/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "vtn_private.h" #include "spirv_info.h" #include "nir_deref.h" #include static struct vtn_access_chain * vtn_access_chain_create(struct vtn_builder *b, unsigned length) { struct vtn_access_chain *chain; /* Subtract 1 from the length since there's already one built in */ size_t size = sizeof(*chain) + (MAX2(length, 1) - 1) * sizeof(chain->link[0]); chain = rzalloc_size(b, size); chain->length = length; return chain; } bool vtn_mode_uses_ssa_offset(struct vtn_builder *b, enum vtn_variable_mode mode) { return ((mode == vtn_variable_mode_ubo || mode == vtn_variable_mode_ssbo) && b->options->lower_ubo_ssbo_access_to_offsets) || mode == vtn_variable_mode_push_constant || (mode == vtn_variable_mode_workgroup && b->options->lower_workgroup_access_to_offsets); } static bool vtn_pointer_is_external_block(struct vtn_builder *b, struct vtn_pointer *ptr) { return ptr->mode == vtn_variable_mode_ssbo || ptr->mode == vtn_variable_mode_ubo || ptr->mode == vtn_variable_mode_phys_ssbo || ptr->mode == vtn_variable_mode_push_constant || (ptr->mode == vtn_variable_mode_workgroup && b->options->lower_workgroup_access_to_offsets); } static nir_ssa_def * vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link, unsigned stride, unsigned bit_size) { vtn_assert(stride > 0); if (link.mode == vtn_access_mode_literal) { return nir_imm_intN_t(&b->nb, link.id * stride, bit_size); } else { nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def; if (ssa->bit_size != bit_size) ssa = nir_i2i(&b->nb, ssa, bit_size); return nir_imul_imm(&b->nb, ssa, stride); } } static VkDescriptorType vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode) { switch (mode) { case vtn_variable_mode_ubo: return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; case vtn_variable_mode_ssbo: return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; default: vtn_fail("Invalid mode for vulkan_resource_index"); } } static nir_ssa_def * vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var, nir_ssa_def *desc_array_index) { vtn_assert(b->options->environment == NIR_SPIRV_VULKAN); if (!desc_array_index) { vtn_assert(glsl_type_is_struct_or_ifc(var->type->type)); desc_array_index = nir_imm_int(&b->nb, 0); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_vulkan_resource_index); instr->src[0] = nir_src_for_ssa(desc_array_index); nir_intrinsic_set_desc_set(instr, var->descriptor_set); nir_intrinsic_set_binding(instr, var->binding); nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode)); vtn_fail_if(var->mode != vtn_variable_mode_ubo && var->mode != vtn_variable_mode_ssbo, "Invalid mode for vulkan_resource_index"); nir_address_format addr_format = vtn_mode_to_address_format(b, var->mode); const struct glsl_type *index_type = b->options->lower_ubo_ssbo_access_to_offsets ? glsl_uint_type() : nir_address_format_to_glsl_type(addr_format); instr->num_components = glsl_get_vector_elements(index_type); nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components, glsl_get_bit_size(index_type), NULL); nir_builder_instr_insert(&b->nb, &instr->instr); return &instr->dest.ssa; } static nir_ssa_def * vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode, nir_ssa_def *base_index, nir_ssa_def *offset_index) { vtn_assert(b->options->environment == NIR_SPIRV_VULKAN); nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_vulkan_resource_reindex); instr->src[0] = nir_src_for_ssa(base_index); instr->src[1] = nir_src_for_ssa(offset_index); nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode)); vtn_fail_if(mode != vtn_variable_mode_ubo && mode != vtn_variable_mode_ssbo, "Invalid mode for vulkan_resource_reindex"); nir_address_format addr_format = vtn_mode_to_address_format(b, mode); const struct glsl_type *index_type = b->options->lower_ubo_ssbo_access_to_offsets ? glsl_uint_type() : nir_address_format_to_glsl_type(addr_format); instr->num_components = glsl_get_vector_elements(index_type); nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components, glsl_get_bit_size(index_type), NULL); nir_builder_instr_insert(&b->nb, &instr->instr); return &instr->dest.ssa; } static nir_ssa_def * vtn_descriptor_load(struct vtn_builder *b, enum vtn_variable_mode mode, nir_ssa_def *desc_index) { vtn_assert(b->options->environment == NIR_SPIRV_VULKAN); nir_intrinsic_instr *desc_load = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_load_vulkan_descriptor); desc_load->src[0] = nir_src_for_ssa(desc_index); nir_intrinsic_set_desc_type(desc_load, vk_desc_type_for_mode(b, mode)); vtn_fail_if(mode != vtn_variable_mode_ubo && mode != vtn_variable_mode_ssbo, "Invalid mode for load_vulkan_descriptor"); nir_address_format addr_format = vtn_mode_to_address_format(b, mode); const struct glsl_type *ptr_type = nir_address_format_to_glsl_type(addr_format); desc_load->num_components = glsl_get_vector_elements(ptr_type); nir_ssa_dest_init(&desc_load->instr, &desc_load->dest, desc_load->num_components, glsl_get_bit_size(ptr_type), NULL); nir_builder_instr_insert(&b->nb, &desc_load->instr); return &desc_load->dest.ssa; } /* Dereference the given base pointer by the access chain */ static struct vtn_pointer * vtn_nir_deref_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { struct vtn_type *type = base->type; enum gl_access_qualifier access = base->access; unsigned idx = 0; nir_deref_instr *tail; if (base->deref) { tail = base->deref; } else if (b->options->environment == NIR_SPIRV_VULKAN && vtn_pointer_is_external_block(b, base)) { nir_ssa_def *block_index = base->block_index; /* We dereferencing an external block pointer. Correctness of this * operation relies on one particular line in the SPIR-V spec, section * entitled "Validation Rules for Shader Capabilities": * * "Block and BufferBlock decorations cannot decorate a structure * type that is nested at any level inside another structure type * decorated with Block or BufferBlock." * * This means that we can detect the point where we cross over from * descriptor indexing to buffer indexing by looking for the block * decorated struct type. Anything before the block decorated struct * type is a descriptor indexing operation and anything after the block * decorated struct is a buffer offset operation. */ /* Figure out the descriptor array index if any * * Some of the Vulkan CTS tests with hand-rolled SPIR-V have been known * to forget the Block or BufferBlock decoration from time to time. * It's more robust if we check for both !block_index and for the type * to contain a block. This way there's a decent chance that arrays of * UBOs/SSBOs will work correctly even if variable pointers are * completley toast. */ nir_ssa_def *desc_arr_idx = NULL; if (!block_index || vtn_type_contains_block(b, type)) { /* If our type contains a block, then we're still outside the block * and we need to process enough levels of dereferences to get inside * of it. */ if (deref_chain->ptr_as_array) { unsigned aoa_size = glsl_get_aoa_size(type->type); desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[idx], MAX2(aoa_size, 1), 32); idx++; } for (; idx < deref_chain->length; idx++) { if (type->base_type != vtn_base_type_array) { vtn_assert(type->base_type == vtn_base_type_struct); break; } unsigned aoa_size = glsl_get_aoa_size(type->array_element->type); nir_ssa_def *arr_offset = vtn_access_link_as_ssa(b, deref_chain->link[idx], MAX2(aoa_size, 1), 32); if (desc_arr_idx) desc_arr_idx = nir_iadd(&b->nb, desc_arr_idx, arr_offset); else desc_arr_idx = arr_offset; type = type->array_element; access |= type->access; } } if (!block_index) { vtn_assert(base->var && base->type); block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx); } else if (desc_arr_idx) { block_index = vtn_resource_reindex(b, base->mode, block_index, desc_arr_idx); } if (idx == deref_chain->length) { /* The entire deref was consumed in finding the block index. Return * a pointer which just has a block index and a later access chain * will dereference deeper. */ struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = base->mode; ptr->type = type; ptr->block_index = block_index; ptr->access = access; return ptr; } /* If we got here, there's more access chain to handle and we have the * final block index. Insert a descriptor load and cast to a deref to * start the deref chain. */ nir_ssa_def *desc = vtn_descriptor_load(b, base->mode, block_index); assert(base->mode == vtn_variable_mode_ssbo || base->mode == vtn_variable_mode_ubo); nir_variable_mode nir_mode = base->mode == vtn_variable_mode_ssbo ? nir_var_mem_ssbo : nir_var_mem_ubo; tail = nir_build_deref_cast(&b->nb, desc, nir_mode, type->type, base->ptr_type->stride); } else { assert(base->var && base->var->var); tail = nir_build_deref_var(&b->nb, base->var->var); if (base->ptr_type && base->ptr_type->type) { tail->dest.ssa.num_components = glsl_get_vector_elements(base->ptr_type->type); tail->dest.ssa.bit_size = glsl_get_bit_size(base->ptr_type->type); } } if (idx == 0 && deref_chain->ptr_as_array) { /* We start with a deref cast to get the stride. Hopefully, we'll be * able to delete that cast eventually. */ tail = nir_build_deref_cast(&b->nb, &tail->dest.ssa, tail->mode, tail->type, base->ptr_type->stride); nir_ssa_def *index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, tail->dest.ssa.bit_size); tail = nir_build_deref_ptr_as_array(&b->nb, tail, index); idx++; } for (; idx < deref_chain->length; idx++) { if (glsl_type_is_struct_or_ifc(type->type)) { vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal); unsigned field = deref_chain->link[idx].id; tail = nir_build_deref_struct(&b->nb, tail, field); type = type->members[field]; } else { nir_ssa_def *arr_index = vtn_access_link_as_ssa(b, deref_chain->link[idx], 1, tail->dest.ssa.bit_size); tail = nir_build_deref_array(&b->nb, tail, arr_index); type = type->array_element; } access |= type->access; } struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = base->mode; ptr->type = type; ptr->var = base->var; ptr->deref = tail; ptr->access = access; return ptr; } static struct vtn_pointer * vtn_ssa_offset_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { nir_ssa_def *block_index = base->block_index; nir_ssa_def *offset = base->offset; struct vtn_type *type = base->type; enum gl_access_qualifier access = base->access; unsigned idx = 0; if (base->mode == vtn_variable_mode_ubo || base->mode == vtn_variable_mode_ssbo) { if (!block_index) { vtn_assert(base->var && base->type); nir_ssa_def *desc_arr_idx; if (glsl_type_is_array(type->type)) { if (deref_chain->length >= 1) { desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32); idx++; /* This consumes a level of type */ type = type->array_element; access |= type->access; } else { /* This is annoying. We've been asked for a pointer to the * array of UBOs/SSBOs and not a specifc buffer. Return a * pointer with a descriptor index of 0 and we'll have to do * a reindex later to adjust it to the right thing. */ desc_arr_idx = nir_imm_int(&b->nb, 0); } } else if (deref_chain->ptr_as_array) { /* You can't have a zero-length OpPtrAccessChain */ vtn_assert(deref_chain->length >= 1); desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32); } else { /* We have a regular non-array SSBO. */ desc_arr_idx = NULL; } block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx); } else if (deref_chain->ptr_as_array && type->base_type == vtn_base_type_struct && type->block) { /* We are doing an OpPtrAccessChain on a pointer to a struct that is * decorated block. This is an interesting corner in the SPIR-V * spec. One interpretation would be that they client is clearly * trying to treat that block as if it's an implicit array of blocks * repeated in the buffer. However, the SPIR-V spec for the * OpPtrAccessChain says: * * "Base is treated as the address of the first element of an * array, and the Element element’s address is computed to be the * base for the Indexes, as per OpAccessChain." * * Taken literally, that would mean that your struct type is supposed * to be treated as an array of such a struct and, since it's * decorated block, that means an array of blocks which corresponds * to an array descriptor. Therefore, we need to do a reindex * operation to add the index from the first link in the access chain * to the index we recieved. * * The downside to this interpretation (there always is one) is that * this might be somewhat surprising behavior to apps if they expect * the implicit array behavior described above. */ vtn_assert(deref_chain->length >= 1); nir_ssa_def *offset_index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32); idx++; block_index = vtn_resource_reindex(b, base->mode, block_index, offset_index); } } if (!offset) { if (base->mode == vtn_variable_mode_workgroup) { /* SLM doesn't need nor have a block index */ vtn_assert(!block_index); /* We need the variable for the base offset */ vtn_assert(base->var); /* We need ptr_type for size and alignment */ vtn_assert(base->ptr_type); /* Assign location on first use so that we don't end up bloating SLM * address space for variables which are never statically used. */ if (base->var->shared_location < 0) { vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0); b->shader->num_shared = vtn_align_u32(b->shader->num_shared, base->ptr_type->align); base->var->shared_location = b->shader->num_shared; b->shader->num_shared += base->ptr_type->length; } offset = nir_imm_int(&b->nb, base->var->shared_location); } else if (base->mode == vtn_variable_mode_push_constant) { /* Push constants neither need nor have a block index */ vtn_assert(!block_index); /* Start off with at the start of the push constant block. */ offset = nir_imm_int(&b->nb, 0); } else { /* The code above should have ensured a block_index when needed. */ vtn_assert(block_index); /* Start off with at the start of the buffer. */ offset = nir_imm_int(&b->nb, 0); } } if (deref_chain->ptr_as_array && idx == 0) { /* We need ptr_type for the stride */ vtn_assert(base->ptr_type); /* We need at least one element in the chain */ vtn_assert(deref_chain->length >= 1); nir_ssa_def *elem_offset = vtn_access_link_as_ssa(b, deref_chain->link[idx], base->ptr_type->stride, offset->bit_size); offset = nir_iadd(&b->nb, offset, elem_offset); idx++; } for (; idx < deref_chain->length; idx++) { switch (glsl_get_base_type(type->type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT16: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: { nir_ssa_def *elem_offset = vtn_access_link_as_ssa(b, deref_chain->link[idx], type->stride, offset->bit_size); offset = nir_iadd(&b->nb, offset, elem_offset); type = type->array_element; access |= type->access; break; } case GLSL_TYPE_INTERFACE: case GLSL_TYPE_STRUCT: { vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal); unsigned member = deref_chain->link[idx].id; offset = nir_iadd_imm(&b->nb, offset, type->offsets[member]); type = type->members[member]; access |= type->access; break; } default: vtn_fail("Invalid type for deref"); } } struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = base->mode; ptr->type = type; ptr->block_index = block_index; ptr->offset = offset; ptr->access = access; return ptr; } /* Dereference the given base pointer by the access chain */ static struct vtn_pointer * vtn_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { if (vtn_pointer_uses_ssa_offset(b, base)) { return vtn_ssa_offset_pointer_dereference(b, base, deref_chain); } else { return vtn_nir_deref_pointer_dereference(b, base, deref_chain); } } struct vtn_pointer * vtn_pointer_for_variable(struct vtn_builder *b, struct vtn_variable *var, struct vtn_type *ptr_type) { struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer); pointer->mode = var->mode; pointer->type = var->type; vtn_assert(ptr_type->base_type == vtn_base_type_pointer); vtn_assert(ptr_type->deref->type == var->type->type); pointer->ptr_type = ptr_type; pointer->var = var; pointer->access = var->access | var->type->access; return pointer; } /* Returns an atomic_uint type based on the original uint type. The returned * type will be equivalent to the original one but will have an atomic_uint * type as leaf instead of an uint. * * Manages uint scalars, arrays, and arrays of arrays of any nested depth. */ static const struct glsl_type * repair_atomic_type(const struct glsl_type *type) { assert(glsl_get_base_type(glsl_without_array(type)) == GLSL_TYPE_UINT); assert(glsl_type_is_scalar(glsl_without_array(type))); if (glsl_type_is_array(type)) { const struct glsl_type *atomic = repair_atomic_type(glsl_get_array_element(type)); return glsl_array_type(atomic, glsl_get_length(type), glsl_get_explicit_stride(type)); } else { return glsl_atomic_uint_type(); } } nir_deref_instr * vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr) { if (b->wa_glslang_179) { /* Do on-the-fly copy propagation for samplers. */ if (ptr->var && ptr->var->copy_prop_sampler) return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler); } vtn_assert(!vtn_pointer_uses_ssa_offset(b, ptr)); if (!ptr->deref) { struct vtn_access_chain chain = { .length = 0, }; ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain); } return ptr->deref; } static void _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref, struct vtn_ssa_value *inout, enum gl_access_qualifier access) { if (glsl_type_is_vector_or_scalar(deref->type)) { if (load) { inout->def = nir_load_deref_with_access(&b->nb, deref, access); } else { nir_store_deref_with_access(&b->nb, deref, inout->def, ~0, access); } } else if (glsl_type_is_array(deref->type) || glsl_type_is_matrix(deref->type)) { unsigned elems = glsl_get_length(deref->type); for (unsigned i = 0; i < elems; i++) { nir_deref_instr *child = nir_build_deref_array_imm(&b->nb, deref, i); _vtn_local_load_store(b, load, child, inout->elems[i], access); } } else { vtn_assert(glsl_type_is_struct_or_ifc(deref->type)); unsigned elems = glsl_get_length(deref->type); for (unsigned i = 0; i < elems; i++) { nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i); _vtn_local_load_store(b, load, child, inout->elems[i], access); } } } nir_deref_instr * vtn_nir_deref(struct vtn_builder *b, uint32_t id) { struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer; return vtn_pointer_to_deref(b, ptr); } /* * Gets the NIR-level deref tail, which may have as a child an array