir_intrinsic_memory_barrier: case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier_shared: emit_intrinsic_barrier(ctx, intr); /* note that blk ptr no longer valid, make that obvious: */ b = NULL; break; case nir_intrinsic_store_output: idx = nir_intrinsic_base(intr); comp = nir_intrinsic_component(intr); compile_assert(ctx, nir_src_is_const(intr->src[1])); idx += nir_src_as_uint(intr->src[1]); src = ir3_get_src(ctx, &intr->src[0]); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i + comp; ctx->outputs[n] = src[i]; } break; case nir_intrinsic_load_base_vertex: case nir_intrinsic_load_first_vertex: if (!ctx->basevertex) { ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE); } dst[0] = ctx->basevertex; break; case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_vertex_id: if (!ctx->vertex_id) { gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ? SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; ctx->vertex_id = create_sysval_input(ctx, sv, 0x1); } dst[0] = ctx->vertex_id; break; case nir_intrinsic_load_instance_id: if (!ctx->instance_id) { ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1); } dst[0] = ctx->instance_id; break; case nir_intrinsic_load_sample_id: ctx->so->per_samp = true; /* fall-thru */ case nir_intrinsic_load_sample_id_no_per_sample: if (!ctx->samp_id) { ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1); ctx->samp_id->regs[0]->flags |= IR3_REG_HALF; } dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32); break; case nir_intrinsic_load_sample_mask_in: if (!ctx->samp_mask_in) { ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1); } dst[0] = ctx->samp_mask_in; break; case nir_intrinsic_load_user_clip_plane: idx = nir_intrinsic_ucp_id(intr); for (int i = 0; i < intr->num_components; i++) { unsigned n = idx * 4 + i; dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n); } break; case nir_intrinsic_load_front_face: if (!ctx->frag_face) { ctx->so->frag_face = true; ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1); ctx->frag_face->regs[0]->flags |= IR3_REG_HALF; } /* for fragface, we get -1 for back and 0 for front. However this is * the inverse of what nir expects (where ~0 is true). */ dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32); dst[0] = ir3_NOT_B(b, dst[0], 0); break; case nir_intrinsic_load_local_invocation_id: if (!ctx->local_invocation_id) { ctx->local_invocation_id = create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7); } ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3); break; case nir_intrinsic_load_work_group_id: if (!ctx->work_group_id) { ctx->work_group_id = create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7); ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH; } ir3_split_dest(b, dst, ctx->work_group_id, 0, 3); break; case nir_intrinsic_load_num_work_groups: for (int i = 0; i < intr->num_components; i++) { dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i); } break; case nir_intrinsic_load_local_group_size: for (int i = 0; i < intr->num_components; i++) { dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i); } break; case nir_intrinsic_discard_if: case nir_intrinsic_discard: { struct ir3_instruction *cond, *kill; if (intr->intrinsic == nir_intrinsic_discard_if) { /* conditional discard: */ src = ir3_get_src(ctx, &intr->src[0]); cond = ir3_b2n(b, src[0]); } else { /* unconditional discard: */ cond = create_immed(b, 1); } /* NOTE: only cmps.*.* can write p0.x: */ cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0); cond->cat2.condition = IR3_COND_NE; /* condition always goes in predicate register: */ cond->regs[0]->num = regid(REG_P0, 0); cond->regs[0]->flags &= ~IR3_REG_SSA; kill = ir3_KILL(b, cond, 0); array_insert(ctx->ir, ctx->ir->predicates, kill); array_insert(b, b->keeps, kill); ctx->so->no_earlyz = true; break; } case nir_intrinsic_cond_end_ir3: { struct ir3_instruction *cond, *kill; src = ir3_get_src(ctx, &intr->src[0]); cond = ir3_b2n(b, src[0]); /* NOTE: only cmps.*.* can write p0.x: */ cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0); cond->cat2.condition = IR3_COND_NE; /* condition always goes in predicate register: */ cond->regs[0]->num = regid(REG_P0, 0); kill = ir3_CONDEND(b, cond, 0); kill->barrier_class = IR3_BARRIER_EVERYTHING; kill->barrier_conflict = IR3_BARRIER_EVERYTHING; array_insert(ctx->ir, ctx->ir->predicates, kill); array_insert(b, b->keeps, kill); break; } case nir_intrinsic_load_shared_ir3: emit_intrinsic_load_shared_ir3(ctx, intr, dst); break; case nir_intrinsic_store_shared_ir3: emit_intrinsic_store_shared_ir3(ctx, intr); break; default: ir3_context_error(ctx, "Unhandled intrinsic type: %s\n", nir_intrinsic_infos[intr->intrinsic].name); break; } if (info->has_dest) ir3_put_dst(ctx, &intr->dest); } static void emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr) { struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def, instr->def.num_components); if (instr->def.bit_size < 32) { for (int i = 0; i < instr->def.num_components; i++) dst[i] = create_immed_typed(ctx->block, instr->value[i].u16, TYPE_U16); } else { for (int i = 0; i < instr->def.num_components; i++) dst[i] = create_immed_typed(ctx->block, instr->value[i].u32, TYPE_U32); } } static void emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef) { struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def, undef->def.num_components); type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32; /* backend doesn't want undefined instructions, so just plug * in 0.0.. */ for (int i = 0; i < undef->def.num_components; i++) dst[i] = create_immed_typed(ctx->block, fui(0.0), type); } /* * texture fetch/sample instructions: */ static type_t get_tex_dest_type(nir_tex_instr *tex) { type_t type; switch (nir_alu_type_get_base_type(tex->dest_type)) { case nir_type_invalid: case nir_type_float: type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_F16 : TYPE_F32; break; case nir_type_int: type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_S16 : TYPE_S32; break; case nir_type_uint: case nir_type_bool: type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_U16 : TYPE_U32; break; default: unreachable("bad