/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "vtn_private.h" #include "spirv_info.h" static struct vtn_access_chain * vtn_access_chain_create(struct vtn_builder *b, unsigned length) { struct vtn_access_chain *chain; /* Subtract 1 from the length since there's already one built in */ size_t size = sizeof(*chain) + (MAX2(length, 1) - 1) * sizeof(chain->link[0]); chain = rzalloc_size(b, size); chain->length = length; return chain; } static struct vtn_access_chain * vtn_access_chain_extend(struct vtn_builder *b, struct vtn_access_chain *old, unsigned new_ids) { struct vtn_access_chain *chain; unsigned old_len = old ? old->length : 0; chain = vtn_access_chain_create(b, old_len + new_ids); for (unsigned i = 0; i < old_len; i++) chain->link[i] = old->link[i]; return chain; } /* Dereference the given base pointer by the access chain */ static struct vtn_pointer * vtn_access_chain_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { struct vtn_access_chain *chain = vtn_access_chain_extend(b, base->chain, deref_chain->length); struct vtn_type *type = base->type; /* OpPtrAccessChain is only allowed on things which support variable * pointers. For everything else, the client is expected to just pass us * the right access chain. */ assert(!deref_chain->ptr_as_array); unsigned start = base->chain ? base->chain->length : 0; for (unsigned i = 0; i < deref_chain->length; i++) { chain->link[start + i] = deref_chain->link[i]; if (glsl_type_is_struct(type->type)) { assert(deref_chain->link[i].mode == vtn_access_mode_literal); type = type->members[deref_chain->link[i].id]; } else { type = type->array_element; } } struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = base->mode; ptr->type = type; ptr->var = base->var; ptr->chain = chain; return ptr; } static nir_ssa_def * vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link, unsigned stride) { assert(stride > 0); if (link.mode == vtn_access_mode_literal) { return nir_imm_int(&b->nb, link.id * stride); } else if (stride == 1) { nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def; if (ssa->bit_size != 32) ssa = nir_u2u32(&b->nb, ssa); return ssa; } else { nir_ssa_def *src0 = vtn_ssa_value(b, link.id)->def; if (src0->bit_size != 32) src0 = nir_u2u32(&b->nb, src0); return nir_imul(&b->nb, src0, nir_imm_int(&b->nb, stride)); } } static nir_ssa_def * vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var, nir_ssa_def *desc_array_index) { if (!desc_array_index) { assert(glsl_type_is_struct(var->type->type)); desc_array_index = nir_imm_int(&b->nb, 0); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_vulkan_resource_index); instr->src[0] = nir_src_for_ssa(desc_array_index); nir_intrinsic_set_desc_set(instr, var->descriptor_set); nir_intrinsic_set_binding(instr, var->binding); nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); nir_builder_instr_insert(&b->nb, &instr->instr); return &instr->dest.ssa; } static struct vtn_pointer * vtn_ssa_offset_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { nir_ssa_def *block_index = base->block_index; nir_ssa_def *offset = base->offset; struct vtn_type *type = base->type; unsigned idx = 0; if (deref_chain->ptr_as_array) { /* We need ptr_type for the stride */ assert(base->ptr_type); /* This must be a pointer to an actual element somewhere */ assert(block_index && offset); /* We need at least one element in the chain */ assert(deref_chain->length >= 1); nir_ssa_def *elem_offset = vtn_access_link_as_ssa(b, deref_chain->link[idx], base->ptr_type->stride); offset = nir_iadd(&b->nb, offset, elem_offset); idx++; } if (!block_index) { assert(base->var); if (glsl_type_is_array(type->type)) { /* We need at least one element in the chain */ assert(deref_chain->length >= 1); nir_ssa_def *desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1); block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx); type = type->array_element; idx++; } else { block_index = vtn_variable_resource_index(b, base->var, NULL); } /* This is the first access chain so we also need an offset */ assert(!offset); offset = nir_imm_int(&b->nb, 0); } assert(offset); for (; idx < deref_chain->length; idx++) { switch (glsl_get_base_type(type->type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: { nir_ssa_def *elem_offset = vtn_access_link_as_ssa(b, deref_chain->link[idx], type->stride); offset = nir_iadd(&b->nb, offset, elem_offset); type = type->array_element; break; } case GLSL_TYPE_STRUCT: { assert(deref_chain->link[idx].mode == vtn_access_mode_literal); unsigned member = deref_chain->link[idx].id; nir_ssa_def *mem_offset = nir_imm_int(&b->nb, type->offsets[member]); offset = nir_iadd(&b->nb, offset, mem_offset); type = type->members[member]; break; } default: unreachable("Invalid type for deref"); } } struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = base->mode; ptr->type = type; ptr->block_index = block_index; ptr->offset = offset; return ptr; } /* Dereference the given base pointer by the access chain */ static struct vtn_pointer * vtn_pointer_dereference(struct vtn_builder *b, struct vtn_pointer *base, struct vtn_access_chain *deref_chain) { if (vtn_pointer_uses_ssa_offset(base)) { return vtn_ssa_offset_pointer_dereference(b, base, deref_chain); } else { return vtn_access_chain_pointer_dereference(b, base, deref_chain); } } /* Crawls a chain of array derefs and rewrites the types so that the * lengths stay the same but the terminal type is the one given by * tail_type. This is useful for split structures. */ static void rewrite_deref_types(nir_deref *deref, const struct glsl_type *type) { deref->type = type; if (deref->child) { assert(deref->child->deref_type == nir_deref_type_array); assert(glsl_type_is_array(deref->type)); rewrite_deref_types(deref->child, glsl_get_array_element(type)); } } struct vtn_pointer * vtn_pointer_for_variable(struct vtn_builder *b, struct vtn_variable *var, struct vtn_type *ptr_type) { struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer); pointer->mode = var->mode; pointer->type = var->type; assert(ptr_type->base_type == vtn_base_type_pointer); assert(ptr_type->deref->type == var->type->type); pointer->ptr_type = ptr_type; pointer->var = var; return pointer; } nir_deref_var * vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr) { /* Do on-the-fly copy propagation for samplers. */ if (ptr->var->copy_prop_sampler) return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler); nir_deref_var *deref_var; if (ptr->var->var) { deref_var = nir_deref_var_create(b, ptr->var->var); /* Raw variable access */ if (!ptr->chain) return deref_var; } else { assert(ptr->var->members); /* Create the deref_var manually. It will get filled out later. */ deref_var = rzalloc(b, nir_deref_var); deref_var->deref.deref_type = nir_deref_type_var; } struct vtn_access_chain *chain = ptr->chain; assert(chain); struct vtn_type *deref_type = ptr->var->type; nir_deref *tail = &deref_var->deref; nir_variable **members = ptr->var->members; for (unsigned i = 0; i < chain->length; i++) { enum glsl_base_type base_type = glsl_get_base_type(deref_type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: { deref_type = deref_type->array_element; nir_deref_array *deref_arr = nir_deref_array_create(b); deref_arr->deref.type = deref_type->type; if (chain->link[i].mode == vtn_access_mode_literal) { deref_arr->deref_array_type = nir_deref_array_type_direct; deref_arr->base_offset = chain->link[i].id; } else { assert(chain->link[i].mode == vtn_access_mode_id); deref_arr->deref_array_type = nir_deref_array_type_indirect; deref_arr->base_offset = 0; deref_arr->indirect = nir_src_for_ssa(vtn_ssa_value(b, chain->link[i].id)->def); } tail->child = &deref_arr->deref; tail = tail->child; break; } case GLSL_TYPE_STRUCT: { assert(chain->link[i].mode == vtn_access_mode_literal); unsigned idx = chain->link[i].id; deref_type = deref_type->members[idx]; if (members) { /* This is a pre-split structure. */ deref_var->var = members[idx]; rewrite_deref_types(&deref_var->deref, members[idx]->type); assert(tail->type == deref_type->type); members = NULL; } else { nir_deref_struct *deref_struct = nir_deref_struct_create(b, idx); deref_struct->deref.type = deref_type->type; tail->child = &deref_struct->deref; tail = tail->child; } break; } default: unreachable("Invalid type for deref"); } } assert(members == NULL); return deref_var; } static void _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_var *deref, nir_deref *tail, struct vtn_ssa_value *inout) { /* The deref tail may contain a deref to select a component of a vector (in * other words, it might not be an actual tail) so we have to save it away * here since we overwrite it later. */ nir_deref *old_child = tail->child; if (glsl_type_is_vector_or_scalar(tail->type)) { /* Terminate the deref chain in case there is one more link to pick * off a component of the vector. */ tail->child = NULL; nir_intrinsic_op op = load ? nir_intrinsic_load_var : nir_intrinsic_store_var; nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op); intrin->variables[0] = nir_deref_var_clone(deref, intrin); intrin->num_components = glsl_get_vector_elements(tail->type); if (load) { nir_ssa_dest_init(&intrin->instr, &intrin->dest, intrin->num_components, glsl_get_bit_size(tail->type), NULL); inout->def = &intrin->dest.ssa; } else { nir_intrinsic_set_write_mask(intrin, (1 << intrin->num_components) - 1); intrin->src[0] = nir_src_for_ssa(inout->def); } nir_builder_instr_insert(&b->nb, &intrin->instr); } else if (glsl_get_base_type(tail->type) == GLSL_TYPE_ARRAY || glsl_type_is_matrix(tail->type)) { unsigned elems = glsl_get_length(tail->type); nir_deref_array *deref_arr = nir_deref_array_create(b); deref_arr->deref_array_type = nir_deref_array_type_direct; deref_arr->deref.type = glsl_get_array_element(tail->type); tail->child = &deref_arr->deref; for (unsigned i = 0; i < elems; i++) { deref_arr->base_offset = i; _vtn_local_load_store(b, load, deref, tail->child, inout->elems[i]); } } else { assert(glsl_get_base_type(tail->type) == GLSL_TYPE_STRUCT); unsigned elems = glsl_get_length(tail->type); nir_deref_struct *deref_struct = nir_deref_struct_create(b, 0); tail->child = &deref_struct->deref; for (unsigned i = 0; i < elems; i++) { deref_struct->index = i; deref_struct->deref.type = glsl_get_struct_field(tail->type, i); _vtn_local_load_store(b, load, deref, tail->child, inout->elems[i]); } } tail->child = old_child; } nir_deref_var * vtn_nir_deref(struct vtn_builder *b, uint32_t id) { struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer; return vtn_pointer_to_deref(b, ptr); } /* * Gets the NIR-level deref tail, which may have as a child an array deref * selecting which component due to OpAccessChain supporting per-component * indexing in SPIR-V. */ static nir_deref * get_deref_tail(nir_deref_var *deref) { nir_deref *cur = &deref->deref; while (!glsl_type_is_vector_or_scalar(cur->type) && cur->child) cur = cur->child; return cur; } struct vtn_ssa_value * vtn_local_load(struct vtn_builder *b, nir_deref_var *src) { nir_deref *src_tail = get_deref_tail(src); struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type); _vtn_local_load_store(b, true, src, src_tail, val); if (src_tail->child) { nir_deref_array *vec_deref = nir_deref_as_array(src_tail->child); assert(vec_deref->deref.child == NULL); val->type = vec_deref->deref.type; if (vec_deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_extract(b, val->def, vec_deref->base_offset); else val->def = vtn_vector_extract_dynamic(b, val->def, vec_deref->indirect.ssa); } return val; } void vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src, nir_deref_var *dest) { nir_deref *dest_tail = get_deref_tail(dest); if (dest_tail->child) { struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type); _vtn_local_load_store(b, true, dest, dest_tail, val); nir_deref_array *deref = nir_deref_as_array(dest_tail->child); assert(deref->deref.child == NULL); if (deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_insert(b, val->def, src->def, deref->base_offset); else val->def = vtn_vector_insert_dynamic(b, val->def, src->def, deref->indirect.ssa); _vtn_local_load_store(b, false, dest, dest_tail, val); } else { _vtn_local_load_store(b, false, dest, dest_tail, src); } } static nir_ssa_def * get_vulkan_resource_index(struct vtn_builder *b, struct vtn_pointer *ptr, struct vtn_type **type, unsigned *chain_idx) { /* Push constants have no explicit binding */ if (ptr->mode == vtn_variable_mode_push_constant) { *chain_idx = 0; *type = ptr->var->type; return NULL; } if (glsl_type_is_array(ptr->var->type->type)) { assert(ptr->chain->length > 0); nir_ssa_def *desc_array_index = vtn_access_link_as_ssa(b, ptr->chain->link[0], 1); *chain_idx = 1; *type = ptr->var->type->array_element; return vtn_variable_resource_index(b, ptr->var, desc_array_index); } else { *chain_idx = 0; *type = ptr->var->type; return vtn_variable_resource_index(b, ptr->var, NULL); } } nir_ssa_def * vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr, nir_ssa_def **index_out, unsigned *end_idx_out) { if (ptr->offset) { assert(ptr->block_index); *index_out = ptr->block_index; return ptr->offset; } unsigned idx = 0; struct vtn_type *type; *index_out = get_vulkan_resource_index(b, ptr, &type, &idx); nir_ssa_def *offset = nir_imm_int(&b->nb, 0); for (; idx < ptr->chain->length; idx++) { enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: offset = nir_iadd(&b->nb, offset, vtn_access_link_as_ssa(b, ptr->chain->link[idx], type->stride)); type = type->array_element; break; case GLSL_TYPE_STRUCT: { assert(ptr->chain->link[idx].mode == vtn_access_mode_literal); unsigned member = ptr->chain->link[idx].id; offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[member])); type = type->members[member]; break; } default: unreachable("Invalid type for deref"); } } assert(type == ptr->type); if (end_idx_out) *end_idx_out = idx; return offset; } /* Tries to compute the size of an interface block based on the strides and * offsets that are provided to us in the SPIR-V source. */ static unsigned vtn_type_block_size(struct vtn_type *type) { enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: { unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) : glsl_get_matrix_columns(type->type); if (cols > 1) { assert(type->stride > 0); return type->stride * cols; } else if (base_type == GLSL_TYPE_DOUBLE || base_type == GLSL_TYPE_UINT64 || base_type == GLSL_TYPE_INT64) { return glsl_get_vector_elements(type->type) * 8; } else { return glsl_get_vector_elements(type->type) * 4; } } case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: { unsigned size = 0; unsigned num_fields = glsl_get_length(type->type); for (unsigned f = 0; f < num_fields; f++) { unsigned field_end = type->offsets[f] + vtn_type_block_size(type->members[f]); size = MAX2(size, field_end); } return size; } case GLSL_TYPE_ARRAY: assert(type->stride > 0); assert(glsl_get_length(type->type) > 0); return type->stride * glsl_get_length(type->type); default: unreachable("Invalid block type"); return 0; } } static void vtn_access_chain_get_offset_size(struct vtn_access_chain *chain, struct vtn_type *type, unsigned *access_offset, unsigned *access_size) { *access_offset = 0; for (unsigned i = 0; i < chain->length; i++) { if (chain->link[i].mode != vtn_access_mode_literal) break; if (glsl_type_is_struct(type->type)) { *access_offset += type->offsets[chain->link[i].id]; type = type->members[chain->link[i].id]; } else { *access_offset += type->stride * chain->link[i].id; type = type->array_element; } } *access_size = vtn_type_block_size(type); } static void _vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load, nir_ssa_def *index, nir_ssa_def *offset, unsigned access_offset, unsigned access_size, struct vtn_ssa_value **inout, const struct glsl_type *type) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op); instr->num_components = glsl_get_vector_elements(type); int src = 0; if (!load) { nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1); instr->src[src++] = nir_src_for_ssa((*inout)->def); } if (op == nir_intrinsic_load_push_constant) { assert(access_offset % 4 == 0); nir_intrinsic_set_base(instr, access_offset); nir_intrinsic_set_range(instr, access_size); } if (index) instr->src[src++] = nir_src_for_ssa(index); if (op == nir_intrinsic_load_push_constant) { /* We need to subtract the offset from where the intrinsic will load the * data. */ instr->src[src++] = nir_src_for_ssa(nir_isub(&b->nb, offset, nir_imm_int(&b->nb, access_offset))); } else { instr->src[src++] = nir_src_for_ssa(offset); } if (load) { nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components, glsl_get_bit_size(type), NULL); (*inout)->def = &instr->dest.ssa; } nir_builder_instr_insert(&b->nb, &instr->instr); if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL) (*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0)); } static void _vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load, nir_ssa_def *index, nir_ssa_def *offset, unsigned access_offset, unsigned access_size, struct vtn_access_chain *chain, unsigned chain_idx, struct vtn_type *type, struct vtn_ssa_value **inout) { if (chain && chain_idx >= chain->length) chain = NULL; if (load && chain == NULL && *inout == NULL) *inout = vtn_create_ssa_value(b, type->type); enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: /* This is where things get interesting. At this point, we've hit * a vector, a scalar, or a matrix. */ if (glsl_type_is_matrix(type->type)) { /* Loading the whole matrix */ struct vtn_ssa_value *transpose; unsigned num_ops, vec_width, col_stride; if (type->row_major) { num_ops = glsl_get_vector_elements(type->type); vec_width = glsl_get_matrix_columns(type->type); col_stride = type->array_element->stride; if (load) { const struct glsl_type *transpose_type = glsl_matrix_type(base_type, vec_width, num_ops); *inout = vtn_create_ssa_value(b, transpose_type); } else { transpose = vtn_ssa_transpose(b, *inout); inout = &transpose; } } else { num_ops = glsl_get_matrix_columns(type->type); vec_width = glsl_get_vector_elements(type->type); col_stride = type->stride; } for (unsigned i = 0; i < num_ops; i++) { nir_ssa_def *elem_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * col_stride)); _vtn_load_store_tail(b, op, load, index, elem_offset, access_offset, access_size, &(*inout)->elems[i], glsl_vector_type(base_type, vec_width)); } if (load && type->row_major) *inout = vtn_ssa_transpose(b, *inout); } else { unsigned elems = glsl_get_vector_elements(type->type); unsigned type_size = glsl_get_bit_size(type->type) / 8; if (elems == 1 || type->stride == type_size) { /* This is a tightly-packed normal scalar or vector load */ assert(glsl_type_is_vector_or_scalar(type->type)); _vtn_load_store_tail(b, op, load, index, offset, access_offset, access_size, inout, type->type); } else { /* This is a strided load. We have to load N things separately. * This is the single column of a row-major matrix case. */ assert(type->stride > type_size); assert(type->stride % type_size == 0); nir_ssa_def *per_comp[4]; for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride)); struct vtn_ssa_value *comp, temp_val; if (!load) { temp_val.def = nir_channel(&b->nb, (*inout)->def, i); temp_val.type = glsl_scalar_type(base_type); } comp = &temp_val; _vtn_load_store_tail(b, op, load, index, elem_offset, access_offset, access_size, &comp, glsl_scalar_type(base_type)); per_comp[i] = comp->def; } if (load) { if (*inout == NULL) *inout = vtn_create_ssa_value(b, type->type); (*inout)->def = nir_vec(&b->nb, per_comp, elems); } } } return; case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(type->type); for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_off = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride)); _vtn_block_load_store(b, op, load, index, elem_off, access_offset, access_size, NULL, 0, type->array_element, &(*inout)->elems[i]); } return; } case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(type->type); for (unsigned i = 0; i < elems; i++) { nir_ssa_def *elem_off = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i])); _vtn_block_load_store(b, op, load, index, elem_off, access_offset, access_size, NULL, 0, type->members[i], &(*inout)->elems[i]); } return; } default: unreachable("Invalid block member type"); } } static struct vtn_ssa_value * vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src) { nir_intrinsic_op op; unsigned access_offset = 0, access_size = 0; switch (src->mode) { case vtn_variable_mode_ubo: op = nir_intrinsic_load_ubo; break; case vtn_variable_mode_ssbo: op = nir_intrinsic_load_ssbo; break; case vtn_variable_mode_push_constant: op = nir_intrinsic_load_push_constant; vtn_access_chain_get_offset_size(src->chain, src->var->type, &access_offset, &access_size); break; default: unreachable("Invalid block variable mode"); } nir_ssa_def *offset, *index = NULL; unsigned chain_idx; offset = vtn_pointer_to_offset(b, src, &index, &chain_idx); struct vtn_ssa_value *value = NULL; _vtn_block_load_store(b, op, true, index, offset, access_offset, access_size, src->chain, chain_idx, src->type, &value); return value; } static void vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_pointer *dst) { nir_ssa_def *offset, *index = NULL; unsigned chain_idx; offset = vtn_pointer_to_offset(b, dst, &index, &chain_idx); _vtn_block_load_store(b, nir_intrinsic_store_ssbo, false, index, offset, 0, 0, dst->chain, chain_idx, dst->type, &src); } static bool vtn_pointer_is_external_block(struct vtn_pointer *ptr) { return ptr->mode == vtn_variable_mode_ssbo || ptr->mode == vtn_variable_mode_ubo || ptr->mode == vtn_variable_mode_push_constant; } static void _vtn_variable_load_store(struct vtn_builder *b, bool load, struct vtn_pointer *ptr, struct vtn_ssa_value **inout) { enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: /* At this point, we have a scalar, vector, or matrix so we know that * there cannot be any structure splitting still in the way. By * stopping at the matrix level rather than the vector level, we * ensure that matrices get loaded in the optimal way even if they * are storred row-major in a UBO. */ if (load) { *inout = vtn_local_load(b, vtn_pointer_to_deref(b, ptr)); } else { vtn_local_store(b, *inout, vtn_pointer_to_deref(b, ptr)); } return; case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(ptr->type->type); if (load) { assert(*inout == NULL); *inout = rzalloc(b, struct vtn_ssa_value); (*inout)->type = ptr->type->type; (*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems); } struct vtn_access_chain chain = { .length = 1, .link = { { .mode = vtn_access_mode_literal, }, } }; for (unsigned i = 0; i < elems; i++) { chain.link[0].id = i; struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain); _vtn_variable_load_store(b, load, elem, &(*inout)->elems[i]); } return; } default: unreachable("Invalid access chain type"); } } struct vtn_ssa_value * vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src) { if (vtn_pointer_is_external_block(src)) { return vtn_block_load(b, src); } else { struct vtn_ssa_value *val = NULL; _vtn_variable_load_store(b, true, src, &val); return val; } } void vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_pointer *dest) { if (vtn_pointer_is_external_block(dest)) { assert(dest->mode == vtn_variable_mode_ssbo); vtn_block_store(b, src, dest); } else { _vtn_variable_load_store(b, false, dest, &src); } } static void _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest, struct vtn_pointer *src) { assert(src->type->type == dest->type->type); enum glsl_base_type base_type = glsl_get_base_type(src->type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: /* At this point, we have a scalar, vector, or matrix so we know that * there cannot be any structure splitting still in the way. By * stopping at the matrix level rather than the vector level, we * ensure that matrices get loaded in the optimal way even if they * are storred row-major in a UBO. */ vtn_variable_store(b, vtn_variable_load(b, src), dest); return; case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: { struct vtn_access_chain chain = { .length = 1, .link = { { .mode = vtn_access_mode_literal, }, } }; unsigned elems = glsl_get_length(src->type->type); for (unsigned i = 0; i < elems; i++) { chain.link[0].id = i; struct vtn_pointer *src_elem = vtn_pointer_dereference(b, src, &chain); struct vtn_pointer *dest_elem = vtn_pointer_dereference(b, dest, &chain); _vtn_variable_copy(b, dest_elem, src_elem); } return; } default: unreachable("Invalid access