/* * Copyright (c) 2012 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ir3.h" #include #include #include #include #include #include #include "util/bitscan.h" #include "util/ralloc.h" #include "util/u_math.h" #include "instr-a3xx.h" #include "ir3_shader.h" /* simple allocator to carve allocations out of an up-front allocated heap, * so that we can free everything easily in one shot. */ void * ir3_alloc(struct ir3 *shader, int sz) { return rzalloc_size(shader, sz); /* TODO: don't use rzalloc */ } struct ir3 * ir3_create(struct ir3_compiler *compiler, struct ir3_shader_variant *v) { struct ir3 *shader = rzalloc(v, struct ir3); shader->compiler = compiler; shader->type = v->type; list_inithead(&shader->block_list); list_inithead(&shader->array_list); return shader; } void ir3_destroy(struct ir3 *shader) { ralloc_free(shader); } #define iassert(cond) do { \ if (!(cond)) { \ debug_assert(cond); \ return -1; \ } } while (0) #define iassert_type(reg, full) do { \ if ((full)) { \ iassert(!((reg)->flags & IR3_REG_HALF)); \ } else { \ iassert((reg)->flags & IR3_REG_HALF); \ } } while (0); static uint32_t reg(struct ir3_register *reg, struct ir3_info *info, uint32_t repeat, uint32_t valid_flags) { struct ir3_shader_variant *v = info->data; reg_t val = { .dummy32 = 0 }; if (reg->flags & ~valid_flags) { debug_printf("INVALID FLAGS: %x vs %x\n", reg->flags, valid_flags); } if (!(reg->flags & IR3_REG_R)) repeat = 0; if (reg->flags & IR3_REG_IMMED) { val.iim_val = reg->iim_val; } else { unsigned components; int16_t max; if (reg->flags & IR3_REG_RELATIV) { components = reg->size; val.idummy10 = reg->array.offset; max = (reg->array.offset + repeat + components - 1); } else { components = util_last_bit(reg->wrmask); val.comp = reg->num & 0x3; val.num = reg->num >> 2; max = (reg->num + repeat + components - 1); } if (reg->flags & IR3_REG_CONST) { info->max_const = MAX2(info->max_const, max >> 2); } else if (val.num == 63) { /* ignore writes to dummy register r63.x */ } else if (max < regid(48, 0)) { if (reg->flags & IR3_REG_HALF) { if (v->mergedregs) { /* starting w/ a6xx, half regs conflict with full regs: */ info->max_reg = MAX2(info->max_reg, max >> 3); } else { info->max_half_reg = MAX2(info->max_half_reg, max >> 2); } } else { info->max_reg = MAX2(info->max_reg, max >> 2); } } } return val.dummy32; } static int emit_cat0(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_shader_variant *v = info->data; instr_cat0_t *cat0 = ptr; if (v->shader->compiler->gpu_id >= 500) { cat0->a5xx.immed = instr->cat0.immed; } else if (v->shader->compiler->gpu_id >= 400) { cat0->a4xx.immed = instr->cat0.immed; } else { cat0->a3xx.immed = instr->cat0.immed; } cat0->repeat = instr->repeat; cat0->ss = !!(instr->flags & IR3_INSTR_SS); cat0->inv0 = instr->cat0.inv; cat0->comp0 = instr->cat0.comp; cat0->opc = instr->opc; cat0->opc_hi = instr->opc >= 16; cat0->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat0->sync = !!(instr->flags & IR3_INSTR_SY); cat0->opc_cat = 0; return 0; } static int emit_cat1(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *dst = instr->regs[0]; struct ir3_register *src = instr->regs[1]; instr_cat1_t *cat1 = ptr; iassert(instr->regs_count == 2); iassert_type(dst, type_size(instr->cat1.dst_type) == 32); if (!(src->flags & IR3_REG_IMMED)) iassert_type(src, type_size(instr->cat1.src_type) == 32); if (src->flags & IR3_REG_IMMED) { cat1->iim_val = src->iim_val; cat1->src_im = 1; } else if (src->flags & IR3_REG_RELATIV) { cat1->off = reg(src, info, instr->repeat, IR3_REG_R | IR3_REG_CONST | IR3_REG_HALF | IR3_REG_RELATIV); cat1->src_rel = 1; cat1->src_rel_c = !!(src->flags & IR3_REG_CONST); } else { cat1->src = reg(src, info, instr->repeat, IR3_REG_R | IR3_REG_CONST | IR3_REG_HALF); cat1->src_c = !!(src->flags & IR3_REG_CONST); } cat1->dst = reg(dst, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_EVEN | IR3_REG_R | IR3_REG_POS_INF | IR3_REG_HALF); cat1->repeat = instr->repeat; cat1->src_r = !!(src->flags & IR3_REG_R); cat1->ss = !!(instr->flags & IR3_INSTR_SS); cat1->ul = !!(instr->flags & IR3_INSTR_UL); cat1->dst_type = instr->cat1.dst_type; cat1->dst_rel = !!(dst->flags & IR3_REG_RELATIV); cat1->src_type = instr->cat1.src_type; cat1->even = !!(dst->flags & IR3_REG_EVEN); cat1->pos_inf = !!(dst->flags & IR3_REG_POS_INF); cat1->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat1->sync = !!