deref * selecting which component due to OpAccessChain supporting per-component * indexing in SPIR-V. */ static nir_deref_instr * get_deref_tail(nir_deref_instr *deref) { if (deref->deref_type != nir_deref_type_array) return deref; nir_deref_instr *parent = nir_instr_as_deref(deref->parent.ssa->parent_instr); if (glsl_type_is_vector(parent->type)) return parent; else return deref; } struct vtn_ssa_value * vtn_local_load(struct vtn_builder *b, nir_deref_instr *src, enum gl_access_qualifier access) { nir_deref_instr *src_tail = get_deref_tail(src); struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type); _vtn_local_load_store(b, true, src_tail, val, access); if (src_tail != src) { val->type = src->type; if (nir_src_is_const(src->arr.index)) val->def = vtn_vector_extract(b, val->def, nir_src_as_uint(src->arr.index)); else val->def = vtn_vector_extract_dynamic(b, val->def, src->arr.index.ssa); } return val; } void vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src, nir_deref_instr *dest, enum gl_access_qualifier access) { nir_deref_instr *dest_tail = get_deref_tail(dest); if (dest_tail != dest) { struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type); _vtn_local_load_store(b, true, dest_tail, val, access); if (nir_src_is_const(dest->arr.index)) val->def = vtn_vector_insert(b, val->def, src->def, nir_src_as_uint(dest->arr.index)); else val->def = vtn_vector_insert_dynamic(b, val->def, src->def, dest->arr.index.ssa); _vtn_local_load_store(b, false, dest_tail, val, access); } else { _vtn_local_load_store(b, false, dest_tail, src, access); } } nir_ssa_def * vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr, nir_ssa_def **index_out) { assert(vtn_pointer_uses_ssa_offset(b, ptr)); if (!ptr->offset) { struct vtn_access_chain chain = { .length = 0, }; ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain); } *index_out = ptr->block_index; return ptr->offset; } /* Tries to compute the size of an interface block based on the strides and * offsets that are provided to us in the SPIR-V source. */ static unsigned vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type) { enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT16: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: { unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) : glsl_get_matrix_columns(type->type); if (cols > 1) { vtn_assert(type->stride > 0); return type->stride * cols; } else { unsigned type_size = glsl_get_bit_size(type->type) / 8; return glsl_get_vector_elements(type->type) * type_size; } } case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: { unsigned size = 0; unsigned num_fields = glsl_get_length(type->type); for (unsigned f = 0; f < num_fields; f++) { unsigned field_end = type->offsets[f] + vtn_type_block_size(b, type->members[f]); size = MAX2(size, field_end); } return size; } case GLSL_TYPE_ARRAY: vtn_assert(type->stride > 0); vtn_assert(glsl_get_length(type->type) > 0); return type->stride * glsl_get_length(type->type); default: vtn_fail("Invalid block type"); return 0; } } static void _vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load, nir_ssa_def *index, nir_ssa_def *offset, unsigned access_offset, unsigned access_size, struct vtn_ssa_value **inout, const struct glsl_type *type, enum gl_access_qualifier access) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op); instr->num_components = glsl_get_vector_elements(type); /* Booleans usually shouldn't show up in external memory in SPIR-V. * However, they do for certain older GLSLang versions and can for shared * memory when we lower access chains internally. */ const unsigned data_bit_size = glsl_type_is_boolean(type) ? 32 : glsl_get_bit_size(type); int src = 0; if (!load) { nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1); instr->src[src++] = nir_src_for_ssa((*inout)->def); } if (op == nir_intrinsic_load_push_constant) { nir_intrinsic_set_base(instr, access_offset); nir_intrinsic_set_range(instr, access_size); } if (op == nir_intrinsic_load_ubo || op == nir_intrinsic_load_ssbo || op == nir_intrinsic_store_ssbo) { nir_intrinsic_set_access(instr, access); } /* With extensions like relaxed_block_layout, we really can't guarantee * much more than scalar alignment. */ if (op != nir_intrinsic_load_push_constant) nir_intrinsic_set_align(instr, data_bit_size / 8, 0); if (index) instr->src[src++] = nir_src_for_ssa(index); if (op == nir_intrinsic_load_push_constant) { /* We need to subtract the offset from where the intrinsic will load the * data. */ instr->src[src++] = nir_src_for_ssa(nir_isub(&b->nb, offset, nir_imm_int(&b->nb, access_offset))); } else { instr->src[src++] = nir_src_for_ssa(offset); } if (load) { nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components, data_bit_size, NULL); (*inout)->def = &instr->dest.ssa; } nir_builder_instr_insert(&b->nb, &instr->instr); if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL) (*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0)); } static void _vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load, nir_ssa_def *index, nir_ssa_def *offset, unsigned access_offset, unsigned access_size, struct vtn_type *type, enum gl_access_qualifier access, struct vtn_ssa_value **inout) { if (load && *inout == NULL) *inout = vtn_create_ssa_value(b, type->type); enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT16: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: /* This is where things get interesting. At this point, we've hit * a vector, a scalar, or a matrix. */ if (glsl_type_is_matrix(type->type)) { /* Loading the whole matrix */ struct vtn_ssa_value *transpose; unsigned num_ops, vec_width, col_stride; if (type->row_major) { num_ops = glsl_get_vector_elements(type->type); vec_width = glsl_get_matrix_columns(type->type); col_stride = type->array_element->stride; if (load) { const struct glsl_type *transpose_type = glsl_matrix_type(base_type, vec_width, num_ops); *inout = vtn_create_ssa_value(b, transpose_type); } else { transpose = vtn_ssa_transpose(b, *inout); inout = &transpose; } } else { num_ops = glsl_get_matrix_columns(type->type); vec_width = glsl_get_vector_elements(type->type); col_stride = type->stride; } for (unsigned i = 0; i < num_ops; i++) { nir_ssa_def *elem_offset = nir_iadd_imm(&b->nb, offset, i * col_stride); _vtn_load_store_tail(b, op, load, index, elem_offset, access_offset, access_size, &(*inout)->elems[i], glsl_vector_type(base_type, vec_width), type->access | access); } if (load && type->row_major) *inout = vtn_ssa_transpose(b, *inout); } else { unsigned elems = glsl_get_vector_elements(type->type); unsigned type_size = glsl_get_bit_size(type->type) / 8; if (elems == 1 || type->stride == type_size) { /* This is a tightly-packed normal scalar or vector load */ vtn_assert(glsl_type_is_vector_or_scalar(type->type)); _vtn_load_store_tail(b, op, load, index, offset, access_offset, access_size, inout, type->type, type->access | access); } else { /* This is a strided load. We have to load N things separately. * This is the single column of a row-major matrix case. */ vtn_assert(type->stride > type_size); vtn_assert(type->stride % type_size == 0); nir_ssa_def *per_comp[4]; for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_offset = nir_iadd_imm(&b->nb, offset, i * type->stride); struct vtn_ssa_value *comp, temp_val; if (!load) { temp_val.def = nir_channel(&b->nb, (*inout)->def, i); temp_val.type = glsl_scalar_type(base_type); } comp = &temp_val; _vtn_load_store_tail(b, op, load, index, elem_offset, access_offset, access_size, &comp, glsl_scalar_type(base_type), type->access | access); per_comp[i] = comp->def; } if (load) { if (*inout == NULL) *inout = vtn_create_ssa_value(b, type->type); (*inout)->def = nir_vec(&b->nb, per_comp, elems); } } } return; case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(type->type); for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_off = nir_iadd_imm(&b->nb, offset, i * type->stride); _vtn_block_load_store(b, op, load, index, elem_off, access_offset, access_size, type->array_element, type->array_element->access | access, &(*inout)->elems[i]); } return; } case GLSL_TYPE_INTERFACE: case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(type->type); for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_off = nir_iadd_imm(&b->nb, offset, type->offsets[i]); _vtn_block_load_store(b, op, load, index, elem_off, access_offset, access_size, type->members[i], type->members[i]->access | access, &(*inout)->elems[i]); } return; } default: vtn_fail("Invalid block member type"); } } static struct vtn_ssa_value * vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src) { nir_intrinsic_op op; unsigned access_offset = 0, access_size = 0; switch (src->mode) { case vtn_variable_mode_ubo: op = nir_intrinsic_load_ubo; break; case vtn_variable_mode_ssbo: op = nir_intrinsic_load_ssbo; break; case vtn_variable_mode_push_constant: op = nir_intrinsic_load_push_constant; access_size = b->shader->num_uniforms; break; case vtn_variable_mode_workgroup: op = nir_intrinsic_load_shared; break; default: vtn_fail("Invalid block variable mode"); } nir_ssa_def *offset, *index = NULL; offset = vtn_pointer_to_offset(b, src, &index); struct