dest_type"); } return type; } static void tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp) { unsigned coords, flags = 0; /* note: would use tex->coord_components.. except txs.. also, * since array index goes after shadow ref, we don't want to * count it: */ switch (tex->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: coords = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: case GLSL_SAMPLER_DIM_MS: coords = 2; break; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: coords = 3; flags |= IR3_INSTR_3D; break; default: unreachable("bad sampler_dim"); } if (tex->is_shadow && tex->op != nir_texop_lod) flags |= IR3_INSTR_S; if (tex->is_array && tex->op != nir_texop_lod) flags |= IR3_INSTR_A; *flagsp = flags; *coordsp = coords; } /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic * or immediate (in which case it will get lowered later to a non .s2en * version of the tex instruction which encode tex/samp as immediates: */ static struct ir3_instruction * get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex) { int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset); int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset); struct ir3_instruction *texture, *sampler; if (texture_idx >= 0) { texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0]; texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16); } else { /* TODO what to do for dynamic case? I guess we only need the * max index for astc srgb workaround so maybe not a problem * to worry about if we don't enable indirect samplers for * a4xx? */ ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index); texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16); } if (sampler_idx >= 0) { sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0]; sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16); } else { sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16); } return ir3_create_collect(ctx, (struct ir3_instruction*[]){ sampler, texture, }, 2); } static void emit_tex(struct ir3_context *ctx, nir_tex_instr *tex) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam, *src0[12], *src1[4]; struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy; struct ir3_instruction *lod, *compare, *proj, *sample_index; bool has_bias = false, has_lod = false, has_proj = false, has_off = false; unsigned i, coords, flags, ncomp; unsigned nsrc0 = 0, nsrc1 = 0; type_t type; opc_t opc = 0; ncomp = nir_dest_num_components(tex->dest); coord = off = ddx = ddy = NULL; lod = proj = compare = sample_index = NULL; dst = ir3_get_dst(ctx, &tex->dest, ncomp); for (unsigned i = 0; i < tex->num_srcs; i++) { switch (tex->src[i].src_type) { case nir_tex_src_coord: coord = ir3_get_src(ctx, &tex->src[i].src); break; case nir_tex_src_bias: lod = ir3_get_src(ctx, &tex->src[i].src)[0]; has_bias = true; break; case nir_tex_src_lod: lod = ir3_get_src(ctx, &tex->src[i].src)[0]; has_lod = true; break; case nir_tex_src_comparator: /* shadow comparator */ compare = ir3_get_src(ctx, &tex->src[i].src)[0]; break; case nir_tex_src_projector: proj = ir3_get_src(ctx, &tex->src[i].src)[0]; has_proj = true; break; case nir_tex_src_offset: off = ir3_get_src(ctx, &tex->src[i].src); has_off = true; break; case nir_tex_src_ddx: ddx = ir3_get_src(ctx, &tex->src[i].src); break; case nir_tex_src_ddy: ddy = ir3_get_src(ctx, &tex->src[i].src); break; case nir_tex_src_ms_index: sample_index = ir3_get_src(ctx, &tex->src[i].src)[0]; break; case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: /* handled in get_tex_samp_src() */ break; default: ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n", tex->src[i].src_type); return; } } switch (tex->op) { case nir_texop_tex_prefetch: compile_assert(ctx, !has_bias); compile_assert(ctx, !has_lod); compile_assert(ctx, !compare); compile_assert(ctx, !has_proj); compile_assert(ctx, !has_off); compile_assert(ctx, !ddx); compile_assert(ctx, !ddy); compile_assert(ctx, !sample_index); compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0); compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0); if (ctx->so->num_sampler_prefetch < IR3_MAX_SAMPLER_PREFETCH) { opc = OPC_META_TEX_PREFETCH; ctx->so->num_sampler_prefetch++; break; } /* fallthru */ case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break; case nir_texop_txb: opc = OPC_SAMB; break; case nir_texop_txl: opc = OPC_SAML; break; case nir_texop_txd: opc = OPC_SAMGQ; break; case nir_texop_txf: opc = OPC_ISAML; break; case nir_texop_lod: opc = OPC_GETLOD; break; case nir_texop_tg4: /* NOTE: a4xx might need to emulate gather w/ txf (this is * what blob does, seems gather is broken?), and a3xx did * not support it (but probably could also emulate). */ switch (tex->component) { case 0: opc = OPC_GATHER4R; break; case 1: opc = OPC_GATHER4G; break; case 2: opc = OPC_GATHER4B; break; case 3: opc = OPC_GATHER4A; break; } break; case nir_texop_txf_ms_fb: case nir_texop_txf_ms: opc = OPC_ISAMM; break; default: ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op); return; } tex_info(tex, &flags, &coords); /* * lay out the first argument in the proper order: * - actual coordinates first * - shadow reference * - array index * - projection w * - starting at offset 4, dpdx.xy, dpdy.xy * * bias/lod go into the second arg */ /* insert tex coords: */ for (i = 0; i < coords; i++) src0[i] = coord[i]; nsrc0 = i; /* scale up integer coords for TXF based on the LOD */ if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) { assert(has_lod); for (i = 0; i < coords; i++) src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0); } if (coords == 1) { /* hw doesn't do 1d, so we treat it as 2d with * height of 1, and patch up the y coord. */ if (is_isam(opc)) { src0[nsrc0++] = create_immed(b, 0); } else { src0[nsrc0++] = create_immed(b, fui(0.5)); } } if (tex->is_shadow && tex->op != nir_texop_lod) src0[nsrc0++] = compare; if (tex->is_array && tex->op != nir_texop_lod) { struct ir3_instruction *idx = coord[coords]; /* the array coord for cube arrays needs 0.5 added to it */ if (ctx->compiler->array_index_add_half && !is_isam(opc)) idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0); src0[nsrc0++] = idx; } if (has_proj) { src0[nsrc0++] = proj; flags |= IR3_INSTR_P; } /* pad to 4, then ddx/ddy: */ if (tex->op == nir_texop_txd) { while (nsrc0 < 4) src0[nsrc0++] = create_immed(b, fui(0.0)); for (i = 0; i < coords; i++) src0[nsrc0++] = ddx[i]; if (coords < 2) src0[nsrc0++] = create_immed(b, fui(0.0)); for (i = 0; i < coords; i++) src0[nsrc0++] = ddy[i]; if (coords < 2) src0[nsrc0++] = create_immed(b, fui(0.0)); } /* NOTE a3xx (and possibly a4xx?) might be different, using isaml * with scaled x coord according to requested sample: */ if (opc == OPC_ISAMM) { if (ctx->compiler->txf_ms_with_isaml) { /* the samples are laid out in x dimension as * 0 1 2 3 * x_ms = (x << ms) + sample_index; */ struct ir3_instruction *ms; ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3); src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0); src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0); opc = OPC_ISAML; } else { src0[nsrc0++] = sample_index; } } /* * second argument (if applicable): * - offsets * - lod * - bias */ if (has_off | has_lod | has_bias) { if (has_off) { unsigned off_coords = coords; if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) off_coords--; for (i = 0; i < off_coords; i++) src1[nsrc1++] = off[i]; if (off_coords < 2) src1[nsrc1++] = create_immed(b, fui(0.0)); flags |= IR3_INSTR_O; } if (has_lod | has_bias) src1[nsrc1++] = lod; } type = get_tex_dest_type(tex); if (opc == OPC_GETLOD) type = TYPE_S32; struct ir3_instruction *samp_tex; if (tex->op == nir_texop_txf_ms_fb) { /* only expect a single txf_ms_fb per shader: */ compile_assert(ctx, !ctx->so->fb_read); compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT); ctx->so->fb_read = true; samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){ create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16), create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16), }, 2); ctx->so->num_samp++; } else { samp_tex = get_tex_samp_tex_src(ctx, tex); } struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0); struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1); if (opc == OPC_META_TEX_PREFETCH) { int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord); compile_assert(ctx, tex->src[idx].src.is_ssa); sam = ir3_META_TEX_PREFETCH(b); __ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */ sam->prefetch.input_offset = ir3_nir_coord_offset(tex->src[idx].src.ssa); sam->prefetch.tex = tex->texture_index; sam->prefetch.samp = tex->sampler_index; } else { sam = ir3_SAM(b, opc, type, MASK(ncomp), flags, samp_tex, col0, col1); } if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) { assert(opc != OPC_META_TEX_PREFETCH); /* only need first 3 components: */ sam->regs[0]->wrmask = 0x7; ir3_split_dest(b, dst, sam, 0, 3); /* we need to sample the alpha separately with a non-ASTC * texture state: */ sam = ir3_SAM(b, opc, type, 0b1000, flags, samp_tex, col0, col1); array_insert(ctx->ir, ctx->ir->astc_srgb, sam); /* fixup .w component: */ ir3_split_dest(b, &dst[3], sam, 3, 1); } else { /* normal (non-workaround) case: */ ir3_split_dest(b, dst, sam, 0, ncomp); } /* GETLOD returns results in 4.8 fixed point */ if (opc == OPC_GETLOD) { struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256)); compile_assert(ctx, tex->dest_type == nir_type_float); for (i = 0; i < 2; i++) { dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0, factor, 0); } } ir3_put_dst(ctx, &tex->dest); } static void emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam; type_t dst_type = get_tex_dest_type(tex); dst = ir3_get_dst(ctx, &tex->dest, 1); sam = ir3_SAM(b, OPC_GETINFO, dst_type, 1 << idx, 0, get_tex_samp_tex_src(ctx, tex), NULL, NULL); /* even though there is only one component, since it ends * up in .y/.z/.w rather than .x, we need a split_dest() */ if (idx) ir3_split_dest(b, dst, sam, 0, idx + 1); /* The # of levels comes from getinfo.z. We need to add 1 to it, since * the value in TEX_CONST_0 is zero-based. */ if (ctx->compiler->levels_add_one) dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0); ir3_put_dst(ctx, &tex->dest); } static void emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex) { struct ir3_block *b = ctx->block; struct ir3_instruction **dst, *sam; struct ir3_instruction *lod; unsigned flags, coords; type_t dst_type = get_tex_dest_type(tex); tex_info(tex, &flags, &coords); /* Actually we want the number of dimensions, not coordinates. This * distinction only matters for cubes. */ if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) coords = 2; dst = ir3_get_dst(ctx, &tex->dest, 4); compile_assert(ctx, tex->num_srcs == 1); compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod); lod = ir3_get_src(ctx, &tex->src[0].src)[0]; sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags, get_tex_samp_tex_src(ctx, tex), lod, NULL); ir3_split_dest(b, dst, sam, 0, 4); /* Array size actually ends up in .w rather than .z. This doesn't * matter for miplevel 0, but for higher mips the value in z is * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is * returned, which means that we have to add 1 to it for arrays. */ if (tex->is_array) { if (ctx->compiler->levels_add_one) { dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0); } else { dst[coords] = ir3_MOV(b, dst[3], TYPE_U32); } } ir3_put_dst(ctx, &tex->dest); } static void emit_jump(struct ir3_context *ctx, nir_jump_instr *jump) { switch (jump->type) { case nir_jump_break: case nir_jump_continue: case nir_jump_return: /* I *think* we can simply just ignore this, and use the * successor block link to figure out where we need to * jump to for break/continue */ break; default: ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type); break; } } static void emit_instr(struct ir3_context *ctx, nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: emit_alu(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_deref: /* ignored, handled as part of the intrinsic they are src to */ break; case nir_instr_type_intrinsic: emit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_load_const: emit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_ssa_undef: emit_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_tex: { nir_tex_instr *tex = nir_instr_as_tex(instr); /* couple tex instructions get special-cased: */ switch (tex->op) { case nir_texop_txs: emit_tex_txs(ctx, tex); break; case nir_texop_query_levels: emit_tex_info(ctx, tex, 2); break; case nir_texop_texture_samples: emit_tex_info(ctx, tex, 3); break; default: emit_tex(ctx, tex); break; } break; } case nir_instr_type_jump: emit_jump(ctx, nir_instr_as_jump(instr)); break; case nir_instr_type_phi: /* we have converted phi webs to regs in NIR by now */ ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type); break; case nir_instr_type_call: case nir_instr_type_parallel_copy: ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type); break; } } static struct ir3_block * get_block(struct ir3_context *ctx, const nir_block *nblock) { struct ir3_block *block; struct hash_entry *hentry; hentry = _mesa_hash_table_search(ctx->block_ht, nblock); if (hentry) return hentry->data; block = ir3_block_create(ctx->ir); block->nblock = nblock; _mesa_hash_table_insert(ctx->block_ht, nblock, block); block->predecessors = _mesa_pointer_set_create(block); set_foreach(nblock->predecessors, sentry) { _mesa_set_add(block->predecessors, get_block(ctx, sentry->key)); } return block; } static void emit_block(struct ir3_context *ctx, nir_block *nblock) { struct ir3_block *block = get_block(ctx, nblock); for (int i = 0; i < ARRAY_SIZE(block->successors); i++) { if (nblock->successors[i]) { block->successors[i] = get_block(ctx, nblock->successors[i]); } } ctx->block = block; list_addtail(&block->node, &ctx->ir->block_list); /* re-emit addr register in each block if needed: */ for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) { _mesa_hash_table_destroy(ctx->addr_ht[i], NULL); ctx->addr_ht[i] = NULL; } nir_foreach_instr(instr, nblock) { ctx->cur_instr = instr; emit_instr(ctx, instr); ctx->cur_instr = NULL; if (ctx->error) return; } } static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list); static void emit_if(struct ir3_context *ctx, nir_if *nif) { struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0]; ctx->block->condition = ir3_get_predicate(ctx, ir3_b2n(condition->block, condition)); emit_cf_list(ctx, &nif->then_list); emit_cf_list(ctx, &nif->else_list); } static void emit_loop(struct ir3_context *ctx, nir_loop *nloop) { emit_cf_list(ctx, &nloop->body); ctx->so->loops++; } static void stack_push(struct ir3_context *ctx) { ctx->stack++; ctx->max_stack = MAX2(ctx->max_stack, ctx->stack); } static void stack_pop(struct ir3_context *ctx) { compile_assert(ctx, ctx->stack > 0); ctx->stack--; } static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: emit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: stack_push(ctx); emit_if(ctx, nir_cf_node_as_if(node)); stack_pop(ctx); break; case nir_cf_node_loop: stack_push(ctx); emit_loop(ctx, nir_cf_node_as_loop(node)); stack_pop(ctx); break; case nir_cf_node_function: ir3_context_error(ctx, "TODO\n"); break; } } } /* emit stream-out code. At this point, the current block is the original * (nir) end block, and nir ensures that all flow control paths terminate * into the end block. We re-purpose the original end block to generate * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional * block holding stream-out write instructions, followed by the new end * block: * * blockOrigEnd { * p0.x = (vtxcnt < maxvtxcnt) * // succs: blockStreamOut, blockNewEnd * } * blockStreamOut { * ... stream-out instructions ... * // succs: blockNewEnd * } * blockNewEnd { * } */ static void emit_stream_out(struct ir3_context *ctx) { struct ir3 *ir = ctx->ir; struct ir3_stream_output_info *strmout = &ctx->so->shader->stream_output; struct ir3_block *orig_end_block, *stream_out_block, *new_end_block; struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond; struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS]; /* create vtxcnt input in input block at top of shader, * so that it is seen as live over the entire duration * of the shader: */ vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1); maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX); /* at this point, we are at the original 'end' block, * re-purpose this block to stream-out condition, then * append stream-out block and new-end block */ orig_end_block = ctx->block; // TODO these blocks need to update predecessors.. // maybe w/ store_global intrinsic, we could do this // stuff in nir->nir pass stream_out_block = ir3_block_create(ir); list_addtail(&stream_out_block->node, &ir->block_list); new_end_block = ir3_block_create(ir); list_addtail(&new_end_block->node, &ir->block_list); orig_end_block->successors[0] = stream_out_block; orig_end_block->successors[1] = new_end_block; stream_out_block->successors[0] = new_end_block; /* setup 'if (vtxcnt < maxvtxcnt)' condition: */ cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0); cond->regs[0]->num = regid(REG_P0, 0); cond->regs[0]->flags &= ~IR3_REG_SSA; cond->cat2.condition = IR3_COND_LT; /* condition goes on previous block to the conditional, * since it is used to pick which of the two successor * paths to take: */ orig_end_block->condition = cond; /* switch to stream_out_block to generate the stream-out * instructions: */ ctx->block = stream_out_block; /* Calculate base addresses based on vtxcnt. Instructions * generated for bases not used in following loop will be * stripped out in the backend. */ for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) { struct ir3_const_state *const_state = &ctx->so->shader->const_state; unsigned stride = strmout->stride[i]; struct ir3_instruction *base, *off; base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i)); /* 24-bit should be enough: */ off = ir3_MUL_U24(ctx->block, vtxcnt, 0, create_immed(ctx->block, stride * 4), 0); bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0); } /* Generate the per-output store instructions: */ for (unsigned i = 0; i < strmout->num_outputs; i++) { for (unsigned j = 0; j < strmout->output[i].num_components; j++) { unsigned c = j + strmout->output[i].start_component; struct ir3_instruction *base, *out, *stg; base = bases[strmout->output[i].output_buffer]; out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)]; stg = ir3_STG(ctx->block, base, 0, out, 0, create_immed(ctx->block, 1), 0); stg->cat6.type = TYPE_U32; stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4; array_insert(ctx->block, ctx->block->keeps, stg); } } /* and finally switch to the new_end_block: */ ctx->block = new_end_block; } static void emit_function(struct ir3_context *ctx, nir_function_impl *impl) { nir_metadata_require(impl, nir_metadata_block_index); compile_assert(ctx, ctx->stack == 0); emit_cf_list(ctx, &impl->body); emit_block(ctx, impl->end_block); compile_assert(ctx, ctx->stack == 0); /* at this point, we should have a single empty block, * into which we emit the 'end' instruction. */ compile_assert(ctx, list_is_empty(&ctx->block->instr_list)); /* If stream-out (aka transform-feedback) enabled, emit the * stream-out instructions, followed by a new empty block (into * which the 'end' instruction lands). * * NOTE: it is done in this order, rather than inserting before * we emit end_block, because NIR guarantees that all blocks * flow into end_block, and that end_block has no successors. * So by re-purposing end_block as the first block of stream- * out, we guarantee that all exit paths flow into the stream- * out instructions. */ if ((ctx->compiler->gpu_id < 500) && (ctx->so->shader->stream_output.num_outputs > 0) && !ctx->so->binning_pass) { debug_assert(ctx->so->type == MESA_SHADER_VERTEX); emit_stream_out(ctx); } /* Vertex shaders in a tessellation or geometry pipeline treat END as a * NOP and has an epilogue that writes the VS outputs to local storage, to * be read by the HS. Then it resets execution mask (chmask) and chains * to the next shader (chsh). */ if ((ctx->so->type == MESA_SHADER_VERTEX && (ctx->so->key.has_gs || ctx->so->key.tessellation)) || (ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) { struct ir3_instruction *chmask = ir3_CHMASK(ctx->block); chmask->barrier_class = IR3_BARRIER_EVERYTHING; chmask->barrier_conflict = IR3_BARRIER_EVERYTHING; struct ir3_instruction *chsh = ir3_CHSH(ctx->block); chsh->barrier_class = IR3_BARRIER_EVERYTHING; chsh->barrier_conflict = IR3_BARRIER_EVERYTHING; } else { ir3_END(ctx->block); } } static void setup_input(struct ir3_context *ctx, nir_variable *in) { struct ir3_shader_variant *so = ctx->so; unsigned ncomp = glsl_get_components(in->type); unsigned n = in->data.driver_location; unsigned frac = in->data.location_frac; unsigned slot = in->data.location; /* Inputs are loaded using ldlw or ldg for these stages. */ if (ctx->so->type == MESA_SHADER_TESS_CTRL || ctx->so->type == MESA_SHADER_TESS_EVAL || ctx->so->type == MESA_SHADER_GEOMETRY) return; /* skip unread inputs, we could end up with (for example), unsplit * matrix/etc inputs in the case they are not read, so just silently * skip these. */ if (ncomp > 4) return; so->inputs[n].slot = slot; so->inputs[n].compmask = (1 << (ncomp + frac)) - 1; so->inputs_count = MAX2(so->inputs_count, n + 1); so->inputs[n].interpolate = in->data.interpolation; if (ctx->so->type == MESA_SHADER_FRAGMENT) { /* if any varyings have 'sample' qualifer, that triggers us * to run in per-sample mode: */ so->per_samp |= in->data.sample; for (int i = 0; i < ncomp; i++) { struct ir3_instruction *instr = NULL; unsigned idx = (n * 4) + i + frac; if (slot == VARYING_SLOT_POS) { ir3_context_error(ctx, "fragcoord should be a sysval!\n"); } else if (slot == VARYING_SLOT_PNTC) { /* see for example st_nir_fixup_varying_slots().. this is * maybe a bit mesa/st specific. But we need things to line * up for this in fdN_program: * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0); * if (emit->sprite_coord_enable & texmask) { * ... * } */ so->inputs[n].slot = VARYING_SLOT_VAR8; so->inputs[n].bary = true; instr = create_frag_input(ctx, false, idx); } else { /* detect the special case for front/back colors where * we need to do flat vs smooth shading depending on * rast state: */ if (in->data.interpolation == INTERP_MODE_NONE) { switch (slot) { case VARYING_SLOT_COL0: case VARYING_SLOT_COL1: case VARYING_SLOT_BFC0: case VARYING_SLOT_BFC1: so->inputs[n].rasterflat = true; break; default: break; } } if (ctx->compiler->flat_bypass) { if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) || (so->inputs[n].rasterflat && ctx->so->key.rasterflat)) so->inputs[n].use_ldlv = true; } so->inputs[n].bary = true; instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx); } compile_assert(ctx, idx < ctx->ninputs); ctx->inputs[idx] = instr; } } else if (ctx->so->type == MESA_SHADER_VERTEX) { /* We shouldn't have fractional input for VS input.. that only shows * up with varying packing */ assert(frac == 0); struct ir3_instruction *input = create_input(ctx, (1 << ncomp) - 1); struct ir3_instruction *components[ncomp]; input->input.inidx = n; ir3_split_dest(ctx->block, components, input, 0, ncomp); for (int i = 0; i < ncomp; i++) { unsigned idx = (n * 4) + i + frac; compile_assert(ctx, idx < ctx->ninputs); ctx->inputs[idx] = components[i]; } } else { ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type); } if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) { so->total_in += ncomp; } } /* Initially we assign non-packed inloc's for varyings, as we don't really * know up-front which components will be unused. After all the compilation * stages we scan the shader to see which components are actually used, and * re-pack the inlocs to eliminate unneeded varyings. */ static void pack_inlocs(struct ir3_context *ctx) { struct ir3_shader_variant *so = ctx->so; uint8_t used_components[so->inputs_count]; memset(used_components, 0, sizeof(used_components)); /* * First Step: scan shader to find which bary.f/ldlv remain: */ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) { list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { if (is_input(instr)) { unsigned inloc = instr->regs[1]->iim_val; unsigned i = inloc / 4; unsigned j = inloc % 4; compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED); compile_assert(ctx, i < so->inputs_count); used_components[i] |= 1 << j; } else if (instr->opc == OPC_META_TEX_PREFETCH) { for (int n = 0; n < 2; n++) { unsigned inloc = instr->prefetch.input_offset + n; unsigned i = inloc / 4; unsigned j = inloc % 4; compile_assert(ctx, i < so->inputs_count); used_components[i] |= 1 << j; } } } } /* * Second Step: reassign varying inloc/slots: */ unsigned actual_in = 0; unsigned inloc = 0; for (unsigned i = 0; i < so->inputs_count; i++) { unsigned compmask = 0, maxcomp = 0; so->inputs[i].inloc = inloc; so->inputs[i].bary = false; for (unsigned j = 0; j < 4; j++) { if (!