(instr->flags & IR3_INSTR_SY); cat1->opc_cat = 1; return 0; } static int emit_cat2(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *dst = instr->regs[0]; struct ir3_register *src1 = instr->regs[1]; struct ir3_register *src2 = instr->regs[2]; instr_cat2_t *cat2 = ptr; unsigned absneg = ir3_cat2_absneg(instr->opc); iassert((instr->regs_count == 2) || (instr->regs_count == 3)); if (instr->nop) { iassert(!instr->repeat); iassert(instr->nop <= 3); cat2->src1_r = instr->nop & 0x1; cat2->src2_r = (instr->nop >> 1) & 0x1; } else { cat2->src1_r = !!(src1->flags & IR3_REG_R); if (src2) cat2->src2_r = !!(src2->flags & IR3_REG_R); } if (src1->flags & IR3_REG_RELATIV) { iassert(src1->array.offset < (1 << 10)); cat2->rel1.src1 = reg(src1, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat2->rel1.src1_c = !!(src1->flags & IR3_REG_CONST); cat2->rel1.src1_rel = 1; } else if (src1->flags & IR3_REG_CONST) { iassert(src1->num < (1 << 12)); cat2->c1.src1 = reg(src1, info, instr->repeat, IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat2->c1.src1_c = 1; } else { iassert(src1->num < (1 << 11)); cat2->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED | IR3_REG_R | IR3_REG_HALF | absneg); } cat2->src1_im = !!(src1->flags & IR3_REG_IMMED); cat2->src1_neg = !!(src1->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT)); cat2->src1_abs = !!(src1->flags & (IR3_REG_FABS | IR3_REG_SABS)); if (src2) { iassert((src2->flags & IR3_REG_IMMED) || !((src1->flags ^ src2->flags) & IR3_REG_HALF)); if (src2->flags & IR3_REG_RELATIV) { iassert(src2->array.offset < (1 << 10)); cat2->rel2.src2 = reg(src2, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat2->rel2.src2_c = !!(src2->flags & IR3_REG_CONST); cat2->rel2.src2_rel = 1; } else if (src2->flags & IR3_REG_CONST) { iassert(src2->num < (1 << 12)); cat2->c2.src2 = reg(src2, info, instr->repeat, IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat2->c2.src2_c = 1; } else { iassert(src2->num < (1 << 11)); cat2->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED | IR3_REG_R | IR3_REG_HALF | absneg); } cat2->src2_im = !!(src2->flags & IR3_REG_IMMED); cat2->src2_neg = !!(src2->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT)); cat2->src2_abs = !!(src2->flags & (IR3_REG_FABS | IR3_REG_SABS)); } cat2->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_EI | IR3_REG_HALF); cat2->repeat = instr->repeat; cat2->sat = !!(instr->flags & IR3_INSTR_SAT); cat2->ss = !!(instr->flags & IR3_INSTR_SS); cat2->ul = !!(instr->flags & IR3_INSTR_UL); cat2->dst_half = !!((src1->flags ^ dst->flags) & IR3_REG_HALF); cat2->ei = !!(dst->flags & IR3_REG_EI); cat2->cond = instr->cat2.condition; cat2->full = ! (src1->flags & IR3_REG_HALF); cat2->opc = instr->opc; cat2->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat2->sync = !!(instr->flags & IR3_INSTR_SY); cat2->opc_cat = 2; return 0; } static int emit_cat3(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *dst = instr->regs[0]; struct ir3_register *src1 = instr->regs[1]; struct ir3_register *src2 = instr->regs[2]; struct ir3_register *src3 = instr->regs[3]; unsigned absneg = ir3_cat3_absneg(instr->opc); instr_cat3_t *cat3 = ptr; uint32_t src_flags = 0; switch (instr->opc) { case OPC_MAD_F16: case OPC_MAD_U16: case OPC_MAD_S16: case OPC_SEL_B16: case OPC_SEL_S16: case OPC_SEL_F16: case OPC_SAD_S16: case OPC_SAD_S32: // really?? src_flags |= IR3_REG_HALF; break; default: break; } iassert(instr->regs_count == 4); iassert(!((src1->flags ^ src_flags) & IR3_REG_HALF)); iassert(!((src2->flags ^ src_flags) & IR3_REG_HALF)); iassert(!((src3->flags ^ src_flags) & IR3_REG_HALF)); if (instr->nop) { iassert(!instr->repeat); iassert(instr->nop <= 3); cat3->src1_r = instr->nop & 0x1; cat3->src2_r = (instr->nop >> 1) & 0x1; } else { cat3->src1_r = !!(src1->flags & IR3_REG_R); cat3->src2_r = !!(src2->flags & IR3_REG_R); } if (src1->flags & IR3_REG_RELATIV) { iassert(src1->array.offset < (1 << 10)); cat3->rel1.src1 = reg(src1, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat3->rel1.src1_c = !!(src1->flags & IR3_REG_CONST); cat3->rel1.src1_rel = 1; } else if (src1->flags & IR3_REG_CONST) { iassert(src1->num < (1 << 12)); cat3->c1.src1 = reg(src1, info, instr->repeat, IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat3->c1.src1_c = 1; } else { iassert(src1->num < (1 << 11)); cat3->src1 = reg(src1, info, instr->repeat, IR3_REG_R | IR3_REG_HALF | absneg); } cat3->src1_neg = !!(src1->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT)); cat3->src2 = reg(src2, info, instr->repeat, IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat3->src2_c = !!(src2->flags & IR3_REG_CONST); cat3->src2_neg = !!(src2->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT)); if (src3->flags & IR3_REG_RELATIV) { iassert(src3->array.offset < (1 << 10)); cat3->rel2.src3 = reg(src3, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat3->rel2.src3_c = !!