vtn_ssa_value *value = NULL; _vtn_block_load_store(b, op, true, index, offset, access_offset, access_size, src->type, src->access, &value); return value; } static void vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_pointer *dst) { nir_intrinsic_op op; switch (dst->mode) { case vtn_variable_mode_ssbo: op = nir_intrinsic_store_ssbo; break; case vtn_variable_mode_workgroup: op = nir_intrinsic_store_shared; break; default: vtn_fail("Invalid block variable mode"); } nir_ssa_def *offset, *index = NULL; offset = vtn_pointer_to_offset(b, dst, &index); _vtn_block_load_store(b, op, false, index, offset, 0, 0, dst->type, dst->access, &src); } static void _vtn_variable_load_store(struct vtn_builder *b, bool load, struct vtn_pointer *ptr, enum gl_access_qualifier access, struct vtn_ssa_value **inout) { enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT16: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: if (glsl_type_is_vector_or_scalar(ptr->type->type)) { /* We hit a vector or scalar; go ahead and emit the load[s] */ nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr); if (vtn_pointer_is_external_block(b, ptr)) { /* If it's external, we call nir_load/store_deref directly. The * vtn_local_load/store helpers are too clever and do magic to * avoid array derefs of vectors. That magic is both less * efficient than the direct load/store and, in the case of * stores, is broken because it creates a race condition if two * threads are writing to different components of the same vector * due to the load+insert+store it uses to emulate the array * deref. */ if (load) { *inout = vtn_create_ssa_value(b, ptr->type->type); (*inout)->def = nir_load_deref_with_access(&b->nb, deref, ptr->type->access | access); } else { nir_store_deref_with_access(&b->nb, deref, (*inout)->def, ~0, ptr->type->access | access); } } else { if (load) { *inout = vtn_local_load(b, deref, ptr->type->access | access); } else { vtn_local_store(b, *inout, deref, ptr->type->access | access); } } return; } /* Fall through */ case GLSL_TYPE_INTERFACE: case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(ptr->type->type); if (load) { vtn_assert(*inout == NULL); *inout = rzalloc(b, struct vtn_ssa_value); (*inout)->type = ptr->type->type; (*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems); } struct vtn_access_chain chain = { .length = 1, .link = { { .mode = vtn_access_mode_literal, }, } }; for (unsigned i = 0; i < elems; i++) { chain.link[0].id = i; struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain); _vtn_variable_load_store(b, load, elem, ptr->type->access | access, &(*inout)->elems[i]); } return; } default: vtn_fail("Invalid access chain type"); } } struct vtn_ssa_value * vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src) { if (vtn_pointer_uses_ssa_offset(b, src)) { return vtn_block_load(b, src); } else { struct vtn_ssa_value *val = NULL; _vtn_variable_load_store(b, true, src, src->access, &val); return val; } } void vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_pointer *dest) { if (vtn_pointer_uses_ssa_offset(b, dest)) { vtn_assert(dest->mode == vtn_variable_mode_ssbo || dest->mode == vtn_variable_mode_workgroup); vtn_block_store(b, src, dest); } else { _vtn_variable_load_store(b, false, dest, dest->access, &src); } } static void _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest, struct vtn_pointer *src) { vtn_assert(src->type->type == dest->type->type); enum glsl_base_type base_type = glsl_get_base_type(src->type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT16: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: /* At this point, we have a scalar, vector, or matrix so we know that * there cannot be any structure splitting still in the way. By * stopping at the matrix level rather than the vector level, we * ensure that matrices get loaded in the optimal way even if they * are storred row-major in a UBO. */ vtn_variable_store(b, vtn_variable_load(b, src), dest); return; case GLSL_TYPE_INTERFACE: case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: { struct vtn_access_chain chain = { .length = 1, .link = { { .mode = vtn_access_mode_literal, }, } }; unsigned elems = glsl_get_length(src->type->type); for (unsigned i = 0; i < elems; i++) { chain.link[0].id = i; struct vtn_pointer *src_elem = vtn_pointer_dereference(b, src, &chain); struct vtn_pointer *dest_elem = vtn_pointer_dereference(b, dest, &chain); _vtn_variable_copy(b, dest_elem, src_elem); } return; } default: vtn_fail("Invalid access chain type"); } } static void vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest, struct vtn_pointer *src) { /* TODO: At some point, we should add a special-case for when we can * just emit a copy_var intrinsic. */ _vtn_variable_copy(b, dest, src); } static void set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode) { vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in); *mode = nir_var_system_value; } static void vtn_get_builtin_location(struct vtn_builder *b, SpvBuiltIn builtin, int *location, nir_variable_mode *mode) { switch (builtin) { case SpvBuiltInPosition: *location = VARYING_SLOT_POS; break; case SpvBuiltInPointSize: *location = VARYING_SLOT_PSIZ; break; case SpvBuiltInClipDistance: *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */ break; case SpvBuiltInCullDistance: *location = VARYING_SLOT_CULL_DIST0; break; case SpvBuiltInVertexId: case SpvBuiltInVertexIndex: /* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't * allow VertexId. The ARB_gl_spirv spec defines VertexId to be the * same as gl_VertexID, which is non-zero-based, and removes * VertexIndex. Since they're both defined to be non-zero-based, we use * SYSTEM_VALUE_VERTEX_ID for both. */ *location = SYSTEM_VALUE_VERTEX_ID; set_mode_system_value(b, mode); break; case SpvBuiltInInstanceIndex: *location = SYSTEM_VALUE_INSTANCE_INDEX; set_mode_system_value(b, mode); break; case SpvBuiltInInstanceId: *location = SYSTEM_VALUE_INSTANCE_ID; set_mode_system_value(b, mode); break; case SpvBuiltInPrimitiveId: if (b->shader->info.stage == MESA_SHADER_FRAGMENT) { vtn_assert(*mode == nir_var_shader_in); *location = VARYING_SLOT_PRIMITIVE_ID; } else if (*mode == nir_var_shader_out) { *location = VARYING_SLOT_PRIMITIVE_ID; } else { *location = SYSTEM_VALUE_PRIMITIVE_ID; set_mode_system_value(b, mode); } break; case SpvBuiltInInvocationId: *location = SYSTEM_VALUE_INVOCATION_ID; set_mode_system_value(b, mode); break; case SpvBuiltInLayer: *location = VARYING_SLOT_LAYER; if (b->shader->info.stage == MESA_SHADER_FRAGMENT) *mode = nir_var_shader_in; else if (b->shader->info.stage == MESA_SHADER_GEOMETRY) *mode = nir_var_shader_out; else if (b->options && b->options->caps.shader_viewport_index_layer && (b->shader->info.stage == MESA_SHADER_VERTEX || b->shader->info.stage == MESA_SHADER_TESS_EVAL)) *mode = nir_var_shader_out; else vtn_fail("invalid stage for SpvBuiltInLayer"); break; case SpvBuiltInViewportIndex: *location = VARYING_SLOT_VIEWPORT; if (b->shader->info.stage == MESA_SHADER_GEOMETRY) *mode = nir_var_shader_out; else if (b->options && b->options->caps.shader_viewport_index_layer && (b->shader->info.stage == MESA_SHADER_VERTEX || b->shader->info.stage == MESA_SHADER_TESS_EVAL)) *mode = nir_var_shader_out; else if (b->shader->info.stage == MESA_SHADER_FRAGMENT) *mode = nir_var_shader_in; else vtn_fail("invalid stage for SpvBuiltInViewportIndex"); break; case SpvBuiltInTessLevelOuter: *location = VARYING_SLOT_TESS_LEVEL_OUTER; break; case SpvBuiltInTessLevelInner: *location = VARYING_SLOT_TESS_LEVEL_INNER; break; case SpvBuiltInTessCoord: *location = SYSTEM_VALUE_TESS_COORD; set_mode_system_value(b, mode); break; case SpvBuiltInPatchVertices: *location = SYSTEM_VALUE_VERTICES_IN; set_mode_system_value(b, mode); break; case SpvBuiltInFragCoord: *location = VARYING_SLOT_POS; vtn_assert(*mode == nir_var_shader_in); break; case SpvBuiltInPointCoord: *location = VARYING_SLOT_PNTC; vtn_assert(*mode == nir_var_shader_in); break; case SpvBuiltInFrontFacing: *location = SYSTEM_VALUE_FRONT_FACE; set_mode_system_value(b, mode); break; case SpvBuiltInSampleId: *location = SYSTEM_VALUE_SAMPLE_ID; set_mode_system_value(b, mode); break; case SpvBuiltInSamplePosition: *location = SYSTEM_VALUE_SAMPLE_POS; set_mode_system_value(b, mode); break; case SpvBuiltInSampleMask: if (*mode == nir_var_shader_out) { *location = FRAG_RESULT_SAMPLE_MASK; } else { *location = SYSTEM_VALUE_SAMPLE_MASK_IN; set_mode_system_value(b, mode); } break; case SpvBuiltInFragDepth: *location = FRAG_RESULT_DEPTH; vtn_assert(*mode == nir_var_shader_out); break; case SpvBuiltInHelperInvocation: *location = SYSTEM_VALUE_HELPER_INVOCATION; set_mode_system_value(b, mode); break; case SpvBuiltInNumWorkgroups: *location = SYSTEM_VALUE_NUM_WORK_GROUPS; set_mode_system_value(b, mode); break; case SpvBuiltInWorkgroupSize: *location = SYSTEM_VALUE_LOCAL_GROUP_SIZE; set_mode_system_value(b, mode); break; case SpvBuiltInWorkgroupId: *location = SYSTEM_VALUE_WORK_GROUP_ID; set_mode_system_value(b, mode); break; case SpvBuiltInLocalInvocationId: *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID; set_mode_system_value(b, mode); break; case