/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "vtn_private.h" #include "GLSL.std.450.h" #define M_PIf ((float) M_PI) #define M_PI_2f ((float) M_PI_2) #define M_PI_4f ((float) M_PI_4) static nir_ssa_def * build_mat2_det(nir_builder *b, nir_ssa_def *col[2]) { unsigned swiz[4] = {1, 0, 0, 0}; nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true)); return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1)); } static nir_ssa_def * build_mat3_det(nir_builder *b, nir_ssa_def *col[3]) { unsigned yzx[4] = {1, 2, 0, 0}; unsigned zxy[4] = {2, 0, 1, 0}; nir_ssa_def *prod0 = nir_fmul(b, col[0], nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true), nir_swizzle(b, col[2], zxy, 3, true))); nir_ssa_def *prod1 = nir_fmul(b, col[0], nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true), nir_swizzle(b, col[2], yzx, 3, true))); nir_ssa_def *diff = nir_fsub(b, prod0, prod1); return nir_fadd(b, nir_channel(b, diff, 0), nir_fadd(b, nir_channel(b, diff, 1), nir_channel(b, diff, 2))); } static nir_ssa_def * build_mat4_det(nir_builder *b, nir_ssa_def **col) { nir_ssa_def *subdet[4]; for (unsigned i = 0; i < 4; i++) { unsigned swiz[3]; for (unsigned j = 0; j < 3; j++) swiz[j] = j + (j >= i); nir_ssa_def *subcol[3]; subcol[0] = nir_swizzle(b, col[1], swiz, 3, true); subcol[1] = nir_swizzle(b, col[2], swiz, 3, true); subcol[2] = nir_swizzle(b, col[3], swiz, 3, true); subdet[i] = build_mat3_det(b, subcol); } nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4)); return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0), nir_channel(b, prod, 1)), nir_fsub(b, nir_channel(b, prod, 2), nir_channel(b, prod, 3))); } static nir_ssa_def * build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src) { unsigned size = glsl_get_vector_elements(src->type); nir_ssa_def *cols[4]; for (unsigned i = 0; i < size; i++) cols[i] = src->elems[i]->def; switch(size) { case 2: return build_mat2_det(&b->nb, cols); case 3: return build_mat3_det(&b->nb, cols); case 4: return build_mat4_det(&b->nb, cols); default: unreachable("Invalid matrix size"); } } /* Computes the determinate of the submatrix given by taking src and * removing the specified row and column. */ static nir_ssa_def * build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src, unsigned size, unsigned row, unsigned col) { assert(row < size && col < size); if (size == 2) { return nir_channel(b, src->elems[1 - col]->def, 1 - row); } else { /* Swizzle to get all but the specified row */ unsigned swiz[3]; for (unsigned j = 0; j < 3; j++) swiz[j] = j + (j >= row); /* Grab all but the specified column */ nir_ssa_def *subcol[3]; for (unsigned j = 0; j < size; j++) { if (j != col) { subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def, swiz, size - 1, true); } } if (size == 3) { return build_mat2_det(b, subcol); } else { assert(size == 4); return build_mat3_det(b, subcol); } } } static struct vtn_ssa_value * matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src) { nir_ssa_def *adj_col[4]; unsigned size = glsl_get_vector_elements(src->type); /* Build up an adjugate matrix */ for (unsigned c = 0; c < size; c++) { nir_ssa_def *elem[4]; for (unsigned r = 0; r < size; r++) { elem[r] = build_mat_subdet(&b->nb, src, size, c, r); if ((r + c) % 2) elem[r] = nir_fneg(&b->nb, elem[r]); } adj_col[c] = nir_vec(&b->nb, elem, size); } nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src)); struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type); for (unsigned i = 0; i < size; i++) val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv); return val; } static nir_ssa_def* build_length(nir_builder *b, nir_ssa_def *vec) { switch (vec->num_components) { case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec)); case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec)); case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec)); case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec)); default: unreachable("Invalid number of components"); } } static inline nir_ssa_def * build_fclamp(nir_builder *b, nir_ssa_def *x, nir_ssa_def *min_val, nir_ssa_def *max_val) { return nir_fmin(b, nir_fmax(b, x, min_val), max_val); } /** * Return e^x. */ static nir_ssa_def * build_exp(nir_builder *b, nir_ssa_def *x) { return nir_fexp2(b, nir_fmul(b, x, nir_imm_float(b, M_LOG2E))); } /** * Return ln(x) - the natural logarithm of x. */ static nir_ssa_def * build_log(nir_builder *b, nir_ssa_def *x) { return nir_fmul(b, nir_flog2(b, x), nir_imm_float(b, 1.0 / M_LOG2E)); } /** * Approximate asin(x) by the formula: * asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1)))) * * which is correct to first order at x=0 and x=±1 regardless of the p * coefficients but can be made second-order correct at both ends by selecting * the fit coefficients appropriately. Different p coefficients can be used * in the asin and acos implementation to minimize some relative error metric * in each case. */ static nir_ssa_def * build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1) { nir_ssa_def *abs_x = nir_fabs(b, x); return nir_fmul(b, nir_fsign(b, x), nir_fsub(b, nir_imm_float(b, M_PI_2f), nir_fmul(b, nir_fsqrt(b, nir_fsub(b, nir_imm_float(b, 1.0f), abs_x)), nir_fadd(b, nir_imm_float(b, M_PI_2f), nir_fmul(b, abs_x, nir_fadd(b, nir_imm_float(b, M_PI_4f - 1.0f), nir_fmul(b, abs_x, nir_fadd(b, nir_imm_float(b, p0), nir_fmul(b, abs_x, nir_imm_float(b, p1)))))))))); } /** * Compute xs[0] + xs[1] + xs[2] + ... using fadd. */ static nir_ssa_def * build_fsum(nir_builder *b, nir_ssa_def **xs, int terms) { nir_ssa_def *accum = xs[0]; for (int i = 1; i < terms; i++) accum = nir_fadd(b, accum, xs[i]); return accum; } static nir_ssa_def * build_atan(nir_builder *b, nir_ssa_def *y_over_x) { nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x); nir_ssa_def *one = nir_imm_float(b, 1.0f); /* * range-reduction, first step: * * / y_over_x if |y_over_x| <= 1.0; * x = < * \ 1.0 / y_over_x otherwise */ nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one), nir_fmax(b, abs_y_over_x, one)); /* * approximate atan by evaluating polynomial: * * x * 0.9999793128310355 - x^3 * 0.3326756418091246 + * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 + * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444 */ nir_ssa_def *x_2 = nir_fmul(b, x, x); nir_ssa_def *x_3 = nir_fmul(b, x_2, x); nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2); nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2); nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2); nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2); nir_ssa_def *polynomial_terms[] = { nir_fmul(b, x, nir_imm_float(b, 0.9999793128310355f)), nir_fmul(b, x_3, nir_imm_float(b, -0.3326756418091246f)), nir_fmul(b, x_5, nir_imm_float(b, 0.1938924977115610f)), nir_fmul(b, x_7, nir_imm_float(b, -0.1173503194786851f)), nir_fmul(b, x_9, nir_imm_float(b, 0.0536813784310406f)), nir_fmul(b, x_11, nir_imm_float(b, -0.0121323213173444f)), }; nir_ssa_def *tmp = build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms)); /* range-reduction fixup */ tmp = nir_fadd(b, tmp, nir_fmul(b, nir_b2f(b, nir_flt(b, one, abs_y_over_x)), nir_fadd(b, nir_fmul(b, tmp, nir_imm_float(b, -2.0f)), nir_imm_float(b, M_PI_2f)))); /* sign fixup */ return nir_fmul(b, tmp, nir_fsign(b, y_over_x)); } static nir_ssa_def * build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x) { nir_ssa_def *zero = nir_imm_float(b, 0.0f); /* If |x| >= 1.0e-8 * |y|: */ nir_ssa_def *condition = nir_fge(b, nir_fabs(b, x), nir_fmul(b, nir_imm_float(b, 1.0e-8f), nir_fabs(b, y))); /* Then...call atan(y/x) and fix it up: */ nir_ssa_def *atan1 = build_atan(b, nir_fdiv(b, y, x)); nir_ssa_def *r_then = nir_bcsel(b, nir_flt(b, x, zero), nir_fadd(b, atan1, nir_bcsel(b, nir_fge(b, y, zero), nir_imm_float(b, M_PIf), nir_imm_float(b, -M_PIf))), atan1); /* Else... */ nir_ssa_def *r_else = nir_fmul(b, nir_fsign(b, y), nir_imm_float(b, M_PI_2f)); return nir_bcsel(b, condition, r_then, r_else); } static nir_ssa_def * build_frexp(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent) { nir_ssa_def *abs_x = nir_fabs(b, x); nir_ssa_def *zero = nir_imm_float(b, 0.0f); /* Single-precision floating-point values are stored as * 1 sign bit; * 8 exponent bits; * 23 mantissa bits. * * An exponent shift of 23 will shift the mantissa out, leaving only the * exponent and sign bit (which itself may be zero, if the absolute value * was taken before the bitcast and shift. */ nir_ssa_def *exponent_shift = nir_imm_int(b, 23); nir_ssa_def *exponent_bias = nir_imm_int(b, -126); nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x807fffffu); /* Exponent of floating-point values in the range [0.5, 1.0). */ nir_ssa_def *exponent_value = nir_imm_int(b, 0x3f000000u); nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero); *exponent = nir_iadd(b, nir_ushr(b, abs_x, exponent_shift), nir_bcsel(b, is_not_zero, exponent_bias, zero)); return nir_ior(b, nir_iand(b, x, sign_mantissa_mask), nir_bcsel(b, is_not_zero, exponent_value, zero)); } static nir_op vtn_nir_alu_op_for_spirv_glsl_opcode(enum GLSLstd450 opcode) { switch (opcode) { case GLSLstd450Round: return nir_op_fround_even; case GLSLstd450RoundEven: return nir_op_fround_even; case GLSLstd450Trunc: return nir_op_ftrunc; case GLSLstd450FAbs: return nir_op_fabs; case GLSLstd450SAbs: return nir_op_iabs; case GLSLstd450FSign: return nir_op_fsign; case GLSLstd450SSign: return nir_op_isign; case GLSLstd450Floor: return nir_op_ffloor; case GLSLstd450Ceil: return nir_op_fceil; case GLSLstd450Fract: return nir_op_ffract; case GLSLstd450Sin: return nir_op_fsin; case GLSLstd450Cos: return nir_op_fcos; case GLSLstd450Pow: return nir_op_fpow; case GLSLstd450Exp2: return nir_op_fexp2; case GLSLstd450Log2: return nir_op_flog2; case GLSLstd450Sqrt: return nir_op_fsqrt; case GLSLstd450InverseSqrt: return nir_op_frsq; case GLSLstd450FMin: return nir_op_fmin; case GLSLstd450UMin: return nir_op_umin; case GLSLstd450SMin: return nir_op_imin; case GLSLstd450FMax: return nir_op_fmax; case GLSLstd450UMax: return nir_op_umax; case GLSLstd450SMax: return nir_op_imax; case GLSLstd450FMix: return nir_op_flrp; case GLSLstd450Fma: return nir_op_ffma; case GLSLstd450Ldexp: return nir_op_ldexp; case GLSLstd450FindILsb: return nir_op_find_lsb; case GLSLstd450FindSMsb: return nir_op_ifind_msb; case GLSLstd450FindUMsb: return nir_op_ufind_msb; /* Packing/Unpacking functions */ case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8; case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8; case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16; case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16; case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16; case GLSLstd450PackDouble2x32: return nir_op_pack_double_2x32; case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8; case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8; case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16; case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16; case GLSLstd450UnpackHalf2x16: return nir_op_unpack_half_2x16; case GLSLstd450UnpackDouble2x32: return nir_op_unpack_double_2x32; default: unreachable("No NIR equivalent"); } } static void handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint, const uint32_t *w, unsigned count) { struct nir_builder *nb = &b->nb; const struct glsl_type *dest_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_create_ssa_value(b, dest_type); /* Collect the various SSA sources */ unsigned num_inputs = count - 5; nir_ssa_def *src[3] = { NULL, }; for (unsigned i = 0; i < num_inputs; i++) src[i] = vtn_ssa_value(b, w[i + 5])->def; switch (entrypoint) { case GLSLstd450Radians: val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 0.01745329251)); return; case GLSLstd450Degrees: val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 57.2957795131)); return; case GLSLstd450Tan: val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]), nir_fcos(nb, src[0])); return; case GLSLstd450Modf: { nir_ssa_def *sign = nir_fsign(nb, src[0]); nir_ssa_def *abs = nir_fabs(nb, src[0]); val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs)); nir_store_deref_var(nb, vtn_nir_deref(b, w[6]), nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf); return; } case GLSLstd450ModfStruct: { nir_ssa_def *sign = nir_fsign(nb, src[0]); nir_ssa_def *abs = nir_fabs(nb, src[0]); assert(glsl_type_is_struct(val->ssa->type)); val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs)); val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs)); return; } case GLSLstd450Step: val->ssa->def = nir_sge(nb, src[1], src[0]); return; case GLSLstd450Length: val->ssa->def = build_length(nb, src[0]); return; case GLSLstd450Distance: val->ssa->def = build_length(nb, nir_fsub(nb, src[0], src[1])); return; case GLSLstd450Normalize: val->ssa->def = nir_fdiv(nb, src[0], build_length(nb, src[0])); return; case GLSLstd450Exp: val->ssa->def = build_exp(nb, src[0]); return; case GLSLstd450Log: val->ssa->def = build_log(nb, src[0]); return; case GLSLstd450FClamp: val->ssa->def = build_fclamp(nb, src[0], src[1], src[2]); return; case GLSLstd450UClamp: val->ssa->def = nir_umin(nb, nir_umax(nb, src[0], src[1]), src[2]); return; case GLSLstd450SClamp: val->ssa->def = nir_imin(nb, nir_imax(nb, src[0], src[1]), src[2]); return; case GLSLstd450Cross: { unsigned yzx[4] = { 1, 2, 0, 0 }; unsigned zxy[4] = { 2, 0, 1, 0 }; val->ssa->def = nir_fsub(nb, nir_fmul(nb, nir_swizzle(nb, src[0], yzx, 3, true), nir_swizzle(nb, src[1], zxy, 3, true)), nir_fmul(nb, nir_swizzle(nb, src[0], zxy, 3, true), nir_swizzle(nb, src[1], yzx, 3, true))); return; } case GLSLstd450SmoothStep: { /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */ nir_ssa_def *t = build_fclamp(nb, nir_fdiv(nb, nir_fsub(nb, src[2], src[0]), nir_fsub(nb, src[1], src[0])), nir_imm_float(nb, 0.0), nir_imm_float(nb, 1.0)); /* result = t * t * (3 - 2 * t) */ val->ssa->def = nir_fmul(nb, t, nir_fmul(nb, t, nir_fsub(nb, nir_imm_float(nb, 3.0), nir_fmul(nb, nir_imm_float(nb, 2.0), t)))); return; } case GLSLstd450FaceForward: val->ssa->def = nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]), nir_imm_float(nb, 0.0)), src[0], nir_fneg(nb, src[0])); return; case GLSLstd450Reflect: /* I - 2 * dot(N, I) * N */ val->ssa->def = nir_fsub(nb, src[0], nir_fmul(nb, nir_imm_float(nb, 2.0), nir_fmul(nb, nir_fdot(nb, src[0], src[1]), src[1]))); return; case GLSLstd450Refract: { nir_ssa_def *I = src[0]; nir_ssa_def *N = src[1]; nir_ssa_def *eta = src[2]; nir_ssa_def *n_dot_i = nir_fdot(nb, N, I); nir_ssa_def *one = nir_imm_float(nb, 1.0); nir_ssa_def *zero = nir_imm_float(nb, 0.0); /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */ nir_ssa_def *k = nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta, nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i))))); nir_ssa_def *result = nir_fsub(nb, nir_fmul(nb, eta, I), nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i), nir_fsqrt(nb, k)), N)); /* XXX: bcsel, or if statement? */ val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result); return; } case GLSLstd450Sinh: /* 0.5 * (e^x - e^(-x)) */ val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f), nir_fsub(nb, build_exp(nb, src[0]), build_exp(nb, nir_fneg(nb, src[0])))); return; case GLSLstd450Cosh: /* 0.5 * (e^x + e^(-x)) */ val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f), nir_fadd(nb, build_exp(nb, src[0]), build_exp(nb, nir_fneg(nb, src[0])))); return; case GLSLstd450Tanh: { /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x))) * * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1) * * We