(src3->flags & IR3_REG_CONST); cat3->rel2.src3_rel = 1; } else if (src3->flags & IR3_REG_CONST) { iassert(src3->num < (1 << 12)); cat3->c2.src3 = reg(src3, info, instr->repeat, IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg); cat3->c2.src3_c = 1; } else { iassert(src3->num < (1 << 11)); cat3->src3 = reg(src3, info, instr->repeat, IR3_REG_R | IR3_REG_HALF | absneg); } cat3->src3_neg = !!(src3->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT)); cat3->src3_r = !!(src3->flags & IR3_REG_R); cat3->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); cat3->repeat = instr->repeat; cat3->sat = !!(instr->flags & IR3_INSTR_SAT); cat3->ss = !!(instr->flags & IR3_INSTR_SS); cat3->ul = !!(instr->flags & IR3_INSTR_UL); cat3->dst_half = !!((src_flags ^ dst->flags) & IR3_REG_HALF); cat3->opc = instr->opc; cat3->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat3->sync = !!(instr->flags & IR3_INSTR_SY); cat3->opc_cat = 3; return 0; } static int emit_cat4(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *dst = instr->regs[0]; struct ir3_register *src = instr->regs[1]; instr_cat4_t *cat4 = ptr; iassert(instr->regs_count == 2); if (src->flags & IR3_REG_RELATIV) { iassert(src->array.offset < (1 << 10)); cat4->rel.src = reg(src, info, instr->repeat, IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_FNEG | IR3_REG_FABS | IR3_REG_R | IR3_REG_HALF); cat4->rel.src_c = !!(src->flags & IR3_REG_CONST); cat4->rel.src_rel = 1; } else if (src->flags & IR3_REG_CONST) { iassert(src->num < (1 << 12)); cat4->c.src = reg(src, info, instr->repeat, IR3_REG_CONST | IR3_REG_FNEG | IR3_REG_FABS | IR3_REG_R | IR3_REG_HALF); cat4->c.src_c = 1; } else { iassert(src->num < (1 << 11)); cat4->src = reg(src, info, instr->repeat, IR3_REG_IMMED | IR3_REG_FNEG | IR3_REG_FABS | IR3_REG_R | IR3_REG_HALF); } cat4->src_im = !!(src->flags & IR3_REG_IMMED); cat4->src_neg = !!(src->flags & IR3_REG_FNEG); cat4->src_abs = !!(src->flags & IR3_REG_FABS); cat4->src_r = !!(src->flags & IR3_REG_R); cat4->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); cat4->repeat = instr->repeat; cat4->sat = !!(instr->flags & IR3_INSTR_SAT); cat4->ss = !!(instr->flags & IR3_INSTR_SS); cat4->ul = !!(instr->flags & IR3_INSTR_UL); cat4->dst_half = !!((src->flags ^ dst->flags) & IR3_REG_HALF); cat4->full = ! (src->flags & IR3_REG_HALF); cat4->opc = instr->opc; cat4->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat4->sync = !!(instr->flags & IR3_INSTR_SY); cat4->opc_cat = 4; return 0; } static int emit_cat5(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *dst = instr->regs[0]; /* To simplify things when there could be zero, one, or two args other * than tex/sampler idx, we use the first src reg in the ir to hold * samp_tex hvec2: */ struct ir3_register *src1; struct ir3_register *src2; instr_cat5_t *cat5 = ptr; iassert((instr->regs_count == 1) || (instr->regs_count == 2) || (instr->regs_count == 3) || (instr->regs_count == 4)); if (instr->flags & IR3_INSTR_S2EN) { src1 = instr->regs[2]; src2 = instr->regs_count > 3 ? instr->regs[3] : NULL; } else { src1 = instr->regs_count > 1 ? instr->regs[1] : NULL; src2 = instr->regs_count > 2 ? instr->regs[2] : NULL; } assume(src1 || !src2); if (src1) { cat5->full = ! (src1->flags & IR3_REG_HALF); cat5->src1 = reg(src1, info, instr->repeat, IR3_REG_HALF); } if (src2) { iassert(!((src1->flags ^ src2->flags) & IR3_REG_HALF)); cat5->src2 = reg(src2, info, instr->repeat, IR3_REG_HALF); } if (instr->flags & IR3_INSTR_B) { cat5->s2en_bindless.base_hi = instr->cat5.tex_base >> 1; cat5->base_lo = instr->cat5.tex_base & 1; } if (instr->flags & IR3_INSTR_S2EN) { struct ir3_register *samp_tex = instr->regs[1]; iassert(samp_tex->flags & IR3_REG_HALF); cat5->s2en_bindless.src3 = reg(samp_tex, info, instr->repeat, (instr->flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF); if (instr->flags & IR3_INSTR_B) { if (instr->flags & IR3_INSTR_A1EN) { cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_A1_UNIFORM; } else { cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_UNIFORM; } } else { /* TODO: This should probably be CAT5_UNIFORM, at least on a6xx, * as this is what the blob does and it is presumably faster, but * first we should confirm it is actually nonuniform and figure * out when the whole descriptor mode mechanism was introduced. */ cat5->s2en_bindless.desc_mode = CAT5_NONUNIFORM; } iassert(!