(used_components[i] & (1 << j))) continue; compmask |= (1 << j); actual_in++; maxcomp = j + 1; /* at this point, since used_components[i] mask is only * considering varyings (ie. not sysvals) we know this * is a varying: */ so->inputs[i].bary = true; } if (so->inputs[i].bary) { so->varying_in++; so->inputs[i].compmask = (1 << maxcomp) - 1; inloc += maxcomp; } } /* * Third Step: reassign packed inloc's: */ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) { list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { if (is_input(instr)) { unsigned inloc = instr->regs[1]->iim_val; unsigned i = inloc / 4; unsigned j = inloc % 4; instr->regs[1]->iim_val = so->inputs[i].inloc + j; } } } } static void setup_output(struct ir3_context *ctx, nir_variable *out) { struct ir3_shader_variant *so = ctx->so; unsigned ncomp = glsl_get_components(out->type); unsigned n = out->data.driver_location; unsigned frac = out->data.location_frac; unsigned slot = out->data.location; unsigned comp = 0; if (ctx->so->type == MESA_SHADER_FRAGMENT) { switch (slot) { case FRAG_RESULT_DEPTH: comp = 2; /* tgsi will write to .z component */ so->writes_pos = true; break; case FRAG_RESULT_COLOR: so->color0_mrt = 1; break; case FRAG_RESULT_SAMPLE_MASK: so->writes_smask = true; break; default: if (slot >= FRAG_RESULT_DATA0) break; ir3_context_error(ctx, "unknown FS output name: %s\n", gl_frag_result_name(slot)); } } else if (ctx->so->type == MESA_SHADER_VERTEX || ctx->so->type == MESA_SHADER_TESS_EVAL || ctx->so->type == MESA_SHADER_GEOMETRY) { switch (slot) { case VARYING_SLOT_POS: so->writes_pos = true; break; case VARYING_SLOT_PSIZ: so->writes_psize = true; break; case VARYING_SLOT_PRIMITIVE_ID: case VARYING_SLOT_LAYER: case VARYING_SLOT_GS_VERTEX_FLAGS_IR3: debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY); /* fall through */ case VARYING_SLOT_COL0: case VARYING_SLOT_COL1: case VARYING_SLOT_BFC0: case VARYING_SLOT_BFC1: case VARYING_SLOT_FOGC: case VARYING_SLOT_CLIP_DIST0: case VARYING_SLOT_CLIP_DIST1: case VARYING_SLOT_CLIP_VERTEX: break; default: if (slot >= VARYING_SLOT_VAR0) break; if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7)) break; ir3_context_error(ctx, "unknown %s shader output name: %s\n", _mesa_shader_stage_to_string(ctx->so->type), gl_varying_slot_name(slot)); } } else if (ctx->so->type == MESA_SHADER_TESS_CTRL) { /* output lowered to buffer writes. */ return; } else { ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type); } compile_assert(ctx, n < ARRAY_SIZE(so->outputs)); so->outputs[n].slot = slot; so->outputs[n].regid = regid(n, comp); so->outputs_count = MAX2(so->outputs_count, n + 1); for (int i = 0; i < ncomp; i++) { unsigned idx = (n * 4) + i + frac; compile_assert(ctx, idx < ctx->noutputs); ctx->outputs[idx] = create_immed(ctx->block, fui(0.0)); } /* if varying packing doesn't happen, we could end up in a situation * with "holes" in the output, and since the per-generation code that * sets up varying linkage registers doesn't expect to have more than * one varying per vec4 slot, pad the holes. * * Note that this should probably generate a performance warning of * some sort. */ for (int i = 0; i < frac; i++) { unsigned idx = (n * 4) + i; if (!ctx->outputs[idx]) { ctx->outputs[idx] = create_immed(ctx->block, fui(0.0)); } } } static int max_drvloc(struct exec_list *vars) { int drvloc = -1; nir_foreach_variable(var, vars) { drvloc = MAX2(drvloc, (int)var->data.driver_location); } return drvloc; } static void emit_instructions(struct ir3_context *ctx) { nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s); ctx->ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4; ctx->noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4; ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs); ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs); ctx->ir = ir3_create(ctx->compiler, ctx->so->type); /* Create inputs in first block: */ ctx->block = get_block(ctx, nir_start_block(fxn)); ctx->in_block = ctx->block; list_addtail(&ctx->block->node, &ctx->ir->block_list); /* for fragment shader, the vcoord input register is used as the * base for bary.f varying fetch instrs: * * TODO defer creating ctx->ij_pixel and corresponding sysvals * until emit_intrinsic when we know they are actually needed. * For now, we defer creating ctx->ij_centroid, etc, since we * only need ij_pixel for "old style" varying inputs (ie. * tgsi_to_nir) */ struct ir3_instruction *vcoord = NULL; if (ctx->so->type == MESA_SHADER_FRAGMENT) { struct ir3_instruction *xy[2]; vcoord = create_input(ctx, 0x3); ir3_split_dest(ctx->block, xy, vcoord, 0, 2); ctx->ij_pixel = ir3_create_collect(ctx, xy, 2); } /* Setup inputs: */ nir_foreach_variable(var, &ctx->s->inputs) { setup_input(ctx, var); } /* Defer add_sysval_input() stuff until after setup_inputs(), * because sysvals need to be appended after varyings: */ if (vcoord) { add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PIXEL, 0x3, vcoord); } /* Tesselation shaders always need primitive ID for indexing the * BO. Geometry shaders don't always need it but when they do it has be * delivered and unclobbered in the VS. To make things easy, we always * make room for it in VS/DS. */ bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE; bool has_gs = ctx->so->key.has_gs; switch (ctx->so->type) { case MESA_SHADER_VERTEX: if (has_tess) { ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1); ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1); } else if (has_gs) { ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1); ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1); } break; case MESA_SHADER_TESS_CTRL: ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1); ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1); break; case MESA_SHADER_TESS_EVAL: if (has_gs) ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1); ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1); break; case MESA_SHADER_GEOMETRY: ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1); ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1); break; default: break; } /* Setup outputs: */ nir_foreach_variable(var, &ctx->s->outputs) { setup_output(ctx, var); } /* Find # of samplers: */ nir_foreach_variable(var, &ctx->s->uniforms) { ctx->so->num_samp += glsl_type_get_sampler_count(var->type); /* just assume that we'll be reading from images.. if it * is write-only we don't have to count it, but not sure * if there is a good way to know? */ ctx->so->num_samp += glsl_type_get_image_count(var->type); } /* NOTE: need to do something more clever when we support >1 fxn */ nir_foreach_register(reg, &fxn->registers) { ir3_declare_array(ctx, reg); } /* And emit the body: */ ctx->impl = fxn; emit_function(ctx, fxn); } /* Fixup tex sampler state for astc/srgb workaround instructions. We * need to assign the tex state indexes for these after we know the * max tex index. */ static void fixup_astc_srgb(struct ir3_context *ctx) { struct ir3_shader_variant *so = ctx->so; /* indexed by original tex idx, value is newly assigned alpha sampler * state tex idx. Zero is invalid since there is at least one sampler * if we get here. */ unsigned alt_tex_state[16] = {0}; unsigned tex_idx = ctx->max_texture_index + 1; unsigned idx = 0; so->astc_srgb.base = tex_idx; for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) { struct ir3_instruction *sam = ctx->ir->astc_srgb[i]; compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state)); if (alt_tex_state[sam->cat5.tex] == 0) { /* assign new alternate/alpha tex state slot: */ alt_tex_state[sam->cat5.tex] = tex_idx++; so->astc_srgb.orig_idx[idx++] = sam->cat5.tex; so->astc_srgb.count++; } sam->cat5.tex = alt_tex_state[sam->cat5.tex]; } } static void fixup_binning_pass(struct ir3_context *ctx) { struct ir3_shader_variant *so = ctx->so; struct ir3 *ir = ctx->ir; unsigned i, j; /* first pass, remove unused outputs from the IR level outputs: */ for (i = 0, j = 0; i < ir->outputs_count; i++) { struct ir3_instruction *out = ir->outputs[i]; assert(out->opc == OPC_META_COLLECT); unsigned outidx = out->collect.outidx; unsigned slot = so->outputs[outidx].slot; /* throw away everything but first position/psize */ if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) { ir->outputs[j] = ir->outputs[i]; j++; } } ir->outputs_count = j; /* second pass, cleanup the unused slots in ir3_shader_variant::outputs * table: */ for (i = 0, j = 0; i < so->outputs_count; i++) { unsigned slot = so->outputs[i].slot; /* throw away everything but first position/psize */ if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) { so->outputs[j] = so->outputs[i]; /* fixup outidx to point to new output table entry: */ struct ir3_instruction *out; foreach_output(out, ir) { if (out->collect.outidx == i) { out->collect.outidx = j; break; } } j++; } } so->outputs_count = j; } static void collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir) { unsigned idx = 0; /* Collect sampling instructions eligible for pre-dispatch. */ list_for_each_entry(struct ir3_block, block, &ir->block_list, node) { list_for_each_entry_safe(struct ir3_instruction, instr, &block->instr_list, node) { if (instr->opc == OPC_META_TEX_PREFETCH) { assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch)); struct ir3_sampler_prefetch *fetch = &ctx->so->sampler_prefetch[idx]; idx++; fetch->cmd = IR3_SAMPLER_PREFETCH_CMD; fetch->wrmask = instr->regs[0]->wrmask; fetch->tex_id = instr->prefetch.tex; fetch->samp_id = instr->prefetch.samp; fetch->dst = instr->regs[0]->num; fetch->src = instr->prefetch.input_offset; ctx->so->total_in = MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2); /* Disable half precision until supported. */ fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF); /* Remove the prefetch placeholder instruction: */ list_delinit(&instr->node); } } } } int ir3_compile_shader_nir(struct ir3_compiler *compiler, struct ir3_shader_variant *so) { struct ir3_context *ctx; struct ir3 *ir; int ret = 0, max_bary; assert(!so->ir); ctx = ir3_context_init(compiler, so); if (!ctx) { DBG("INIT failed!"); ret = -1; goto out; } emit_instructions(ctx); if (ctx->error) { DBG("EMIT failed!"); ret = -1; goto out; } ir = so->ir = ctx->ir; assert((ctx->noutputs % 4) == 0); /* Setup IR level outputs, which are "collects" that gather * the scalar components of outputs. */ for (unsigned i = 0; i < ctx->noutputs; i += 4) { unsigned ncomp = 0; /* figure out the # of components written: * * TODO do we need to handle holes, ie. if .x and .z * components written, but .y component not written? */ for (unsigned j = 0; j < 4; j++) { if (!ctx->outputs[i + j]) break; ncomp++; } /* Note that in some stages, like TCS, store_output is * lowered to memory writes, so no components of the * are "written" from the PoV of traditional store- * output instructions: */ if (!ncomp) continue; struct ir3_instruction *out = ir3_create_collect(ctx, &ctx->outputs[i], ncomp); int outidx = i / 4; assert(outidx < so->outputs_count); /* stash index into so->outputs[] so we can map the * output back to slot/etc later: */ out->collect.outidx = outidx; array_insert(ir, ir->outputs, out); } /* Set up the gs header as an output for the vertex shader so it won't * clobber it for the tess ctrl shader. * * TODO this could probably be done more cleanly in a nir pass. */ if (ctx->so->type == MESA_SHADER_VERTEX || (ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) { if (ctx->primitive_id) { unsigned n = so->outputs_count++; so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID; struct ir3_instruction *out = ir3_create_collect(ctx, &ctx->primitive_id, 1); out->collect.outidx = n; array_insert(ir, ir->outputs, out); } if (ctx->gs_header) { unsigned n = so->outputs_count++; so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3; struct ir3_instruction *out = ir3_create_collect(ctx, &ctx->gs_header, 