clamp x to (-inf, +10] to avoid precision problems. When x > 10, * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the * computation e^2x +/- 1 so it can be ignored. */ nir_ssa_def *x = nir_fmin(nb, src[0], nir_imm_float(nb, 10)); nir_ssa_def *exp2x = build_exp(nb, nir_fmul(nb, x, nir_imm_float(nb, 2))); val->ssa->def = nir_fdiv(nb, nir_fsub(nb, exp2x, nir_imm_float(nb, 1)), nir_fadd(nb, exp2x, nir_imm_float(nb, 1))); return; } case GLSLstd450Asinh: val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]), build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]), nir_fsqrt(nb, nir_fadd(nb, nir_fmul(nb, src[0], src[0]), nir_imm_float(nb, 1.0f)))))); return; case GLSLstd450Acosh: val->ssa->def = build_log(nb, nir_fadd(nb, src[0], nir_fsqrt(nb, nir_fsub(nb, nir_fmul(nb, src[0], src[0]), nir_imm_float(nb, 1.0f))))); return; case GLSLstd450Atanh: { nir_ssa_def *one = nir_imm_float(nb, 1.0); val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f), build_log(nb, nir_fdiv(nb, nir_fadd(nb, one, src[0]), nir_fsub(nb, one, src[0])))); return; } case GLSLstd450Asin: val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955); return; case GLSLstd450Acos: val->ssa->def = nir_fsub(nb, nir_imm_float(nb, M_PI_2f), build_asin(nb, src[0], 0.08132463, -0.02363318)); return; case GLSLstd450Atan: val->ssa->def = build_atan(nb, src[0]); return; case GLSLstd450Atan2: val->ssa->def = build_atan2(nb, src[0], src[1]); return; case GLSLstd450Frexp: { nir_ssa_def *exponent; val->ssa->def = build_frexp(nb, src[0], &exponent); nir_store_deref_var(nb, vtn_nir_deref(b, w[6]), exponent, 0xf); return; } case GLSLstd450FrexpStruct: { assert(glsl_type_is_struct(val->ssa->type)); val->ssa->elems[0]->def = build_frexp(nb, src[0], &val->ssa->elems[1]->def); return; } default: val->ssa->def = nir_build_alu(&b->nb, vtn_nir_alu_op_for_spirv_glsl_opcode(entrypoint), src[0], src[1], src[2], NULL); return; } } static void handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode, const uint32_t *w, unsigned count) { const struct glsl_type *dest_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_create_ssa_value(b, dest_type); nir_intrinsic_op op; switch (opcode) { case GLSLstd450InterpolateAtCentroid: op = nir_intrinsic_interp_var_at_centroid; break; case GLSLstd450InterpolateAtSample: op = nir_intrinsic_interp_var_at_sample; break; case GLSLstd450InterpolateAtOffset: op = nir_intrinsic_interp_var_at_offset; break; default: unreachable("Invalid opcode"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op); nir_deref_var *deref = vtn_nir_deref(b, w[5]); intrin->variables[0] = nir_deref_var_clone(deref, intrin); switch (opcode) { case GLSLstd450InterpolateAtCentroid: break; case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: intrin->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def); break; default: unreachable("Invalid opcode"); } intrin->num_components = glsl_get_vector_elements(dest_type); nir_ssa_dest_init(&intrin->instr, &intrin->dest, glsl_get_vector_elements(dest_type), glsl_get_bit_size(dest_type), NULL); val->ssa->def = &intrin->dest.ssa; nir_builder_instr_insert(&b->nb, &intrin->instr); } bool vtn_handle_glsl450_instruction(struct vtn_builder *b, uint32_t ext_opcode, const uint32_t *w, unsigned count) { switch ((enum GLSLstd450)ext_opcode) { case GLSLstd450Determinant: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = rzalloc(b, struct vtn_ssa_value); val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5])); break; } case GLSLstd450MatrixInverse: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5])); break; } case GLSLstd450InterpolateAtCentroid: case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: handle_glsl450_interpolation(b, ext_opcode, w, count); break; default: handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count); } return true; }