(instr->cat5.samp | instr->cat5.tex)); } else if (instr->flags & IR3_INSTR_B) { cat5->s2en_bindless.src3 = instr->cat5.samp; if (instr->flags & IR3_INSTR_A1EN) { cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_A1_IMM; } else { cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_IMM; } } else { cat5->norm.samp = instr->cat5.samp; cat5->norm.tex = instr->cat5.tex; } cat5->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); cat5->wrmask = dst->wrmask; cat5->type = instr->cat5.type; cat5->is_3d = !!(instr->flags & IR3_INSTR_3D); cat5->is_a = !!(instr->flags & IR3_INSTR_A); cat5->is_s = !!(instr->flags & IR3_INSTR_S); cat5->is_s2en_bindless = !!(instr->flags & (IR3_INSTR_S2EN | IR3_INSTR_B)); cat5->is_o = !!(instr->flags & IR3_INSTR_O); cat5->is_p = !!(instr->flags & IR3_INSTR_P); cat5->opc = instr->opc; cat5->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat5->sync = !!(instr->flags & IR3_INSTR_SY); cat5->opc_cat = 5; return 0; } static int emit_cat6_a6xx(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_register *ssbo; instr_cat6_a6xx_t *cat6 = ptr; ssbo = instr->regs[1]; cat6->type = instr->cat6.type; cat6->d = instr->cat6.d - (instr->opc == OPC_LDC ? 0 : 1); cat6->typed = instr->cat6.typed; cat6->type_size = instr->cat6.iim_val - 1; cat6->opc = instr->opc; cat6->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat6->sync = !!(instr->flags & IR3_INSTR_SY); cat6->opc_cat = 6; cat6->ssbo = reg(ssbo, info, instr->repeat, IR3_REG_IMMED); /* For unused sources in an opcode, initialize contents with the ir3 dest * reg */ switch (instr->opc) { case OPC_RESINFO: cat6->src1 = reg(instr->regs[0], info, instr->repeat, 0); cat6->src2 = reg(instr->regs[0], info, instr->repeat, 0); break; case OPC_LDC: case OPC_LDIB: cat6->src1 = reg(instr->regs[2], info, instr->repeat, 0); cat6->src2 = reg(instr->regs[0], info, instr->repeat, 0); break; default: cat6->src1 = reg(instr->regs[2], info, instr->repeat, 0); cat6->src2 = reg(instr->regs[3], info, instr->repeat, 0); break; } if (instr->flags & IR3_INSTR_B) { if (ssbo->flags & IR3_REG_IMMED) { cat6->desc_mode = CAT6_BINDLESS_IMM; } else { cat6->desc_mode = CAT6_BINDLESS_UNIFORM; } cat6->base = instr->cat6.base; } else { if (ssbo->flags & IR3_REG_IMMED) cat6->desc_mode = CAT6_IMM; else cat6->desc_mode = CAT6_UNIFORM; } switch (instr->opc) { case OPC_ATOMIC_ADD: case OPC_ATOMIC_SUB: case OPC_ATOMIC_XCHG: case OPC_ATOMIC_INC: case OPC_ATOMIC_DEC: case OPC_ATOMIC_CMPXCHG: case OPC_ATOMIC_MIN: case OPC_ATOMIC_MAX: case OPC_ATOMIC_AND: case OPC_ATOMIC_OR: case OPC_ATOMIC_XOR: cat6->pad1 = 0x1; cat6->pad3 = 0xc; cat6->pad5 = 0x3; break; case OPC_STIB: cat6->pad1 = 0x0; cat6->pad3 = 0xc; cat6->pad5 = 0x2; break; case OPC_LDIB: case OPC_RESINFO: cat6->pad1 = 0x1; cat6->pad3 = 0xc; cat6->pad5 = 0x2; break; case OPC_LDC: cat6->pad1 = 0x0; cat6->pad3 = 0x8; cat6->pad5 = 0x2; break; default: iassert(0); } cat6->pad2 = 0x0; cat6->pad4 = 0x0; return 0; } static int emit_cat6(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { struct ir3_shader_variant *v = info->data; struct ir3_register *dst, *src1, *src2; instr_cat6_t *cat6 = ptr; /* In a6xx we start using a new instruction encoding for some of * these instructions: */ if (v->shader->compiler->gpu_id >= 600) { switch (instr->opc) { case OPC_ATOMIC_ADD: case OPC_ATOMIC_SUB: case OPC_ATOMIC_XCHG: case OPC_ATOMIC_INC: case OPC_ATOMIC_DEC: case OPC_ATOMIC_CMPXCHG: case OPC_ATOMIC_MIN: case OPC_ATOMIC_MAX: case OPC_ATOMIC_AND: case OPC_ATOMIC_OR: case OPC_ATOMIC_XOR: /* The shared variants of these still use the old encoding: */ if (!(instr->flags & IR3_INSTR_G)) break; /* fallthrough */ case OPC_STIB: case OPC_LDIB: case OPC_LDC: case OPC_RESINFO: return emit_cat6_a6xx(instr, ptr, info); default: break; } } bool type_full = type_size(instr->cat6.type) == 32; cat6->type = instr->cat6.type; cat6->opc = instr->opc; cat6->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat6->sync = !!(instr->flags & IR3_INSTR_SY); cat6->g = !!(instr->flags & IR3_INSTR_G); cat6->opc_cat = 6; switch (instr->opc) { case OPC_RESINFO: case OPC_RESFMT: iassert_type(instr->regs[0], type_full); /* dst */ iassert_type(instr->regs[1], type_full); /* src1 */ break; case OPC_L2G: case OPC_G2L: iassert_type(instr->regs[0], true); /* dst */ iassert_type(instr->regs[1], true); /* src1 */ break; case OPC_STG: case OPC_STL: case OPC_STP: case OPC_STLW: case OPC_STIB: /* no dst, so regs[0] is dummy */ iassert_type(instr->regs[1], true); /* dst */ iassert_type(instr->regs[2], type_full); /* src1 */ iassert_type(instr->regs[3], true); /* src2 */ break; default: iassert_type(instr->regs[0], type_full); /* dst */ iassert_type(instr->regs[1], true); /* src1 */ if (instr->regs_count > 2) iassert_type(instr->regs[2], true); /* src1 */ break; } /* the "dst" for a store instruction is (from the perspective * of data flow in the shader, ie. register use/def, etc) in * fact a register that is read by the instruction, rather * than written: */ if (is_store(instr)) { iassert(instr->regs_count >= 3); dst = instr->regs[1]; src1 = instr->regs[2]; src2 = (instr->regs_count >= 4) ? instr->regs[3] : NULL; } else { iassert(instr->regs_count >= 2); dst = instr->regs[0]; src1 = instr->regs[1]; src2 = (instr->regs_count >= 3) ? instr->regs[2] : NULL; } /* TODO we need a more comprehensive list about which instructions * can be encoded which way. Or possibly use IR3_INSTR_0 flag to * indicate to use the src_off encoding even if offset is zero * (but then what to do about dst_off?) */ if (is_atomic(instr->opc)) { instr_cat6ldgb_t *ldgb = ptr; /* maybe these two bits both determine the instruction encoding? */ cat6->src_off = false; ldgb->d = instr->cat6.d - 1; ldgb->typed = instr->cat6.typed; ldgb->type_size = instr->cat6.iim_val - 1; ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); if (ldgb->g) { struct ir3_register *src3 = instr->regs[3]; struct ir3_register *src4 = instr->regs[4]; /* first src is src_ssbo: */ iassert(src1->flags & IR3_REG_IMMED); ldgb->src_ssbo = src1->uim_val; ldgb->src_ssbo_im = 0x1; ldgb->src1 = reg(src2, info, instr->repeat, IR3_REG_IMMED); ldgb->src1_im = !!(src2->flags & IR3_REG_IMMED); ldgb->src2 = reg(src3, info, instr->repeat, IR3_REG_IMMED); ldgb->src2_im = !!(src3->flags & IR3_REG_IMMED); ldgb->src3 = reg(src4, info, instr->repeat, 0); ldgb->pad0 = 0x1; } else { ldgb->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED); ldgb->src1_im = !!(src1->flags & IR3_REG_IMMED); ldgb->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED); ldgb->src2_im = !!(src2->flags & IR3_REG_IMMED); ldgb->pad0 = 0x1; ldgb->src_ssbo_im = 0x0; } return 0; } else if (instr->opc == OPC_LDGB) { struct ir3_register *src3 = instr->regs[3]; instr_cat6ldgb_t *ldgb = ptr; /* maybe these two bits both determine the instruction encoding? */ cat6->src_off = false; ldgb->d = instr->cat6.d - 1; ldgb->typed = instr->cat6.typed; ldgb->type_size = instr->cat6.iim_val - 1; ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); /* first src is src_ssbo: */ iassert(src1->flags & IR3_REG_IMMED); ldgb->src_ssbo = src1->uim_val; /* then next two are src1/src2: */ ldgb->src1 = reg(src2, info, instr->repeat, IR3_REG_IMMED); ldgb->src1_im = !!(src2->flags & IR3_REG_IMMED); ldgb->src2 = reg(src3, info, instr->repeat, IR3_REG_IMMED); ldgb->src2_im = !!(src3->flags & IR3_REG_IMMED); ldgb->pad0 = 0x0; ldgb->src_ssbo_im = true; return 0; } else if (instr->opc == OPC_RESINFO) { instr_cat6ldgb_t *ldgb = ptr; ldgb->d = instr->cat6.d - 1; ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); /* first src is src_ssbo: */ ldgb->src_ssbo = reg(src1, info, instr->repeat, IR3_REG_IMMED); ldgb->src_ssbo_im = !!(src1->flags & IR3_REG_IMMED); return 0; } else if ((instr->opc == OPC_STGB) || (instr->opc == OPC_STIB)) { struct ir3_register *src3 = instr->regs[4]; instr_cat6stgb_t *stgb = ptr; /* maybe these two bits both determine the instruction encoding? */ cat6->src_off = true; stgb->pad3 = 0x2; stgb->d = instr->cat6.d - 1; stgb->typed = instr->cat6.typed; stgb->type_size = instr->cat6.iim_val - 1; /* first src is dst_ssbo: */ iassert(dst->flags & IR3_REG_IMMED); stgb->dst_ssbo = dst->uim_val; /* then src1/src2/src3: */ stgb->src1 = reg(src1, info, instr->repeat, 0); stgb->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED); stgb->src2_im = !!(src2->flags & IR3_REG_IMMED); stgb->src3 = reg(src3, info, instr->repeat, IR3_REG_IMMED); stgb->src3_im = !!(src3->flags & IR3_REG_IMMED); return 0; } else if (instr->cat6.src_offset || (instr->opc == OPC_LDG) || (instr->opc == OPC_LDL) || (instr->opc == OPC_LDLW)) { struct ir3_register *src3 = instr->regs[3]; instr_cat6a_t *cat6a = ptr; cat6->src_off = true; if (instr->opc == OPC_LDG) { /* For LDG src1 can not be immediate, so src1_imm is redundant and * instead used to signal whether (when true) 'off' is a 32 bit * register or an immediate offset. */ cat6a->src1 = reg(src1, info, instr->repeat, 0); cat6a->src1_im = !(src3->flags & IR3_REG_IMMED); cat6a->off = reg(src3, info, instr->repeat, IR3_REG_IMMED); } else { cat6a->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED); cat6a->src1_im = !!(src1->flags & IR3_REG_IMMED); cat6a->off = reg(src3, info, instr->repeat, IR3_REG_IMMED); iassert(src3->flags & IR3_REG_IMMED); } /* Num components */ cat6a->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED); cat6a->src2_im = true; } else { instr_cat6b_t *cat6b = ptr; cat6->src_off = false; cat6b->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED | IR3_REG_HALF); cat6b->src1_im = !!