chain type"); } } static void vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest, struct vtn_pointer *src) { /* TODO: At some point, we should add a special-case for when we can * just emit a copy_var intrinsic. */ _vtn_variable_copy(b, dest, src); } static void set_mode_system_value(nir_variable_mode *mode) { assert(*mode == nir_var_system_value || *mode == nir_var_shader_in); *mode = nir_var_system_value; } static void vtn_get_builtin_location(struct vtn_builder *b, SpvBuiltIn builtin, int *location, nir_variable_mode *mode) { switch (builtin) { case SpvBuiltInPosition: *location = VARYING_SLOT_POS; break; case SpvBuiltInPointSize: *location = VARYING_SLOT_PSIZ; break; case SpvBuiltInClipDistance: *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */ break; case SpvBuiltInCullDistance: *location = VARYING_SLOT_CULL_DIST0; break; case SpvBuiltInVertexIndex: *location = SYSTEM_VALUE_VERTEX_ID; set_mode_system_value(mode); break; case SpvBuiltInVertexId: /* Vulkan defines VertexID to be zero-based and reserves the new * builtin keyword VertexIndex to indicate the non-zero-based value. */ *location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; set_mode_system_value(mode); break; case SpvBuiltInInstanceIndex: *location = SYSTEM_VALUE_INSTANCE_INDEX; set_mode_system_value(mode); break; case SpvBuiltInInstanceId: *location = SYSTEM_VALUE_INSTANCE_ID; set_mode_system_value(mode); break; case SpvBuiltInPrimitiveId: if (b->shader->info.stage == MESA_SHADER_FRAGMENT) { assert(*mode == nir_var_shader_in); *location = VARYING_SLOT_PRIMITIVE_ID; } else if (*mode == nir_var_shader_out) { *location = VARYING_SLOT_PRIMITIVE_ID; } else { *location = SYSTEM_VALUE_PRIMITIVE_ID; set_mode_system_value(mode); } break; case SpvBuiltInInvocationId: *location = SYSTEM_VALUE_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInLayer: *location = VARYING_SLOT_LAYER; if (b->shader->info.stage == MESA_SHADER_FRAGMENT) *mode = nir_var_shader_in; else if (b->shader->info.stage == MESA_SHADER_GEOMETRY) *mode = nir_var_shader_out; else unreachable("invalid stage for SpvBuiltInLayer"); break; case SpvBuiltInViewportIndex: *location = VARYING_SLOT_VIEWPORT; if (b->shader->info.stage == MESA_SHADER_GEOMETRY) *mode = nir_var_shader_out; else if (b->shader->info.stage == MESA_SHADER_FRAGMENT) *mode = nir_var_shader_in; else unreachable("invalid stage for SpvBuiltInViewportIndex"); break; case SpvBuiltInTessLevelOuter: *location = VARYING_SLOT_TESS_LEVEL_OUTER; break; case SpvBuiltInTessLevelInner: *location = VARYING_SLOT_TESS_LEVEL_INNER; break; case SpvBuiltInTessCoord: *location = SYSTEM_VALUE_TESS_COORD; set_mode_system_value(mode); break; case SpvBuiltInPatchVertices: *location = SYSTEM_VALUE_VERTICES_IN; set_mode_system_value(mode); break; case SpvBuiltInFragCoord: *location = VARYING_SLOT_POS; assert(*mode == nir_var_shader_in); break; case SpvBuiltInPointCoord: *location = VARYING_SLOT_PNTC; assert(*mode == nir_var_shader_in); break; case SpvBuiltInFrontFacing: *location = SYSTEM_VALUE_FRONT_FACE; set_mode_system_value(mode); break; case SpvBuiltInSampleId: *location = SYSTEM_VALUE_SAMPLE_ID; set_mode_system_value(mode); break; case SpvBuiltInSamplePosition: *location = SYSTEM_VALUE_SAMPLE_POS; set_mode_system_value(mode); break; case SpvBuiltInSampleMask: if (*mode == nir_var_shader_out) { *location = FRAG_RESULT_SAMPLE_MASK; } else { *location = SYSTEM_VALUE_SAMPLE_MASK_IN; set_mode_system_value(mode); } break; case SpvBuiltInFragDepth: *location = FRAG_RESULT_DEPTH; assert(*mode == nir_var_shader_out); break; case SpvBuiltInHelperInvocation: *location = SYSTEM_VALUE_HELPER_INVOCATION; set_mode_system_value(mode); break; case SpvBuiltInNumWorkgroups: *location = SYSTEM_VALUE_NUM_WORK_GROUPS; set_mode_system_value(mode); break; case SpvBuiltInWorkgroupSize: /* This should already be handled */ unreachable("unsupported builtin"); break; case SpvBuiltInWorkgroupId: *location = SYSTEM_VALUE_WORK_GROUP_ID; set_mode_system_value(mode); break; case SpvBuiltInLocalInvocationId: *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInLocalInvocationIndex: *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; set_mode_system_value(mode); break; case SpvBuiltInGlobalInvocationId: *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInBaseVertex: *location = SYSTEM_VALUE_BASE_VERTEX; set_mode_system_value(mode); break; case SpvBuiltInBaseInstance: *location = SYSTEM_VALUE_BASE_INSTANCE; set_mode_system_value(mode); break; case SpvBuiltInDrawIndex: *location = SYSTEM_VALUE_DRAW_ID; set_mode_system_value(mode); break; case SpvBuiltInViewIndex: *location = SYSTEM_VALUE_VIEW_INDEX; set_mode_system_value(mode); break; default: unreachable("unsupported builtin"); } } static void apply_var_decoration(struct vtn_builder *b, nir_variable *nir_var, const struct vtn_decoration *dec) { switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNoPerspective: nir_var->data.interpolation = INTERP_MODE_NOPERSPECTIVE; break; case SpvDecorationFlat: nir_var->data.interpolation = INTERP_MODE_FLAT; break; case SpvDecorationCentroid: nir_var->data.centroid = true; break; case SpvDecorationSample: nir_var->data.sample = true; break; case SpvDecorationInvariant: nir_var->data.invariant = true; break; case SpvDecorationConstant: assert(nir_var->constant_initializer != NULL); nir_var->data.read_only = true; break; case SpvDecorationNonReadable: nir_var->data.image.write_only = true; break; case SpvDecorationNonWritable: nir_var->data.read_only = true; nir_var->data.image.read_only = true; break; case SpvDecorationComponent: nir_var->data.location_frac = dec->literals[0]; break; case SpvDecorationIndex: nir_var->data.index = dec->literals[0]; break; case SpvDecorationBuiltIn: { SpvBuiltIn builtin = dec->literals[0]; if (builtin == SpvBuiltInWorkgroupSize) { /* This shouldn't be a builtin. It's actually a constant. */ nir_var->data.mode = nir_var_global; nir_var->data.read_only = true; nir_constant *c = rzalloc(nir_var, nir_constant); c->values[0].u32[0] = b->shader->info.cs.local_size[0]; c->values[0].u32[1] = b->shader->info.cs.local_size[1]; c->values[0].u32[2] = b->shader->info.cs.local_size[2]; nir_var->constant_initializer = c; break; } nir_variable_mode mode = nir_var->data.mode; vtn_get_builtin_location(b, builtin, &nir_var->data.location, &mode); nir_var->data.mode = mode; switch (builtin) { case SpvBuiltInTessLevelOuter: case SpvBuiltInTessLevelInner: nir_var->data.compact = true; break; case SpvBuiltInSamplePosition: nir_var->data.origin_upper_left = b->origin_upper_left; /* fallthrough */ case SpvBuiltInFragCoord: nir_var->data.pixel_center_integer = b->pixel_center_integer; break; default: break; } } case SpvDecorationSpecId: case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationMatrixStride: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationUniform: case SpvDecorationStream: case SpvDecorationOffset: case SpvDecorationLinkageAttributes: break; /* Do nothing with these here */ case SpvDecorationPatch: nir_var->data.patch = true; break; case SpvDecorationLocation: unreachable("Handled above"); case SpvDecorationBlock: case SpvDecorationBufferBlock: case SpvDecorationArrayStride: case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: break; /* These can apply to a type but we don't care about them */ case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoration not allowed for variable or structure member: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationXfbBuffer: case SpvDecorationXfbStride: vtn_warn("Vulkan does not have transform feedback: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); break; default: unreachable("Unhandled decoration"); } } static void var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *out_is_patch) { if (dec->decoration == SpvDecorationPatch) { *((bool *) out_is_patch) = true; } } static void var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_var) { struct vtn_variable *vtn_var = void_var; /* Handle decorations that apply to a vtn_variable as a whole */ switch (dec->decoration) { case SpvDecorationBinding: vtn_var->binding = dec->literals[0]; return; case SpvDecorationDescriptorSet: vtn_var->descriptor_set = dec->literals[0]; return; case SpvDecorationInputAttachmentIndex: vtn_var->input_attachment_index = dec->literals[0]; return; case SpvDecorationPatch: vtn_var->patch = true; break; default: break; } if (val->value_type == vtn_value_type_pointer) { assert(val->pointer->var == void_var); assert(val->pointer->chain == NULL); assert(member == -1); } else { assert(val->value_type == vtn_value_type_type); } /* Location is odd. If applied to a split structure, we have to walk the * whole thing and accumulate the location. It's easier to handle as a * special case. */ if (dec->decoration == SpvDecorationLocation) { unsigned location = dec->literals[0]; bool is_vertex_input; if (b->shader->info.stage == MESA_SHADER_FRAGMENT && vtn_var->mode == vtn_variable_mode_output) { is_vertex_input = false; location += FRAG_RESULT_DATA0; } else if (b->shader->info.stage == MESA_SHADER_VERTEX && vtn_var->mode == vtn_variable_mode_input) { is_vertex_input = true; location += VERT_ATTRIB_GENERIC0; } else if (vtn_var->mode == vtn_variable_mode_input || vtn_var->mode == vtn_variable_mode_output) { is_vertex_input = false; location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0; } else { vtn_warn("Location must be on input or output variable"); return; } if (vtn_var->var) { /* This handles the member and lone variable cases */ vtn_var->var->data.location = location; } else { /* This handles the structure member case */ assert(vtn_var->members); unsigned length = glsl_get_length(glsl_without_array(vtn_var->type->type)); for (unsigned i = 0; i < length; i++) { vtn_var->members[i]->data.location = location; location += glsl_count_attribute_slots(vtn_var->members[i]->interface_type, is_vertex_input); } } return; } else { if (vtn_var->var) { assert(member <= 0); apply_var_decoration(b, vtn_var->var, dec); } else if (vtn_var->members) { if (member >= 0) { assert(vtn_var->members); apply_var_decoration(b, vtn_var->members[member], dec); } else { unsigned length = glsl_get_length(glsl_without_array(vtn_var->type->type)); for (unsigned i = 0; i < length; i++) apply_var_decoration(b, vtn_var->members[i], dec); } } else { /* A few variables, those with external storage, have no actual * nir_variables associated with them. Fortunately, all decorations * we care about for those variables are on the type only. */ assert(vtn_var->mode == vtn_variable_mode_ubo || vtn_var->mode == vtn_variable_mode_ssbo || vtn_var->mode == vtn_variable_mode_push_constant); } } } static enum vtn_variable_mode vtn_storage_class_to_mode(SpvStorageClass class, struct vtn_type *interface_type, nir_variable_mode *nir_mode_out) { enum vtn_variable_mode mode; nir_variable_mode nir_mode; switch (class) { case SpvStorageClassUniform: if (interface_type->block) { mode = vtn_variable_mode_ubo; nir_mode = 0; } else if (interface_type->buffer_block) { mode = vtn_variable_mode_ssbo; nir_mode = 0; } else { unreachable("Invalid uniform variable type"); } break; case SpvStorageClassStorageBuffer: mode = vtn_variable_mode_ssbo; nir_mode = 0; break; case SpvStorageClassUniformConstant: if (glsl_type_is_image(interface_type->type)) { mode = vtn_variable_mode_image; nir_mode = nir_var_uniform; } else if (glsl_type_is_sampler(interface_type->type)) { mode = vtn_variable_mode_sampler; nir_mode = nir_var_uniform; } else { unreachable("Invalid uniform constant variable type"); } break; case SpvStorageClassPushConstant: mode = vtn_variable_mode_push_constant; nir_mode = nir_var_uniform; break; case SpvStorageClassInput: mode = vtn_variable_mode_input; nir_mode = nir_var_shader_in; break; case SpvStorageClassOutput: mode = vtn_variable_mode_output; nir_mode = nir_var_shader_out; break; case SpvStorageClassPrivate: mode = vtn_variable_mode_global; nir_mode = nir_var_global; break; case SpvStorageClassFunction: mode = vtn_variable_mode_local; nir_mode = nir_var_local; break; case SpvStorageClassWorkgroup: mode = vtn_variable_mode_workgroup; nir_mode = nir_var_shared; break; case SpvStorageClassCrossWorkgroup: case SpvStorageClassGeneric: case SpvStorageClassAtomicCounter: default: unreachable("Unhandled variable storage class"); } if (nir_mode_out) *nir_mode_out = nir_mode; return mode; } nir_ssa_def * vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr) { /* This pointer needs to have a pointer type with actual storage */ assert(ptr->ptr_type); assert(ptr->ptr_type->type); if (ptr->offset && ptr->block_index) { return nir_vec2(&b->nb, ptr->block_index, ptr->offset); } else { /* If we don't have an offset or block index, then we must be a pointer * to the variable itself. */ assert(!ptr->offset && !ptr->block_index); /* We can't handle a pointer to an array of descriptors because we have * no way of knowing later on that we need to add to update the block * index when dereferencing. */ assert(ptr->var && ptr->var->type->base_type == vtn_base_type_struct); return nir_vec2(&b->nb, vtn_variable_resource_index(b, ptr->var, NULL), nir_imm_int(&b->nb, 0)); } } struct vtn_pointer * vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa, struct vtn_type *ptr_type) { assert(ssa->num_components == 2 && ssa->bit_size == 32); assert(ptr_type->base_type == vtn_base_type_pointer); assert(ptr_type->deref->base_type != vtn_base_type_pointer); /* This pointer type needs to have actual storage */ assert(ptr_type->type); struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer); ptr->mode = vtn_storage_class_to_mode(ptr_type->storage_class, ptr_type, NULL); ptr->type = ptr_type->deref; ptr->ptr_type = ptr_type; ptr->block_index = nir_channel(&b->nb, ssa, 0); ptr->offset = nir_channel(&b->nb, ssa, 1); return ptr; } static bool is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage) { if (var->patch || !glsl_type_is_array(var->type->type)) return false; if (var->mode == vtn_variable_mode_input) { return stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY; } if (var->mode == vtn_variable_mode_output) return stage == MESA_SHADER_TESS_CTRL; return false; } static void vtn_create_variable(struct vtn_builder *b, struct vtn_value *val, struct vtn_type *ptr_type, SpvStorageClass storage_class, nir_constant *initializer) { assert(ptr_type->base_type == vtn_base_type_pointer); struct vtn_type *type = ptr_type->deref; struct vtn_type *without_array = type; while(glsl_type_is_array(without_array->type)) without_array = without_array->array_element; enum vtn_variable_mode mode; nir_variable_mode nir_mode; mode = vtn_storage_class_to_mode(storage_class, without_array, &nir_mode); switch (mode) { case vtn_variable_mode_ubo: b->shader->info.num_ubos++; break; case vtn_variable_mode_ssbo: b->shader->info.num_ssbos++; break; case vtn_variable_mode_image: b->shader->info.num_images++; break; case vtn_variable_mode_sampler: b->shader->info.num_textures++; break; case vtn_variable_mode_push_constant: b->shader->num_uniforms = vtn_type_block_size(type); break; default: /* No tallying is needed */ break; } struct vtn_variable *var = rzalloc(b, struct vtn_variable); var->type = type; var->mode = mode; assert(val->value_type == vtn_value_type_pointer); val->pointer = vtn_pointer_for_variable(b, var, ptr_type); switch (var->mode) { case vtn_variable_mode_local: case vtn_variable_mode_global: case vtn_variable_mode_image: case vtn_variable_mode_sampler: case vtn_variable_mode_workgroup: /* For these, we create the variable normally */ var->var = rzalloc(b->shader, nir_variable); var->var->name = ralloc_strdup(var->var, val->name); var->var->type = var->type->type; var->var->data.mode = nir_mode; switch (var->mode) { case vtn_variable_mode_image: case vtn_variable_mode_sampler: var->var->interface_type = without_array->type; break; default: var->var->interface_type = NULL; break; } break; case vtn_variable_mode_input: case vtn_variable_mode_output: { /* In order to know whether or not we're a per-vertex inout, we need * the patch qualifier. This means walking the variable decorations * early before we actually create any variables. Not a big deal. * * GLSLang really likes to place decorations in the most interior * thing it possibly can. In particular, if you have a struct, it * will place the patch decorations on the struct members. This * should be handled by the variable splitting below just fine. * * If you have an array-of-struct, things get even more weird as it * will place the patch decorations on the struct even though it's * inside an array and some of the members being patch and others not * makes no sense whatsoever. Since the only sensible thing is for * it to be all or nothing, we'll call it patch if any of the members * are declared patch. */ var->patch = false; vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch); if (glsl_type_is_array(var->type->type) && glsl_type_is_struct(without_array->type)) { vtn_foreach_decoration(b, without_array->val, var_is_patch_cb, &var->patch); } /* For inputs and outputs, we immediately split structures. This * is for a couple of reasons. For one, builtins may all come in * a struct and we really want those split out into separate * variables. For another, interpolation qualifiers can be * applied to members of the top-level struct ane we need to be * able to preserve that information. */ int array_length = -1; struct vtn_type *interface_type = var->type; if (is_per_vertex_inout(var, b->shader->info.stage)) { /* In Geometry shaders (and some tessellation), inputs come * in per-vertex arrays. However, some builtins come in * non-per-vertex, hence the need for the is_array check. In * any case, there are no non-builtin arrays allowed so this * check should be sufficient. */ interface_type = var->type->array_element; array_length = glsl_get_length(var->type->type); } if (glsl_type_is_struct(interface_type->type)) { /* It's a struct. Split it. */ unsigned num_members = glsl_get_length(interface_type->type); var->members = ralloc_array(b, nir_variable *, num_members); for (unsigned i = 0; i < num_members; i++) { const struct glsl_type *mtype = interface_type->members[i]->type; if (array_length >= 0) mtype = glsl_array_type(mtype, array_length); var->members[i] = rzalloc(b->shader, nir_variable); var->members[i]->name = ralloc_asprintf(var->members[i], "%s.