SpvBuiltInLocalInvocationIndex: *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; set_mode_system_value(b, mode); break; case SpvBuiltInGlobalInvocationId: *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID; set_mode_system_value(b, mode); break; case SpvBuiltInGlobalLinearId: *location = SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX; set_mode_system_value(b, mode); break; case SpvBuiltInBaseVertex: /* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same * semantic as SPIR-V BaseVertex (SYSTEM_VALUE_FIRST_VERTEX). */ *location = SYSTEM_VALUE_FIRST_VERTEX; set_mode_system_value(b, mode); break; case SpvBuiltInBaseInstance: *location = SYSTEM_VALUE_BASE_INSTANCE; set_mode_system_value(b, mode); break; case SpvBuiltInDrawIndex: *location = SYSTEM_VALUE_DRAW_ID; set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupSize: *location = SYSTEM_VALUE_SUBGROUP_SIZE; set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupId: *location = SYSTEM_VALUE_SUBGROUP_ID; set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupLocalInvocationId: *location = SYSTEM_VALUE_SUBGROUP_INVOCATION; set_mode_system_value(b, mode); break; case SpvBuiltInNumSubgroups: *location = SYSTEM_VALUE_NUM_SUBGROUPS; set_mode_system_value(b, mode); break; case SpvBuiltInDeviceIndex: *location = SYSTEM_VALUE_DEVICE_INDEX; set_mode_system_value(b, mode); break; case SpvBuiltInViewIndex: *location = SYSTEM_VALUE_VIEW_INDEX; set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupEqMask: *location = SYSTEM_VALUE_SUBGROUP_EQ_MASK, set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupGeMask: *location = SYSTEM_VALUE_SUBGROUP_GE_MASK, set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupGtMask: *location = SYSTEM_VALUE_SUBGROUP_GT_MASK, set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupLeMask: *location = SYSTEM_VALUE_SUBGROUP_LE_MASK, set_mode_system_value(b, mode); break; case SpvBuiltInSubgroupLtMask: *location = SYSTEM_VALUE_SUBGROUP_LT_MASK, set_mode_system_value(b, mode); break; case SpvBuiltInFragStencilRefEXT: *location = FRAG_RESULT_STENCIL; vtn_assert(*mode == nir_var_shader_out); break; case SpvBuiltInWorkDim: *location = SYSTEM_VALUE_WORK_DIM; set_mode_system_value(b, mode); break; case SpvBuiltInGlobalSize: *location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE; set_mode_system_value(b, mode); break; default: vtn_fail("Unsupported builtin: %s (%u)", spirv_builtin_to_string(builtin), builtin); } } static void apply_var_decoration(struct vtn_builder *b, struct nir_variable_data *var_data, const struct vtn_decoration *dec) { switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNoPerspective: var_data->interpolation = INTERP_MODE_NOPERSPECTIVE; break; case SpvDecorationFlat: var_data->interpolation = INTERP_MODE_FLAT; break; case SpvDecorationCentroid: var_data->centroid = true; break; case SpvDecorationSample: var_data->sample = true; break; case SpvDecorationInvariant: var_data->invariant = true; break; case SpvDecorationConstant: var_data->read_only = true; break; case SpvDecorationNonReadable: var_data->image.access |= ACCESS_NON_READABLE; break; case SpvDecorationNonWritable: var_data->read_only = true; var_data->image.access |= ACCESS_NON_WRITEABLE; break; case SpvDecorationRestrict: var_data->image.access |= ACCESS_RESTRICT; break; case SpvDecorationVolatile: var_data->image.access |= ACCESS_VOLATILE; break; case SpvDecorationCoherent: var_data->image.access |= ACCESS_COHERENT; break; case SpvDecorationComponent: var_data->location_frac = dec->operands[0]; break; case SpvDecorationIndex: var_data->index = dec->operands[0]; break; case SpvDecorationBuiltIn: { SpvBuiltIn builtin = dec->operands[0]; nir_variable_mode mode = var_data->mode; vtn_get_builtin_location(b, builtin, &var_data->location, &mode); var_data->mode = mode; switch (builtin) { case SpvBuiltInTessLevelOuter: case SpvBuiltInTessLevelInner: case SpvBuiltInClipDistance: case SpvBuiltInCullDistance: var_data->compact = true; break; default: break; } } case SpvDecorationSpecId: case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationMatrixStride: case SpvDecorationAliased: case SpvDecorationUniform: case SpvDecorationUniformId: case SpvDecorationLinkageAttributes: break; /* Do nothing with these here */ case SpvDecorationPatch: var_data->patch = true; break; case SpvDecorationLocation: vtn_fail("Handled above"); case SpvDecorationBlock: case SpvDecorationBufferBlock: case SpvDecorationArrayStride: case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: break; /* These can apply to a type but we don't care about them */ case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoration not allowed for variable or structure member: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationXfbBuffer: var_data->explicit_xfb_buffer = true; var_data->xfb_buffer = dec->operands[0]; var_data->always_active_io = true; break; case SpvDecorationXfbStride: var_data->explicit_xfb_stride = true; var_data->xfb_stride = dec->operands[0]; break; case SpvDecorationOffset: var_data->explicit_offset = true; var_data->offset = dec->operands[0]; break; case SpvDecorationStream: var_data->stream = dec->operands[0]; break; case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: if (b->shader->info.stage != MESA_SHADER_KERNEL) { vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); } break; case SpvDecorationUserSemantic: /* User semantic decorations can safely be ignored by the driver. */ break; case SpvDecorationRestrictPointerEXT: case SpvDecorationAliasedPointerEXT: /* TODO: We should actually plumb alias information through NIR. */ break; default: vtn_fail_with_decoration("Unhandled decoration", dec->decoration); } } static void var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *out_is_patch) { if (dec->decoration == SpvDecorationPatch) { *((bool *) out_is_patch) = true; } } static void var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_var) { struct vtn_variable *vtn_var = void_var; /* Handle decorations that apply to a vtn_variable as a whole */ switch (dec->decoration) { case SpvDecorationBinding: vtn_var->binding = dec->operands[0]; vtn_var->explicit_binding = true; return; case SpvDecorationDescriptorSet: vtn_var->descriptor_set = dec->operands[0]; return; case SpvDecorationInputAttachmentIndex: vtn_var->input_attachment_index = dec->operands[0]; return; case SpvDecorationPatch: vtn_var->patch = true; break; case SpvDecorationOffset: vtn_var->offset = dec->operands[0]; break; case SpvDecorationNonWritable: vtn_var->access |= ACCESS_NON_WRITEABLE; break; case SpvDecorationNonReadable: vtn_var->access |= ACCESS_NON_READABLE; break; case SpvDecorationVolatile: vtn_var->access |= ACCESS_VOLATILE; break; case SpvDecorationCoherent: vtn_var->access |= ACCESS_COHERENT; break; case SpvDecorationCounterBuffer: /* Counter buffer decorations can safely be ignored by the driver. */ break; default: break; } if (val->value_type == vtn_value_type_pointer) { assert(val->pointer->var == void_var); assert(member == -1); } else { assert(val->value_type == vtn_value_type_type); } /* Location is odd. If applied to a split structure, we have to walk the * whole thing and accumulate the location. It's easier to handle as a * special case. */ if (dec->decoration == SpvDecorationLocation) { unsigned location = dec->operands[0]; if (b->shader->info.stage == MESA_SHADER_FRAGMENT && vtn_var->mode == vtn_variable_mode_output) { location += FRAG_RESULT_DATA0; } else if (b->shader->info.stage == MESA_SHADER_VERTEX && vtn_var->mode == vtn_variable_mode_input) { location += VERT_ATTRIB_GENERIC0; } else if (vtn_var->mode == vtn_variable_mode_input || vtn_var->mode == vtn_variable_mode_output) { location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0; } else if (vtn_var->mode != vtn_variable_mode_uniform) { vtn_warn("Location must be on input, output, uniform, sampler or " "image variable"); return; } if (vtn_var->var->num_members == 0) { /* This handles the member and lone variable cases */ vtn_var->var->data.location = location; } else { /* This handles the structure member case */ assert(vtn_var->var->members); if (member == -1) vtn_var->base_location = location; else vtn_var->var->members[member].location = location; } return; } else { if (vtn_var->var) { if (vtn_var->var->num_members == 0) { /* We call this function on types as well as variables and not all * struct types get split so we can end up having stray member * decorations; just ignore them. */ if (member == -1) apply_var_decoration(b, &vtn_var->var->data, dec); } else if (member >= 0) { /* Member decorations must come from a type */ assert(val->value_type == vtn_value_type_type); apply_var_decoration(b, &vtn_var->var->members[member], dec); } else { unsigned length = glsl_get_length(glsl_without_array(vtn_var->type->type)); for (unsigned i = 0; i < length; i++) apply_var_decoration(b, &vtn_var->var->members[i], dec); } } else { /* A few variables, those with external storage, have no actual * nir_variables associated with them. Fortunately, all decorations * we care about for those variables are on the type only. */ vtn_assert(vtn_var->mode == vtn_variable_mode_ubo || vtn_var->mode == vtn_variable_mode_ssbo || vtn_var->mode == vtn_variable_mode_push_constant || (vtn_var->mode == vtn_variable_mode_workgroup && b->options->lower_workgroup_access_to_offsets)); } } } static void ptr_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ptr) { struct vtn_pointer *ptr = void_ptr; switch (dec->decoration) { case SpvDecorationNonUniformEXT: ptr->access |= ACCESS_NON_UNIFORM; break; default: break; } } enum vtn_variable_mode vtn_storage_class_to_mode(struct vtn_builder *b, SpvStorageClass class, struct vtn_type *interface_type, nir_variable_mode *nir_mode_out) { enum vtn_variable_mode mode; nir_variable_mode nir_mode; switch (class) { case SpvStorageClassUniform: /* Assume it's an UBO if we lack the interface_type. */ if (!interface_type || interface_type->block) { mode = vtn_variable_mode_ubo; nir_mode = nir_var_mem_ubo; } else if (interface_type->buffer_block) { mode = vtn_variable_mode_ssbo; nir_mode = nir_var_mem_ssbo; } else { /* Default-block uniforms, coming from gl_spirv */ mode = vtn_variable_mode_uniform; nir_mode = nir_var_uniform; } break; case SpvStorageClassStorageBuffer: mode = vtn_variable_mode_ssbo; nir_mode = nir_var_mem_ssbo; break; case SpvStorageClassPhysicalStorageBufferEXT: mode = vtn_variable_mode_phys_ssbo; nir_mode = nir_var_mem_global; break; case SpvStorageClassUniformConstant: mode = vtn_variable_mode_uniform; nir_mode = nir_var_uniform; break; case SpvStorageClassPushConstant: mode = vtn_variable_mode_push_constant; nir_mode = nir_var_uniform; break; case SpvStorageClassInput: mode = vtn_variable_mode_input; nir_mode = nir_var_shader_in; break; case SpvStorageClassOutput: mode = vtn_variable_mode_output; nir_mode = nir_var_shader_out; break; case SpvStorageClassPrivate: mode = vtn_variable_mode_private; nir_mode = nir_var_shader_temp; break; case SpvStorageClassFunction: mode = vtn_variable_mode_function; nir_mode = nir_var_function_temp; break; case SpvStorageClassWorkgroup: mode = vtn_variable_mode_workgroup; nir_mode = nir_var_mem_shared; break; case SpvStorageClassAtomicCounter: mode = vtn_variable_mode_uniform; nir_mode = nir_var_uniform; break; case SpvStorageClassCrossWorkgroup: mode = vtn_variable_mode_cross_workgroup; nir_mode = nir_var_mem_global; break; case SpvStorageClassImage: mode = vtn_variable_mode_image; nir_mode = nir_var_mem_ubo; break; case SpvStorageClassGeneric: default: vtn_fail("Unhandled variable storage class: %s (%u)", spirv_storageclass_to_string(class), class); } if (nir_mode_out) *nir_mode_out = nir_mode; return mode; } nir_address_format vtn_mode_to_address_format(struct vtn_builder *b, enum vtn_variable_mode mode) { switch (mode) { case vtn_variable_mode_ubo: return b->options->ubo_addr_format; case vtn_variable_mode_ssbo: return b->options->ssbo_addr_format; case vtn_variable_mode_phys_ssbo: return b->options->phys_ssbo_addr_format; case vtn_variable_mode_push_constant: return b->options->push_const_addr_format; case vtn_variable_mode_workgroup: return b->options->shared_addr_format; case vtn_variable_mode_cross_workgroup: return b->options->global_addr_format; case vtn_variable_mode_function: if (b->physical_ptrs) return b->options->temp_addr_format; /* Fall through. */ case vtn_variable_mode_private: case vtn_variable_mode_uniform: case vtn_variable_mode_input: case vtn_variable_mode_output: case vtn_variable_mode_image: return nir_address_format_logical; } unreachable("Invalid variable mode"); } nir_ssa_def * vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr) { if (vtn_pointer_uses_ssa_offset(b, ptr)) { /* This pointer needs to have a pointer type with actual storage */ vtn_assert(ptr->ptr_type); vtn_assert(ptr->ptr_type->type); if (!ptr->offset) { /* If we don't have an offset then we must be a pointer to the variable * itself. */ vtn_assert(!ptr->offset && !ptr->block_index); struct vtn_access_chain chain = { .length = 0, }; ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain); } vtn_assert(ptr->offset); if (ptr->block_index) { vtn_assert(ptr->mode == vtn_variable_mode_ubo || ptr->mode == vtn_variable_mode_ssbo); return nir_vec2(&b->nb, ptr->block_index, ptr->offset); } else { vtn_assert(ptr->mode == vtn_variable_mode_workgroup); return ptr->offset; } } else { if (vtn_pointer_is_external_block(b, ptr) && vtn_type_contains_block(b, ptr->type) && ptr->mode != vtn_variable_mode_phys_ssbo) { /* In this case, we're looking for a block index and not an actual * deref. * * For PhysicalStorageBufferEXT pointers, we don't have a block index * at all because we get the pointer directly from the client. This * assumes that there will never be a SSBO binding variable using the * PhysicalStorageBufferEXT storage class. This assumption appears * to be correct according to the Vulkan spec because the table, * "Shader Resource and Storage Class Correspondence," the only the * Uniform storage class with BufferBlock or the StorageBuffer * storage class with Block can be used. */ if (!ptr->block_index) { /* If we don't have a block_index then we must be a pointer to the * variable itself. */ vtn_assert(!ptr->deref); struct vtn_access_chain chain = { .length = 0, }; ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain); } return ptr->block_index; } else { return &vtn_pointer_to_deref(b, ptr)->dest.ssa; } } } struct vtn_pointer * vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa, struct vtn_type *ptr_type) { vtn_assert(ptr_type->base_type == vtn_base_type_pointer); struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); struct vtn_type *without_array = vtn_type_without_array(ptr_type->deref); nir_variable_mode nir_mode; ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class, without_array, &nir_mode); ptr->type = ptr_type->deref; ptr->ptr_type = ptr_type; if (b->wa_glslang_179) { /* To work around https://github.com/KhronosGroup/glslang/issues/179 we * need to whack the mode because it creates a function parameter with * the Function storage class even though it's a pointer to a sampler. * If we don't do this, then NIR won't get rid of the deref_cast for us. */ if (ptr->mode == vtn_variable_mode_function && (ptr->type->base_type == vtn_base_type_sampler || ptr->type->base_type == vtn_base_type_sampled_image)) { ptr->mode = vtn_variable_mode_uniform; nir_mode = nir_var_uniform; } } if (vtn_pointer_uses_ssa_offset(b, ptr)) { /* This pointer type needs to have actual storage */ vtn_assert(ptr_type->type); if (ptr->mode == vtn_variable_mode_ubo || ptr->mode == vtn_variable_mode_ssbo) { vtn_assert(ssa->num_components == 2); ptr->block_index = nir_channel(&b->nb, ssa, 0); ptr->offset = nir_channel(&b->nb, ssa, 1); } else { vtn_assert(ssa->num_components == 1); ptr->block_index = NULL; ptr->offset = ssa; } } else { const struct glsl_type *deref_type = ptr_type->deref->type; if (!vtn_pointer_is_external_block(b, ptr)) { ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode, deref_type, ptr_type->stride); } else if (vtn_type_contains_block(b, ptr->type) && ptr->mode != vtn_variable_mode_phys_ssbo) { /* This is a pointer to somewhere in an array of blocks, not a * pointer to somewhere inside the block. Set the block index * instead of making a cast. */ ptr->block_index = ssa; } else { /* This is a pointer to something internal or a pointer inside a * block. It's just a regular cast. * * For PhysicalStorageBufferEXT pointers, we don't have a block index * at all because we get the pointer directly from the client. This * assumes that there will never be a SSBO binding variable using the * PhysicalStorageBufferEXT storage class. This assumption appears * to be correct according to the Vulkan spec because the table, * "Shader Resource and Storage Class Correspondence," the only the * Uniform storage class with BufferBlock or the StorageBuffer * storage class with Block can be used. */ ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode, ptr_type->deref->type, ptr_type->stride); ptr->deref->dest.ssa.num_components = glsl_get_vector_elements(ptr_type->type); ptr->deref->dest.ssa.bit_size = glsl_get_bit_size(ptr_type->type); } } return ptr; } static bool is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage) { if (var->patch || !glsl_type_is_array(var->type->type)) return false; if (var->mode == vtn_variable_mode_input) { return stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY; } if (var->mode == vtn_variable_mode_output) return stage == MESA_SHADER_TESS_CTRL; return false; } static void assign_missing_member_locations(struct vtn_variable *var) { unsigned length = glsl_get_length(glsl_without_array(var->type->type)); int location = var->base_location; for (unsigned i = 0; i < length; i++) { /* From the Vulkan spec: * * “If the structure type is a Block but without a Location, then each * of its members must have a Location decoration.” * */ if (var->type->block) { assert(var->base_location != -1 || var->var->members[i].location != -1); } /* From the Vulkan spec: * * “Any member with its own Location decoration is assigned that * location. Each remaining member is assigned the location after the * immediately preceding member in declaration order.” */ if (var->var->members[i].location != -1) location = var->var->members[i].location; else var->var->members[i].location = location; /* Below we use type instead of interface_type, because interface_type * is only available when it is a Block. This code also supports * input/outputs that are just structs */ const struct glsl_type *member_type = glsl_get_struct_field(glsl_without_array(var->type->type), i); location += glsl_count_attribute_slots(member_type, false /* is_gl_vertex_input */); } } static void vtn_create_variable(struct vtn_builder *b, struct vtn_value *val, struct vtn_type *ptr_type, SpvStorageClass storage_class, nir_constant *initializer) { vtn_assert(ptr_type->base_type == vtn_base_type_pointer); struct vtn_type *type = ptr_type->deref; struct vtn_type *without_array = vtn_type_without_array(ptr_type->deref); enum vtn_variable_mode mode; nir_variable_mode nir_mode; mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode); switch (mode) { case vtn_variable_mode_ubo: /* There's no other way to get vtn_variable_mode_ubo */ vtn_assert(without_array->block); b->shader->info.num_ubos++; break; case vtn_variable_mode_ssbo: if (storage_class == SpvStorageClassStorageBuffer && !without_array->block) { if (b->variable_pointers) { vtn_fail("Variables in the StorageBuffer storage class must " "have a struct type with the Block decoration"); } else { /* If variable pointers are not present, it's still malformed * SPIR-V but we can parse it and do the right thing anyway. * Since some of the 8-bit storage tests have bugs in this are, * just make it a warning for now. */ vtn_warn("Variables in the StorageBuffer storage class must " "have a struct type with the Block decoration"); } } b->shader->info.num_ssbos++; break; case vtn_variable_mode_uniform: if (glsl_type_is_image(without_array->type)) b->shader->info.num_images++; else if (glsl_type_is_sampler(without_array->type)) b->shader->info.num_textures++; break; case vtn_variable_mode_push_constant: b->shader->num_uniforms = vtn_type_block_size(b, type); break; case vtn_variable_mode_image: vtn_fail("Cannot create a variable with the Image storage class"); break; case vtn_variable_mode_phys_ssbo: vtn_fail("Cannot create a variable with the " "PhysicalStorageBufferEXT storage class"); break; default: /* No tallying is needed */ break; } struct vtn_variable *var = rzalloc(b, struct vtn_variable); var->type = type; var->mode = mode; var->base_location = -1; vtn_assert(val->value_type == vtn_value_type_pointer); val->pointer = vtn_pointer_for_variable(b, var, ptr_type); switch (var->mode) { case vtn_variable_mode_function: case vtn_variable_mode_private: case vtn_variable_mode_uniform: /* For these, we create the variable normally */ var->var = rzalloc(b->shader, nir_variable); var->var->name = ralloc_strdup(var->var, val->name); if (storage_class == SpvStorageClassAtomicCounter) { /* Need to tweak the nir type here as at vtn_handle_type we don't * have the access to storage_class, that is the one that points us * that is an atomic uint. */ var->var->type = repair_atomic_type(var->type->type); } else { /* Private variables don't have any explicit layout but some layouts * may have leaked through due to type deduplication in the SPIR-V. */ var->var->type = var->type->type; } var->var->data.mode = nir_mode; var->var->data.location = -1; var->var->interface_type = NULL; break; case vtn_variable_mode_workgroup: if (b->options->lower_workgroup_access_to_offsets) { var->shared_location = -1; } else { /* Create the variable normally */ var->var = rzalloc(b->shader, nir_variable); var->var->name = ralloc_strdup(var->var, val->name); /* Workgroup variables don't have any explicit layout but some * layouts may have leaked through due to type deduplication in the * SPIR-V. */ var->var->type = var->type->type; var->var->data.mode = nir_var_mem_shared; } break; case vtn_variable_mode_input: case vtn_variable_mode_output: { /* In order to know whether or not we're a per-vertex inout, we need * the patch qualifier. This means walking the variable decorations * early before we actually create any variables. Not a big deal. * * GLSLang really likes to place decorations in the most interior * thing it possibly can. In particular, if you have a struct, it * will place the patch decorations on the struct members. This * should be handled by the variable splitting below just fine. * * If you have an array-of-struct, things get even more weird as it * will place the patch decorations on the struct even though it's * inside an array and some of the members being patch and others not * makes no sense whatsoever. Since the only sensible thing is for * it to be all or nothing, we'll call it patch if any of the members * are declared patch. */ var->patch = false; vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch); if (glsl_type_is_array(var->type->type) && glsl_type_is_struct_or_ifc(without_array->type)) { vtn_foreach_decoration(b, vtn_value(b, without_array->id, vtn_value_type_type), var_is_patch_cb, &var->patch); } /* For inputs and outputs, we immediately split structures. This * is for a couple of reasons. For one, builtins may all come in * a struct and we really want those split out into separate * variables. For another, interpolation qualifiers can be * applied to members of the top-level struct ane we need to be * able to preserve that information. */ struct vtn_type *per_vertex_type = var->type; if (is_per_vertex_inout(var, b->shader->info.stage)) { /* In Geometry shaders (and some tessellation), inputs come * in per-vertex arrays. However, some builtins come in * non-per-vertex, hence the need for the is_array check. In * any case, there are no non-builtin arrays allowed so this * check should be sufficient. */ per_vertex_type = var->type->array_element; } var->var = rzalloc(b->shader, nir_variable); var->var->name = ralloc_strdup(var->var, val->name); /* In Vulkan, shader I/O variables don't have any explicit layout but * some layouts may have leaked through due to type deduplication in * the SPIR-V. We do, however, keep the layouts in the variable's * interface_type because we need offsets for XFB arrays of blocks. */ var->var->type = var->type->type; var->var->data.mode = nir_mode; var->var->data.patch = var->patch; /* Figure out the interface block type. */ struct vtn_type *iface_type = per_vertex_type; if (var->mode == vtn_variable_mode_output && (b->shader->info.stage == MESA_SHADER_VERTEX || b->shader->info.stage == MESA_SHADER_TESS_EVAL || b->shader->info.stage == MESA_SHADER_GEOMETRY)) { /* For vertex data outputs, we can end up with arrays of blocks for * transform feedback where each array element corresponds to a * different XFB output buffer. */ while (iface_type->base_type == vtn_base_type_array) iface_type = iface_type->array_element; } if (iface_type->base_type == vtn_base_type_struct && iface_type->block) var->var->interface_type = iface_type->type; if (per_vertex_type->base_type == vtn_base_type_struct && per_vertex_type->block) { /* It's a struct. Set it up as per-member. */ var->var->num_members = glsl_get_length(per_vertex_type->type); var->var->members = rzalloc_array(var->var, struct nir_variable_data, var->var->num_members); for (unsigned i = 0; i < var->var->num_members; i++) { var->var->members[i].mode = nir_mode; var->var->members[i].patch = var->patch; var->var->members[i].location = -1; } } /* For inputs and outputs, we need to grab locations and builtin * information from the per-vertex type. */ vtn_foreach_decoration(b, vtn_value(b, per_vertex_type->id, vtn_value_type_type), var_decoration_cb, var); break; } case vtn_variable_mode_ubo: case vtn_variable_mode_ssbo: case vtn_variable_mode_push_constant: case vtn_variable_mode_cross_workgroup: /* These don't need actual variables. */ break; case vtn_variable_mode_image: case vtn_variable_mode_phys_ssbo: unreachable("Should have been caught before"); } if (initializer) { var->var->constant_initializer = nir_constant_clone(initializer, var->var); } vtn_foreach_decoration(b, val, var_decoration_cb, var); vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer); if ((var->mode == vtn_variable_mode_input || var->mode == vtn_variable_mode_output) && var->var->members) { assign_missing_member_locations(var); } if (var->mode == vtn_variable_mode_uniform) { /* XXX: We still need the binding information in the nir_variable * for these. We should fix that. */ var->var->data.binding = var->binding; var->var->data.explicit_binding = var->explicit_binding; var->var->data.descriptor_set = var->descriptor_set; var->var->data.index = var->input_attachment_index; var->var->data.offset = var->offset; if (glsl_type_is_image(without_array->type)) var->var->data.image.format = without_array->image_format; } if (var->mode == vtn_variable_mode_function) { vtn_assert(var->var != NULL && var->var->members == NULL); nir_function_impl_add_variable(b->nb.impl, var->var); } else if (var->var) { nir_shader_add_variable(b->shader, var->var); } else { vtn_assert(vtn_pointer_is_external_block(b, val->pointer)); } } static void vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode, struct vtn_type *dst_type, struct