(src1->flags & IR3_REG_IMMED); if (src2) { cat6b->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED); cat6b->src2_im = !!(src2->flags & IR3_REG_IMMED); } } if (instr->cat6.dst_offset || (instr->opc == OPC_STG) || (instr->opc == OPC_STL) || (instr->opc == OPC_STLW)) { instr_cat6c_t *cat6c = ptr; cat6->dst_off = true; cat6c->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); if (instr->flags & IR3_INSTR_G) { struct ir3_register *src3 = instr->regs[4]; cat6c->off = reg(src3, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); if (src3->flags & IR3_REG_IMMED) { /* Immediate offsets are in bytes... */ cat6->g = false; cat6c->off *= 4; } } else { cat6c->off = instr->cat6.dst_offset; } } else { instr_cat6d_t *cat6d = ptr; cat6->dst_off = false; cat6d->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF); } return 0; } static int emit_cat7(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) { instr_cat7_t *cat7 = ptr; cat7->ss = !!(instr->flags & IR3_INSTR_SS); cat7->w = instr->cat7.w; cat7->r = instr->cat7.r; cat7->l = instr->cat7.l; cat7->g = instr->cat7.g; cat7->opc = instr->opc; cat7->jmp_tgt = !!(instr->flags & IR3_INSTR_JP); cat7->sync = !!(instr->flags & IR3_INSTR_SY); cat7->opc_cat = 7; return 0; } static int (*emit[])(struct ir3_instruction *instr, void *ptr, struct ir3_info *info) = { emit_cat0, emit_cat1, emit_cat2, emit_cat3, emit_cat4, emit_cat5, emit_cat6, emit_cat7, }; void * ir3_assemble(struct ir3_shader_variant *v) { uint32_t *ptr, *dwords; struct ir3_info *info = &v->info; struct ir3 *shader = v->ir; memset(info, 0, sizeof(*info)); info->data = v; info->max_reg = -1; info->max_half_reg = -1; info->max_const = -1; foreach_block (block, &shader->block_list) { foreach_instr (instr, &block->instr_list) { info->sizedwords += 2; } } /* need an integer number of instruction "groups" (sets of 16 * instructions on a4xx or sets of 4 instructions on a3xx), * so pad out w/ NOPs if needed: (NOTE each instruction is 64bits) */ if (v->shader->compiler->gpu_id >= 400) { info->sizedwords = align(info->sizedwords, 16 * 2); } else { info->sizedwords = align(info->sizedwords, 4 * 2); } ptr = dwords = rzalloc_size(v, 4 * info->sizedwords); foreach_block (block, &shader->block_list) { unsigned sfu_delay = 0; foreach_instr (instr, &block->instr_list) { int ret = emit[opc_cat(instr->opc)](instr, dwords, info); if (ret) goto fail; if ((instr->opc == OPC_BARY_F) && (instr->regs[0]->flags & IR3_REG_EI)) info->last_baryf = info->instrs_count; info->instrs_count += 1 + instr->repeat + instr->nop; info->nops_count += instr->nop; if (instr->opc == OPC_NOP) info->nops_count += 1 + instr->repeat; if (instr->opc == OPC_MOV) { if (instr->cat1.src_type == instr->cat1.dst_type) { info->mov_count += 1 + instr->repeat; } else { info->cov_count += 1 + instr->repeat; } } dwords += 2; if (instr->flags & IR3_INSTR_SS) { info->ss++; info->sstall += sfu_delay; } if (instr->flags & IR3_INSTR_SY) info->sy++; if (is_sfu(instr)) { sfu_delay = 10; } else if (sfu_delay > 0) { sfu_delay--; } } } return ptr; fail: free(ptr); return NULL; } static struct ir3_register * reg_create(struct ir3 *shader, int num, int flags) { struct ir3_register *reg = ir3_alloc(shader, sizeof(struct ir3_register)); reg->wrmask = 1; reg->flags = flags; reg->num = num; return reg; } static void insert_instr(struct ir3_block *block, struct ir3_instruction *instr) { struct ir3 *shader = block->shader; #ifdef DEBUG instr->serialno = ++shader->instr_count; #endif list_addtail(&instr->node, &block->instr_list); if (is_input(instr)) array_insert(shader, shader->baryfs, instr); } struct ir3_block * ir3_block_create(struct ir3 *shader) { struct ir3_block *block = ir3_alloc(shader, sizeof(*block)); #ifdef DEBUG block->serialno = ++shader->block_count; #endif block->shader = shader; list_inithead(&block->node); list_inithead(&block->instr_list); block->predecessors = _mesa_pointer_set_create(block); return block; } static struct ir3_instruction *instr_create(struct ir3_block *block, int nreg) { struct ir3_instruction *instr; unsigned sz = sizeof(*instr) + (nreg * sizeof(instr->regs[0])); char *ptr = ir3_alloc(block->shader, sz); instr = (struct ir3_instruction *)ptr; ptr += sizeof(*instr); instr->regs = (struct ir3_register **)ptr; #ifdef DEBUG instr->regs_max = nreg; #endif return instr; } struct ir3_instruction * ir3_instr_create2(struct ir3_block *block, opc_t opc, int nreg) { struct ir3_instruction *instr = instr_create(block, nreg); instr->block = block; instr->opc = opc; insert_instr(block, instr); return instr; } struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc) { /* NOTE: we could be slightly more clever, at least for non-meta, * and choose # of regs based on category. */ return ir3_instr_create2(block, opc, 4); } struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr) { struct ir3_instruction *new_instr = instr_create(instr->block, instr->regs_count); struct ir3_register **regs; unsigned i; regs = new_instr->regs; *new_instr = *instr; new_instr->regs = regs; insert_instr(instr->block, new_instr); /* clone registers: */ new_instr->regs_count = 0; for (i = 0; i < instr->regs_count; i++) { struct ir3_register *reg = instr->regs[i]; struct ir3_register *new_reg = ir3_reg_create(new_instr, reg->num, reg->flags); *new_reg = *reg; } return new_instr; } /* Add a false dependency to instruction, to ensure it is scheduled first: */ void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep) { array_insert(instr, instr->deps, dep); } struct ir3_register * ir3_reg_create(struct ir3_instruction *instr, int num, int flags) { struct ir3 *shader = instr->block->shader; struct ir3_register *reg = reg_create(shader, num, flags); #ifdef DEBUG debug_assert(instr->regs_count < instr->regs_max); #endif instr->regs[instr->regs_count++] = reg; return reg; } struct ir3_register * ir3_reg_clone(struct ir3 *shader, struct ir3_register *reg) { struct ir3_register *new_reg = reg_create(shader, 0, 0); *new_reg = *reg; return new_reg; } void ir3_instr_set_address(struct ir3_instruction *instr, struct ir3_instruction *addr) { if (instr->address != addr) { struct ir3 *ir = instr->block->shader; debug_assert(!instr->address); debug_assert(instr->block == addr->block); instr->address = addr; debug_assert(reg_num(addr->regs[0]) == REG_A0); unsigned comp = reg_comp(addr->regs[0]); if (comp == 0) { array_insert(ir, ir->a0_users, instr); } else { debug_assert(comp == 1); array_insert(ir, ir->a1_users, instr); } } } void ir3_block_clear_mark(struct ir3_block *block) { foreach_instr (instr, &block->instr_list) instr->flags &= ~IR3_INSTR_MARK; } void ir3_clear_mark(struct ir3 *ir) { foreach_block (block, &ir->block_list) { ir3_block_clear_mark(block); } } unsigned ir3_count_instructions(struct ir3 *ir) { unsigned cnt = 1; foreach_block (block, &ir->block_list) { block->start_ip = cnt; foreach_instr (instr, &block->instr_list) { instr->ip = cnt++; } block->end_ip = cnt; } return cnt; } /* When counting instructions for RA, we insert extra fake instructions at the * beginning of each block, where values become live, and at the end where * values die. This prevents problems where values live-in at the beginning or * live-out at the end of a block from being treated as if they were * live-in/live-out at the first/last instruction, which would be incorrect. * In ir3_legalize these ip's are assumed to be actual ip's of the final * program, so it would be incorrect to use this everywhere. */ unsigned ir3_count_instructions_ra(struct ir3 *ir) { unsigned cnt = 1; foreach_block (block, &ir->block_list) { block->start_ip = cnt++; foreach_instr (instr, &block->instr_list) { instr->ip = cnt++; } block->end_ip = cnt++; } return cnt; } struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id) { foreach_array (arr, &ir->array_list) if (arr->id == id) return arr; return NULL; } void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps) { /* We could do this in a single pass if we can assume instructions * are always sorted. Which currently might not always be true. * (In particular after ir3_group pass, but maybe other places.) */ foreach_block (block, &ir->block_list) foreach_instr (instr, &block->instr_list) instr->uses = NULL; foreach_block (block, &ir->block_list) { foreach_instr (instr, &block->instr_list) { foreach_ssa_src_n (src, n, instr) { if (__is_false_dep(instr, n) && !falsedeps) continue; if (!src->uses) src->uses = _mesa_pointer_set_create(mem_ctx); _mesa_set_add(src->uses, instr); } } } } /** * Set the destination type of an instruction, for example if a * conversion is folded in, handling the special cases where the * instruction's dest type or opcode needs to be fixed up. */ void ir3_set_dst_type(struct ir3_instruction *instr, bool half) { if (half) { instr->regs[0]->flags |= IR3_REG_HALF; } else { instr->regs[0]->flags &= ~IR3_REG_HALF; } switch (opc_cat(instr->opc)) { case 1: /* move instructions */ if (half) { instr->cat1.dst_type = half_type(instr->cat1.dst_type); } else { instr->cat1.dst_type = full_type(instr->cat1.dst_type); } break; case 4: if (half) { instr->opc = cat4_half_opc(instr->opc); } else { instr->opc = cat4_full_opc(instr->opc); } break; case 5: if (half) { instr->cat5.type = half_type(instr->cat5.type); } else { instr->cat5.type = full_type(instr->cat5.type); } break; } } /** * One-time fixup for instruction src-types. Other than cov's that * are folded, an instruction's src type does not change. */ void ir3_fixup_src_type(struct ir3_instruction *instr) { bool half = !!