%d", val->name, i); var->members[i]->type = mtype; var->members[i]->interface_type = interface_type->members[i]->type; var->members[i]->data.mode = nir_mode; var->members[i]->data.patch = var->patch; } } else { var->var = rzalloc(b->shader, nir_variable); var->var->name = ralloc_strdup(var->var, val->name); var->var->type = var->type->type; var->var->interface_type = interface_type->type; var->var->data.mode = nir_mode; var->var->data.patch = var->patch; } /* For inputs and outputs, we need to grab locations and builtin * information from the interface type. */ vtn_foreach_decoration(b, interface_type->val, var_decoration_cb, var); break; } case vtn_variable_mode_param: unreachable("Not created through OpVariable"); case vtn_variable_mode_ubo: case vtn_variable_mode_ssbo: case vtn_variable_mode_push_constant: /* These don't need actual variables. */ break; } if (initializer) { var->var->constant_initializer = nir_constant_clone(initializer, var->var); } vtn_foreach_decoration(b, val, var_decoration_cb, var); if (var->mode == vtn_variable_mode_image || var->mode == vtn_variable_mode_sampler) { /* XXX: We still need the binding information in the nir_variable * for these. We should fix that. */ var->var->data.binding = var->binding; var->var->data.descriptor_set = var->descriptor_set; var->var->data.index = var->input_attachment_index; if (var->mode == vtn_variable_mode_image) var->var->data.image.format = without_array->image_format; } if (var->mode == vtn_variable_mode_local) { assert(var->members == NULL && var->var != NULL); nir_function_impl_add_variable(b->impl, var->var); } else if (var->var) { nir_shader_add_variable(b->shader, var->var); } else if (var->members) { unsigned count = glsl_get_length(without_array->type); for (unsigned i = 0; i < count; i++) { assert(var->members[i]->data.mode != nir_var_local); nir_shader_add_variable(b->shader, var->members[i]); } } else { assert(var->mode == vtn_variable_mode_ubo || var->mode == vtn_variable_mode_ssbo || var->mode == vtn_variable_mode_push_constant); } } void vtn_handle_variables(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpUndef: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef); val->type = vtn_value(b, w[1], vtn_value_type_type)->type; break; } case SpvOpVariable: { struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer); SpvStorageClass storage_class = w[3]; nir_constant *initializer = NULL; if (count > 4) initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant; vtn_create_variable(b, val, ptr_type, storage_class, initializer); break; } case SpvOpAccessChain: case SpvOpPtrAccessChain: case SpvOpInBoundsAccessChain: { struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4); chain->ptr_as_array = (opcode == SpvOpPtrAccessChain); unsigned idx = 0; for (int i = 4; i < count; i++) { struct vtn_value *link_val = vtn_untyped_value(b, w[i]); if (link_val->value_type == vtn_value_type_constant) { chain->link[idx].mode = vtn_access_mode_literal; chain->link[idx].id = link_val->constant->values[0].u32[0]; } else { chain->link[idx].mode = vtn_access_mode_id; chain->link[idx].id = w[i]; } idx++; } struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *base_val = vtn_untyped_value(b, w[3]); if (base_val->value_type == vtn_value_type_sampled_image) { /* This is rather insane. SPIR-V allows you to use OpSampledImage * to combine an array of images with a single sampler to get an * array of sampled images that all share the same sampler. * Fortunately, this means that we can more-or-less ignore the * sampler when crawling the access chain, but it does leave us * with this rather awkward little special-case. */ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->image = vtn_pointer_dereference(b, base_val->sampled_image->image, chain); val->sampled_image->sampler = base_val->sampled_image->sampler; } else { assert(base_val->value_type == vtn_value_type_pointer); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer); val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain); val->pointer->ptr_type = ptr_type; } break; } case SpvOpCopyMemory: { struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer); struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer); vtn_variable_copy(b, dest->pointer, src->pointer); break; } case SpvOpLoad: { struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_pointer *src = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; if (src->mode == vtn_variable_mode_image || src->mode == vtn_variable_mode_sampler) { vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src; return; } vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src)); break; } case SpvOpStore: { struct vtn_pointer *dest = vtn_value(b, w[1], vtn_value_type_pointer)->pointer; if (glsl_type_is_sampler(dest->type->type)) { vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy " "propagation to workaround the problem."); assert(dest->var->copy_prop_sampler == NULL); dest->var->copy_prop_sampler = vtn_value(b, w[2], vtn_value_type_pointer)->pointer; break; } struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]); vtn_variable_store(b, src, dest); break; } case SpvOpArrayLength: { struct vtn_pointer *ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; const uint32_t offset = ptr->var->type->offsets[w[4]]; const uint32_t stride = ptr->var->type->members[w[4]]->stride; unsigned chain_idx; struct vtn_type *type; nir_ssa_def *index = get_vulkan_resource_index(b, ptr, &type, &chain_idx); nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_get_buffer_size); instr->src[0] = nir_src_for_ssa(index); nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); nir_builder_instr_insert(&b->nb, &instr->instr); nir_ssa_def *buf_size = &instr->dest.ssa; /* array_length = max(buffer_size - offset, 0) / stride */ nir_ssa_def *array_length = nir_idiv(&b->nb, nir_imax(&b->nb, nir_isub(&b->nb, buf_size, nir_imm_int(&b->nb, offset)), nir_imm_int(&b->nb, 0u)), nir_imm_int(&b->nb, stride)); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_create_ssa_value(b, glsl_uint_type()); val->ssa->def = array_length; break; } case SpvOpCopyMemorySized: default: unreachable("Unhandled opcode"); } }