vtn_type *src_type) { if (dst_type->id == src_type->id) return; if (vtn_types_compatible(b, dst_type, src_type)) { /* Early versions of GLSLang would re-emit types unnecessarily and you * would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have * mismatched source and destination types. * * https://github.com/KhronosGroup/glslang/issues/304 * https://github.com/KhronosGroup/glslang/issues/307 * https://bugs.freedesktop.org/show_bug.cgi?id=104338 * https://bugs.freedesktop.org/show_bug.cgi?id=104424 */ vtn_warn("Source and destination types of %s do not have the same " "ID (but are compatible): %u vs %u", spirv_op_to_string(opcode), dst_type->id, src_type->id); return; } vtn_fail("Source and destination types of %s do not match: %s vs. %s", spirv_op_to_string(opcode), glsl_get_type_name(dst_type->type), glsl_get_type_name(src_type->type)); } static nir_ssa_def * nir_shrink_zero_pad_vec(nir_builder *b, nir_ssa_def *val, unsigned num_components) { if (val->num_components == num_components) return val; nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < num_components; i++) { if (i < val->num_components) comps[i] = nir_channel(b, val, i); else comps[i] = nir_imm_intN_t(b, 0, val->bit_size); } return nir_vec(b, comps, num_components); } static nir_ssa_def * nir_sloppy_bitcast(nir_builder *b, nir_ssa_def *val, const struct glsl_type *type) { const unsigned num_components = glsl_get_vector_elements(type); const unsigned bit_size = glsl_get_bit_size(type); /* First, zero-pad to ensure that the value is big enough that when we * bit-cast it, we don't loose anything. */ if (val->bit_size < bit_size) { const unsigned src_num_components_needed = vtn_align_u32(val->num_components, bit_size / val->bit_size); val = nir_shrink_zero_pad_vec(b, val, src_num_components_needed); } val = nir_bitcast_vector(b, val, bit_size); return nir_shrink_zero_pad_vec(b, val, num_components); } void vtn_handle_variables(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpUndef: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef); val->type = vtn_value(b, w[1], vtn_value_type_type)->type; break; } case SpvOpVariable: { struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer); SpvStorageClass storage_class = w[3]; nir_constant *initializer = NULL; if (count > 4) initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant; vtn_create_variable(b, val, ptr_type, storage_class, initializer); break; } case SpvOpAccessChain: case SpvOpPtrAccessChain: case SpvOpInBoundsAccessChain: case SpvOpInBoundsPtrAccessChain: { struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4); chain->ptr_as_array = (opcode == SpvOpPtrAccessChain || opcode == SpvOpInBoundsPtrAccessChain); unsigned idx = 0; for (int i = 4; i < count; i++) { struct vtn_value *link_val = vtn_untyped_value(b, w[i]); if (link_val->value_type == vtn_value_type_constant) { chain->link[idx].mode = vtn_access_mode_literal; chain->link[idx].id = vtn_constant_int(b, w[i]); } else { chain->link[idx].mode = vtn_access_mode_id; chain->link[idx].id = w[i]; } idx++; } struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *base_val = vtn_untyped_value(b, w[3]); if (base_val->value_type == vtn_value_type_sampled_image) { /* This is rather insane. SPIR-V allows you to use OpSampledImage * to combine an array of images with a single sampler to get an * array of sampled images that all share the same sampler. * Fortunately, this means that we can more-or-less ignore the * sampler when crawling the access chain, but it does leave us * with this rather awkward little special-case. */ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->type = base_val->sampled_image->type; val->sampled_image->image = vtn_pointer_dereference(b, base_val->sampled_image->image, chain); val->sampled_image->sampler = base_val->sampled_image->sampler; vtn_foreach_decoration(b, val, ptr_decoration_cb, val->sampled_image->image); vtn_foreach_decoration(b, val, ptr_decoration_cb, val->sampled_image->sampler); } else { vtn_assert(base_val->value_type == vtn_value_type_pointer); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer); val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain); val->pointer->ptr_type = ptr_type; vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer); } break; } case SpvOpCopyMemory: { struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer); struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer); vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref); vtn_variable_copy(b, dest->pointer, src->pointer); break; } case SpvOpLoad: { struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer); struct vtn_pointer *src = src_val->pointer; vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref); if (glsl_type_is_image(res_type->type) || glsl_type_is_sampler(res_type->type)) { vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src; return; } vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src)); break; } case SpvOpStore: { struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer); struct vtn_pointer *dest = dest_val->pointer; struct vtn_value *src_val = vtn_untyped_value(b, w[2]); /* OpStore requires us to actually have a storage type */ vtn_fail_if(dest->type->type == NULL, "Invalid destination type for OpStore"); if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL && glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) { /* Early versions of GLSLang would use uint types for UBOs/SSBOs but * would then store them to a local variable as bool. Work around * the issue by doing an implicit conversion. * * https://github.com/KhronosGroup/glslang/issues/170 * https://bugs.freedesktop.org/show_bug.cgi?id=104424 */ vtn_warn("OpStore of value of type OpTypeInt to a pointer to type " "OpTypeBool. Doing an implicit conversion to work around " "the problem."); struct vtn_ssa_value *bool_ssa = vtn_create_ssa_value(b, dest->type->type); bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def); vtn_variable_store(b, bool_ssa, dest); break; } vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type); if (glsl_type_is_sampler(dest->type->type)) { if (b->wa_glslang_179) { vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy " "propagation to workaround the problem."); vtn_assert(dest->var->copy_prop_sampler == NULL); dest->var->copy_prop_sampler = vtn_value(b, w[2], vtn_value_type_pointer)->pointer; } else { vtn_fail("Vulkan does not allow OpStore of a sampler or image."); } break; } struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]); vtn_variable_store(b, src, dest); break; } case SpvOpArrayLength: { struct vtn_pointer *ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; const uint32_t field = w[4]; vtn_fail_if(ptr->type->base_type != vtn_base_type_struct, "OpArrayLength must take a pointer to a structure type"); vtn_fail_if(field != ptr->type->length - 1 || ptr->type->members[field]->base_type != vtn_base_type_array, "OpArrayLength must reference the last memeber of the " "structure and that must be an array"); const uint32_t offset = ptr->type->offsets[field]; const uint32_t stride = ptr->type->members[field]->stride; if (!ptr->block_index) { struct vtn_access_chain chain = { .length = 0, }; ptr = vtn_pointer_dereference(b, ptr, &chain); vtn_assert(ptr->block_index); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_get_buffer_size); instr->src[0] = nir_src_for_ssa(ptr->block_index); nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); nir_builder_instr_insert(&b->nb, &instr->instr); nir_ssa_def *buf_size = &instr->dest.ssa; /* array_length = max(buffer_size - offset, 0) / stride */ nir_ssa_def *array_length = nir_idiv(&b->nb, nir_imax(&b->nb, nir_isub(&b->nb, buf_size, nir_imm_int(&b->nb, offset)), nir_imm_int(&b->nb, 0u)), nir_imm_int(&b->nb, stride)); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_create_ssa_value(b, glsl_uint_type()); val->ssa->def = array_length; break; } case SpvOpConvertPtrToU: { struct vtn_value *u_val = vtn_push_value(b, w[2], vtn_value_type_ssa); vtn_fail_if(u_val->type->base_type != vtn_base_type_vector && u_val->type->base_type != vtn_base_type_scalar, "OpConvertPtrToU can only be used to cast to a vector or " "scalar type"); /* The pointer will be converted to an SSA value automatically */ nir_ssa_def *ptr_ssa = vtn_ssa_value(b, w[3])->def; u_val->ssa = vtn_create_ssa_value(b, u_val->type->type); u_val->ssa->def = nir_sloppy_bitcast(&b->nb, ptr_ssa, u_val->type->type); break; } case SpvOpConvertUToPtr: { struct vtn_value *ptr_val = vtn_push_value(b, w[2], vtn_value_type_pointer); struct vtn_value *u_val = vtn_value(b, w[3], vtn_value_type_ssa); vtn_fail_if(ptr_val->type->type == NULL, "OpConvertUToPtr can only be used on physical pointers"); vtn_fail_if(u_val->type->base_type != vtn_base_type_vector && u_val->type->base_type != vtn_base_type_scalar, "OpConvertUToPtr can only be used to cast from a vector or " "scalar type"); nir_ssa_def *ptr_ssa = nir_sloppy_bitcast(&b->nb, u_val->ssa->def, ptr_val->type->type); ptr_val->pointer = vtn_pointer_from_ssa(b, ptr_ssa, ptr_val->type); break; } case SpvOpCopyMemorySized: default: vtn_fail_with_opcode("Unhandled opcode", opcode); } }