(instr->regs[1]->flags & IR3_REG_HALF); switch (opc_cat(instr->opc)) { case 1: /* move instructions */ if (half) { instr->cat1.src_type = half_type(instr->cat1.src_type); } else { instr->cat1.src_type = full_type(instr->cat1.src_type); } break; case 3: if (half) { instr->opc = cat3_half_opc(instr->opc); } else { instr->opc = cat3_full_opc(instr->opc); } break; } } static unsigned cp_flags(unsigned flags) { /* only considering these flags (at least for now): */ flags &= (IR3_REG_CONST | IR3_REG_IMMED | IR3_REG_FNEG | IR3_REG_FABS | IR3_REG_SNEG | IR3_REG_SABS | IR3_REG_BNOT | IR3_REG_RELATIV); return flags; } bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags) { struct ir3_compiler *compiler = instr->block->shader->compiler; unsigned valid_flags; if ((flags & IR3_REG_HIGH) && (opc_cat(instr->opc) > 1) && (compiler->gpu_id >= 600)) return false; flags = cp_flags(flags); /* If destination is indirect, then source cannot be.. at least * I don't think so.. */ if ((instr->regs[0]->flags & IR3_REG_RELATIV) && (flags & IR3_REG_RELATIV)) return false; if (flags & IR3_REG_RELATIV) { /* TODO need to test on earlier gens.. pretty sure the earlier * problem was just that we didn't check that the src was from * same block (since we can't propagate address register values * across blocks currently) */ if (compiler->gpu_id < 600) return false; /* NOTE in the special try_swap_mad_two_srcs() case we can be * called on a src that has already had an indirect load folded * in, in which case ssa() returns NULL */ if (instr->regs[n+1]->flags & IR3_REG_SSA) { struct ir3_instruction *src = ssa(instr->regs[n+1]); if (src->address->block != instr->block) return false; } } switch (opc_cat(instr->opc)) { case 1: valid_flags = IR3_REG_IMMED | IR3_REG_CONST | IR3_REG_RELATIV; if (flags & ~valid_flags) return false; break; case 2: valid_flags = ir3_cat2_absneg(instr->opc) | IR3_REG_CONST | IR3_REG_RELATIV; if (ir3_cat2_int(instr->opc)) valid_flags |= IR3_REG_IMMED; if (flags & ~valid_flags) return false; if (flags & (IR3_REG_CONST | IR3_REG_IMMED)) { unsigned m = (n ^ 1) + 1; /* cannot deal w/ const in both srcs: * (note that some cat2 actually only have a single src) */ if (m < instr->regs_count) { struct ir3_register *reg = instr->regs[m]; if ((flags & IR3_REG_CONST) && (reg->flags & IR3_REG_CONST)) return false; if ((flags & IR3_REG_IMMED) && (reg->flags & IR3_REG_IMMED)) return false; } } break; case 3: valid_flags = ir3_cat3_absneg(instr->opc) | IR3_REG_CONST | IR3_REG_RELATIV; if (flags & ~valid_flags) return false; if (flags & (IR3_REG_CONST | IR3_REG_RELATIV)) { /* cannot deal w/ const/relativ in 2nd src: */ if (n == 1) return false; } break; case 4: /* seems like blob compiler avoids const as src.. */ /* TODO double check if this is still the case on a4xx */ if (flags & (IR3_REG_CONST | IR3_REG_IMMED)) return false; if (flags & (IR3_REG_SABS | IR3_REG_SNEG)) return false; break; case 5: /* no flags allowed */ if (flags) return false; break; case 6: valid_flags = IR3_REG_IMMED; if (flags & ~valid_flags) return false; if (flags & IR3_REG_IMMED) { /* doesn't seem like we can have immediate src for store * instructions: * * TODO this restriction could also apply to load instructions, * but for load instructions this arg is the address (and not * really sure any good way to test a hard-coded immed addr src) */ if (is_store(instr) && (n == 1)) return false; if ((instr->opc == OPC_LDL) && (n == 0)) return false; if ((instr->opc == OPC_STL) && (n != 2)) return false; if (instr->opc == OPC_STLW && n == 0) return false; if (instr->opc == OPC_LDLW && n == 0) return false; /* disallow immediates in anything but the SSBO slot argument for * cat6 instructions: */ if (is_atomic(instr->opc) && (n != 0)) return false; if (is_atomic(instr->opc) && !(instr->flags & IR3_INSTR_G)) return false; if (instr->opc == OPC_STG && (instr->flags & IR3_INSTR_G) && (n != 2)) return false; /* as with atomics, these cat6 instrs can only have an immediate * for SSBO/IBO slot argument */ switch (instr->opc) { case OPC_LDIB: case OPC_LDC: case OPC_RESINFO: if (n != 0) return false; break; default: break; } } break; } return true; }