1); out->collect.outidx = n; array_insert(ir, ir->outputs, out); } if (ctx->tcs_header) { unsigned n = so->outputs_count++; so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3; struct ir3_instruction *out = ir3_create_collect(ctx, &ctx->tcs_header, 1); out->collect.outidx = n; array_insert(ir, ir->outputs, out); } } /* at this point, for binning pass, throw away unneeded outputs: */ if (so->binning_pass && (ctx->compiler->gpu_id < 600)) fixup_binning_pass(ctx); ir3_debug_print(ir, "BEFORE CP"); ir3_cp(ir, so); /* at this point, for binning pass, throw away unneeded outputs: * Note that for a6xx and later, we do this after ir3_cp to ensure * that the uniform/constant layout for BS and VS matches, so that * we can re-use same VS_CONST state group. */ if (so->binning_pass && (ctx->compiler->gpu_id >= 600)) fixup_binning_pass(ctx); /* for a6xx+, binning and draw pass VS use same VBO state, so we * need to make sure not to remove any inputs that are used by * the nonbinning VS. */ if (ctx->compiler->gpu_id >= 600 && so->binning_pass && so->type == MESA_SHADER_VERTEX) { for (int i = 0; i < ctx->ninputs; i++) { struct ir3_instruction *in = ctx->inputs[i]; if (!in) continue; unsigned n = i / 4; unsigned c = i % 4; debug_assert(n < so->nonbinning->inputs_count); if (so->nonbinning->inputs[n].sysval) continue; /* be sure to keep inputs, even if only used in VS */ if (so->nonbinning->inputs[n].compmask & (1 << c)) array_insert(in->block, in->block->keeps, in); } } ir3_debug_print(ir, "BEFORE GROUPING"); ir3_sched_add_deps(ir); /* Group left/right neighbors, inserting mov's where needed to * solve conflicts: */ ir3_group(ir); ir3_debug_print(ir, "AFTER GROUPING"); ir3_depth(ir, so); ir3_debug_print(ir, "AFTER DEPTH"); /* do Sethi–Ullman numbering before scheduling: */ ir3_sun(ir); ret = ir3_sched(ir); if (ret) { DBG("SCHED failed!"); goto out; } if (compiler->gpu_id >= 600) { ir3_a6xx_fixup_atomic_dests(ir, so); } ir3_debug_print(ir, "AFTER SCHED"); /* Pre-assign VS inputs on a6xx+ binning pass shader, to align * with draw pass VS, so binning and draw pass can both use the * same VBO state. * * Note that VS inputs are expected to be full precision. */ bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) && (ir->type == MESA_SHADER_VERTEX) && so->binning_pass; if (pre_assign_inputs) { for (unsigned i = 0; i < ctx->ninputs; i++) { struct ir3_instruction *instr = ctx->inputs[i]; if (!instr) continue; unsigned n = i / 4; unsigned c = i % 4; unsigned regid = so->nonbinning->inputs[n].regid + c; instr->regs[0]->num = regid; } ret = ir3_ra(so, ctx->inputs, ctx->ninputs); } else if (ctx->tcs_header) { /* We need to have these values in the same registers between VS and TCS * since the VS chains to TCS and doesn't get the sysvals redelivered. */ ctx->tcs_header->regs[0]->num = regid(0, 0); ctx->primitive_id->regs[0]->num = regid(0, 1); struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id }; ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor)); } else if (ctx->gs_header) { /* We need to have these values in the same registers between producer * (VS or DS) and GS since the producer chains to GS and doesn't get * the sysvals redelivered. */ ctx->gs_header->regs[0]->num = regid(0, 0); ctx->primitive_id->regs[0]->num = regid(0, 1); struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id }; ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor)); } else if (so->num_sampler_prefetch) { assert(so->type == MESA_SHADER_FRAGMENT); struct ir3_instruction *instr, *precolor[2]; int idx = 0; foreach_input(instr, ir) { if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PIXEL) continue; assert(idx < ARRAY_SIZE(precolor)); precolor[idx] = instr; instr->regs[0]->num = idx; idx++; } ret = ir3_ra(so, precolor, idx); } else { ret = ir3_ra(so, NULL, 0); } if (ret) { DBG("RA failed!"); goto out; } ir3_debug_print(ir, "AFTER RA"); if (so->type == MESA_SHADER_FRAGMENT) pack_inlocs(ctx); /* * Fixup inputs/outputs to point to the actual registers assigned: * * 1) initialize to r63.x (invalid/unused) * 2) iterate IR level inputs/outputs and update the variants * inputs/outputs table based on the assigned registers for * the remaining inputs/outputs. */ for (unsigned i = 0; i < so->inputs_count; i++) so->inputs[i].regid = INVALID_REG; for (unsigned i = 0; i < so->outputs_count; i++) so->outputs[i].regid = INVALID_REG; struct ir3_instruction *out; foreach_output(out, ir) { assert(out->opc == OPC_META_COLLECT); unsigned outidx = out->collect.outidx; so->outputs[outidx].regid = out->regs[0]->num; so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF); } struct ir3_instruction *in; foreach_input(in, ir) { assert(in->opc == OPC_META_INPUT); unsigned inidx = in->input.inidx; if (pre_assign_inputs) { if (VALIDREG(so->nonbinning->inputs[inidx].regid)) { compile_assert(ctx, in->regs[0]->num == so->nonbinning->inputs[inidx].regid); compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) == so->nonbinning->inputs[inidx].half); } so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid; so->inputs[inidx].half = so->nonbinning->inputs[inidx].half; } else { so->inputs[inidx].regid = in->regs[0]->num; so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF); } } if (ctx->astc_srgb) fixup_astc_srgb(ctx); /* We need to do legalize after (for frag shader's) the "bary.f" * offsets (inloc) have been assigned. */ ir3_legalize(ir, &so->has_ssbo, &so->need_pixlod, &max_bary); ir3_debug_print(ir, "AFTER LEGALIZE"); /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't * know what we might have to wait on when coming in from VS chsh. */ if (so->type == MESA_SHADER_TESS_CTRL || so->type == MESA_SHADER_GEOMETRY ) { list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY; break; } } } so->branchstack = ctx->max_stack; /* Note that actual_in counts inputs that are not bary.f'd for FS: */ if (so->type == MESA_SHADER_FRAGMENT) so->total_in = max_bary + 1; so->max_sun = ir->max_sun; /* Collect sampling instructions eligible for pre-dispatch. */ collect_tex_prefetches(ctx, ir); out: if (ret) { if (so->ir) ir3_destroy(so->ir); so->ir = NULL; } ir3_context_free(ctx); return ret; }